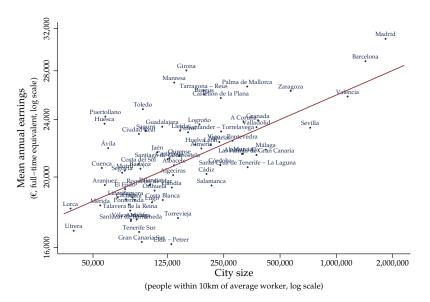
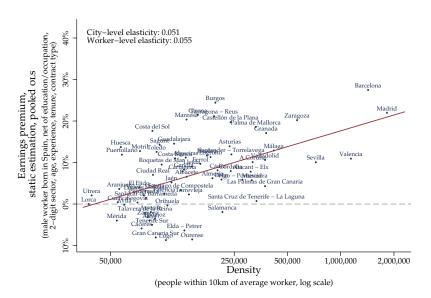

Some challenges for Spanish competitiveness in the long-run: economic geography and education

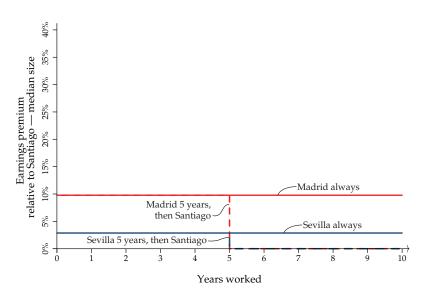
Diego Puga

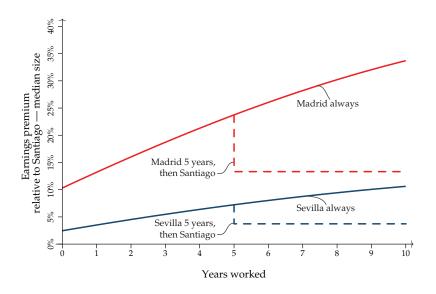

CEMFI

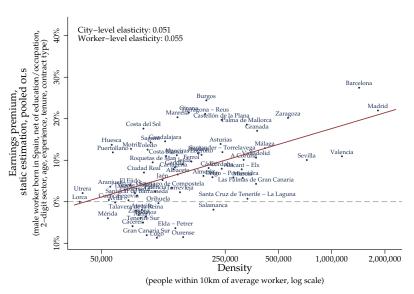
Average firm productivity is higher in bigger cities

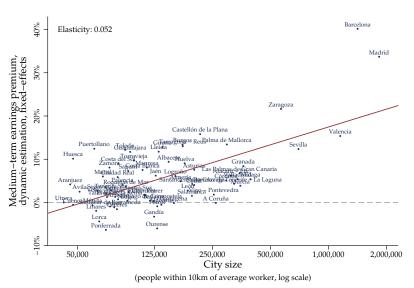


Source: Combes, Duranton, Gobillon, Puga, and Roux (2012)


This is also reflected in higher earnings for workers

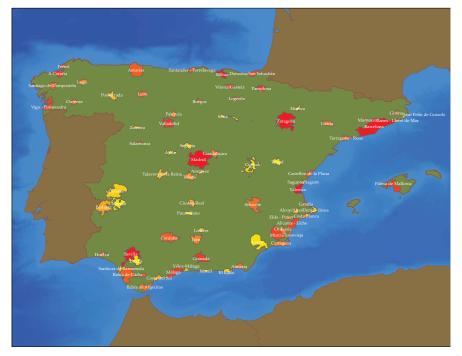

Earnings premium and log city size


Relative earnings profiles (only static benefits)


Relative earnings profiles (allowing for dynamic benefits)

Earnings premium and log city size (OLS)

Earnings premium and log city size (calculating static and dynamic benefits)

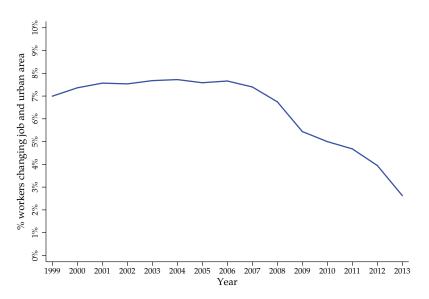


	% of relocations	Relocations	Geographic	
	from diversified to	as a % of	concentration	
	diversificadas	the stock		
	specialized areas			
R&D	93.0	8.1	0.023	
Pharmaceuticals and cosmetics	<i>88.</i> 3	6.4	0.020	
IT and consultancy services	82.1	7.3	0.030	
Business services	75.8	5.0	0.015	
Printing and publishing	73.3	5.4	0.026	
Aerospace, rail and naval equipment	71.6	3.3	0.026	
Electrical and electronic equipment	69.1	4.2	0.011	
Motor vehicles	62.5	2.7	0.020	
Electrical and electronic components	60.9	5.9	0.007	
Textiles	46.4	2.5	0.024	
Chemical, rubber and plastic products	38.3	3.9	0.009	
Metal products and machinery	37.6	3.2	0.005	
Clothing and leather	36.3	3.4	0.013	
Food and beverages	34.6	0.8	0.007	
Furniture and fixtures	32.6	2.7	0.008	
Wood, lumber, pulp and paper	30.6	1.7	0.009	
Primary metals	30.0	2.5	0.009	
Non-metallic mineral products	27.3	2.0	0.012	
Aggregate	72.0	4.7		

Source: Duranton and Puga (2001).

Local population	Sectoral specialization		Functional specialization in management against production				
	1977 1	1987	1997	1950	1970	1980	1990
5,000,000-19,397,717	.377	.376	.374	+10.2%	+22.1%	+30.8%	+39.0%
1,500,000- 4,999,999	.366	.360	.362	+ 0.3%	+11.0%	+21.6%	+25.7%
500,000- 1,499,999	.397	.390	.382	-10.9%	- 7.8%	- 5.0%	- 2.1%
250,000- 499,999	.409	.389	.376	- 9.2%	- 9.5%	-10.9%	-14.2%
75,000- 249,999	.467	.442	.410	- 2.1%	- 7.9%	-12.7%	-20.7%
67- 75,000	.693	.683	.641	- 4.0%	-31.7%	-40.4%	-49.5%

Source: Duranton and Puga (2005).

