Does Austerity Pay Off?

Benjamin Born (Mannheim, CEPR) Gernot Müller (Tübingen, CEPR) Johannes Pfeifer (Mannheim)

ESSIM 2015
May 26-29, 2015
Austerity imposed by markets’ assessment

Since 2010 sharp shift to austerity in most advanced economies, notably in euro area “periphery” despite ongoing recession

- Pro-cyclical fiscal stance
- Arguably without alternative, because of markets’ concern regarding sustainability of debt, reflected in rising yield spreads
Austerity imposed by markets’ assessment

Since 2010 sharp shift to austerity in most advanced economies, notably in euro area “periphery” despite ongoing recession

- Pro-cyclical fiscal stance

- Arguably without alternative, because of markets’ concern regarding sustainability of debt, reflected in rising yield spreads

and yet...
Yield spreads vis-à-vis Germany kept rising

“Financial investors are schizophrenic about fiscal consolidation and growth. They react positively to news of fiscal consolidation, but then react negatively later, when consolidation leads to lower growth—which it often does.” (Blanchard, 2011)
This paper

Does austerity pay off?

- Does it reassure markets about the sustainability of debt?
- That is, does it lower sovereign default premia?
This paper

Does austerity pay off?

- Does it reassure markets about the sustainability of debt?
- That is, does it lower sovereign default premia?

Identify shocks to exhaustive government consumption (one important element of austerity packages)
This paper

Does austerity pay off?

- Does it reassure markets about the sustainability of debt?
- That is, does it lower sovereign default premia?

Identify shocks to exhaustive government consumption (one important element of austerity packages)

- Direct effect on government budget may be offset by indirect effect on growth
- Output-Debt interaction critical for willingness and/or ability to service debt
Our contribution

New panel data set for (currently) 38 emerging and advanced economies

- Data for sovereign default premia as a direct measure for markets’ perception of debt sustainability
- Data for exhaustive government spending building on Ilzetzki, Mendoza, and Végh (2013)
- Unbalanced panel from 1991Q1 to 2014Q2
Our contribution

New panel data set for (currently) 38 emerging and advanced economies

- Data for sovereign default premia as a direct measure for markets’ perception of debt sustainability
- Data for exhaustive government spending building on Ilzetzki, Mendoza, and Végh (2013)
- Unbalanced panel from 1991Q1 to 2014Q2

Estimate dynamic effect of government consumption on spreads

- Local projection approach (Jordá, 2005) applied in smooth transition autoregressive framework
- Condition on state of the economy (fiscal stress)
- Long-run VAR
Default premia data

Measure how markets’ assessment of government solvency affects real financing costs of countries

- Compute difference in sovereign yields vis-à-vis a “riskless” reference country

- Only consider yields on government securities issued in a common currency
 → eliminate effects of inflation and depreciation expectations
Default premia data: four strategies

1. Emerging markets: J.P. Morgan EMBI spreads
 → difference in yields of dollar-denominated government (-guaranteed) bonds relative to U.S. government bonds

2. Euro area: “long-term interest rate for convergence purposes”
 → computed as “yields to maturity” from bonds with residual maturity close to 10 years
 → use German government bond yield as risk-free benchmark

3. Make use of issuance of foreign currency government bonds in many economies

4. Use CDS spreads available at end of sample for some countries and to transform relative into absolute default premia
Introduction

Data

Econometric framework

Results

Robustness

Long run

Theory

Conclusion
Econometric framework: local projection

Direct estimate of impulse response functions (Jordá, 2005)

\[x_{i,t+h} = \psi_h g_{i,t} + \Pi_h (L) x_{i,t-1} + u_{it} \]
Econometric framework: local projection

Direct estimate of impulse response functions (Jordá, 2005)

\[x_{i,t+h} = \psi_h g_{i,t} + \Pi_h (L) X_{i,t-1} + u_{it} \]

Advantages compared to VAR

- robust to misspecification of the underlying DGP
- inference straightforward
- adaptable to nonlinear setting
Allowing for state dependence

Smooth transition regression (Auerbach and Gorodnichenko, 2012; Granger and Teräsvirta, 1993):

\[x_{i,t+h} = F(z_{i,t}) \psi_{A,h} g_{i,t} + [1 - F(z_{i,t})] \psi_{B,h} g_{i,t} \]
\[+ F(z_{i,t}) \Pi_{A,h}(L) X_{i,t-1} + [1 - F(z_{i,t})] \Pi_{B,h}(L) X_{i,t-1} + u_{i,t} \]

- \(F(z_{i,t}) \) captures the degree to which the economy is in one of two “regimes”
- Response changes with state of economy: indicator \(z_{i,t} \)
- Intermediate observations are instrumental in identifying “regimes”
- Use \(z_{i,t} = s_{i,t-1} \) (predetermined w.r.t. to shocks)
Identification: general idea

- Assumption: within a given quarter, government consumption is predetermined (Blanchard and Perotti, 2002)
- Plausible, because exhaustive government consumption is unlikely
 1. to respond automatically to cycle
 2. to be adjusted instantaneously in a discretionary manner by policy makers
- Government spending is gov. consumption, not transfers
- Discretionary spending subject to decision lags
- Lags are even observed as crisis imminent (US stimulus package, austerity measures in European “periphery”
Formally, we assume that government spending is determined by the process

\[g_{i,t} = \Gamma(L)X_{i,t-1} + \varepsilon^g_{i,t}, \tag{1} \]

where \(\varepsilon^g_{i,t} \) is an orthogonal innovation to government consumption.

We are interested in response of variable \(x_{i,t+h} \) to shock, allowing for state dependence:

\[x_{i,t+h} = F(z_{i,t})\psi_{A,h}\varepsilon^g_{i,t} + [1 - F(z_{i,t})]\psi_{B,h}\varepsilon^g_{i,t} + u_{i,t} \]

Using (1) to substitute for \(\varepsilon^g_{i,t} \) yields the initial local projection and allows estimating the \(\psi_{*,h} \).
Indicator function for fiscal stress

Non-parametric version: country-group specific empirical CDF

\[F(z_{i,t}) = \frac{1}{N} \sum_{j=1}^{N} 1_{z_j < z_{i,t}} \]

Regimes characterized by states that materialized in sample
Estimates of the effects of spending cuts

- Spending cut normalized to one percent of GDP
- Local projections: estimate panel model for horizon of up to 8 quarters
 - Unbalanced panel for 38 countries (≈ 2300 observations)
 - Include time fixed effects and country-specific constant/trend
 - Driscoll and Kraay (1998) standard errors: robust to heteroskedasticity, serial and cross-sectional correlation
- Time fixed effect, among other things, captures time-varying risk aversion
Output falls by -0.3% on impact, declines further to -0.6%

Spreads increase by 20bps during first couple quarters
→ spreads countercyclical
→ austerity does not pay off
Accounting for heterogeneity

- So far: results for the entire sample
 - might mask important heterogeneity
 - conditioning on fiscal stress vs. benign times
Austerity does not pay off in times of fiscal stress

- Results during fiscal stress are even starker!
- Positive effect only during benign times
- Output and default premia responses significantly different
- Government consumption response not significantly different
What about fiscal foresight?

- Ramey (2011) and Leeper, Walker, and Yang (2012): fiscal policy innovations might be anticipated
- Information sets of econometrician and agents different → unobserved state
- Structural shocks not recoverable from observables → “nonfundamentalness” (Lippi and Reichlin, 1994)
- Local projection: replace government consumption with forecast error, available for subsample of OECD countries
Fiscal foresight not an issue

(a) Identification using G forecast error

(b) Identification using actual G

Introduction Data Econometric framework Results Robustness Long run Theory Conclusion 18/30
Results are robust with respect to...

- Excluding Great Recession
- Number of sample splits (e.g. advanced vs. emerging)
- Conservative data quality sample
- Excluding benefits in kind
- Consumption and investment
- Boom vs. Recession
- Monetary Union vs. Own Legal Tender
- Mean-group estimator
Long-run response

- Number of coefficients to estimate increases in IRF horizon for local projections
 - exhausts degrees of freedom in time dimension
- Solution: use VAR instead
 - IRFs are computed recursively
- Enter default premia in first differences to allow for long-run response of temporary shock
- Estimation allows for smooth transition in slope parameters and covariances
Long-run impulse response

(c) Unconditional VAR

(d) Conditional: fiscal stress vs. benign times
Inspecting the mechanism

- Consider modified “willingness-to-pay” model of sovereign default à la Arellano (2008)
- Small open economy whose government engages in intertemporal trade to maximize household utility
- Output y_t is given by

$$y_t = \bar{y} e^{\epsilon \hat{g}_t},$$

where
- \bar{y} is a positive constant
- \hat{g}_t is percentage deviation of government consumption from its long-run value \bar{g}
- ϵ is a reduced-form measure of the multiplier
Default decision of the government

- Government cannot commit to repaying its debt
- Resource constraint in case of repayment:

\[y_t + q_t d_{t+1} - d_t = c_t + \bar{g} e^{\hat{g}_t}, \]

where \(q_t \) is price of debt determined in world capital markets

\[q_t = \frac{1 - \delta_t}{1 + r} \]

- Default: exclusion from world markets with re-access probability \(\theta \)
- During autarky, there is an asymmetric output cost:

\[y_t^{\text{def}} = \min(y_t, \bar{y}^{\text{def}}), \]

with consumption given by

\[c_t^{\text{def}} = y_t^{\text{def}} - \bar{g} e^{\hat{g}_t}. \]
Calibration and policy experiments

- Parametrization follows Arellano (2008) for Argentina
- Exception: \bar{g} set to 20% of steady state output
- Consider two states of fiscal finances: zero debt (no stress) and debt at the boundary of the default set (stress)
- Consider two multipliers ε: zero as found for benign times and “consensus estimate” of 0.7
Results: Generalized IRFs

(e) $\epsilon = 0$

(f) $\epsilon = 0.7$
Default set and austerity

- Spreads rise with default probability δ

\[
1 + r = \frac{1 + \bar{r}}{1 - \delta(d', y)}
\]

- Default more likely if borrowing high and/or output low
- At low levels of output, servicing high debt hurts more
- With high multiplier in times of stress, austerity deprives economy of much needed resources
 \(\rightarrow \) higher temptation to default
Default set and austerity

![Graph showing GDP vs. Debt with a Default Set point]

- Introduction
- Data
- Econometric framework
- Results
- Robustness
- Long run
- Theory
- Conclusion
Default set and austerity

- GDP
- Debt

Default Set

benign times
Default set and austerity

Default Set

GDP

Debt

benign times

stress

Theory
Why does default risk rise?

- Investors are not irrational or schizophrenic about consolidation
- Rather, they correctly anticipate temporarily higher temptation of government to default when negative shocks occur in the future
- Defaulting in these bad states would free up scarce resources
- Naive observer might interpret movement close to default set as “austerity is not working”
Some thoughts on policy implications

- Spend your way out of the crisis?
 ⇒ unlikely to be successful in the long run

- There is no free lunch! Austerity involves tradeoffs
 ⇒ No pain, no gain! No expansionary austerity

- Consolidate while not yet in fiscal stress
Conclusion — Does austerity pay off?

- New panel data set for 38 emerging and advanced economies
 - Data for government consumption from direct/non-interpolated sources
 - Data for sovereign default premia

- Austerity (cuts of government consumption)
 - Depresses economic activity and raises default premia in the short-run
 - Unless economy enjoys benign times
 - Decreases default premia in the long-run

- Rational expectations model of sovereign default explains results
 - Output drop due to austerity increases incentives to default in bad states
Exhaustive government consumption

- Refers to a national accounting concept: goods purchased/produced by the government for final consumption → mostly wages, goods and services purchases, and benefits in kind while excluding monetary transfers
- By definition includes “social transfers in kind related to expenditure on products supplied to households via market producers” (different from US)
- Different than “government expenditure” which often denotes all cash outlays by the government
- Should be accrual-based, not cash-based
- Excludes government investment
- Still based on SNA95 (next revision will use SNA2010 where available)
- Relates to general or central government depending on the country
Impulse response functions

- Response in period $t + h$, conditional on experiencing state indexed by $z_{i,t}$:

$$\left. \frac{\partial x_{t+h}}{\partial \varepsilon_{i,t}} \right|_{z_{i,t}} = F(z_{i,t}) \psi_{A,h} + [1 - F(z_{i,t})] \psi_{B,h}$$

(2)

- Directly provides average response of an economy in state $z_{i,t}$ going forward

- Conditional linearity allows using Wald-type test for assessing significance of different responses
Austerity does not pay off in times of fiscal stress (top), pre financial crisis sample (bottom)
Advanced (top) vs. emerging (bottom)
Euro area: crisis (top) vs. non-crisis countries (bottom)
Full sample (top) vs. conservative sample (bottom)
Government consumption including benefits in kind (top) vs. excluding them (bottom)
Consumption and investment

[Graphs showing the relationship between GDP, default premium (basis points), and consumption and investment over time.]

Appendix

References 38/30
 Boom vs. recession

- Similar to fiscal stress vs. benign times
- But: overlap between episodes is far from perfect
Monetary union/dollarization vs. own legal tender

(g) Monetary union or dollarization

(h) Countries with their own legal tender

Appendix References 40/30
Cross-sectional heterogeneity: mean-group estimator

- Take mean of coefficient of country-by-country regressions
- Only possible for unconditional model

Bibliography II

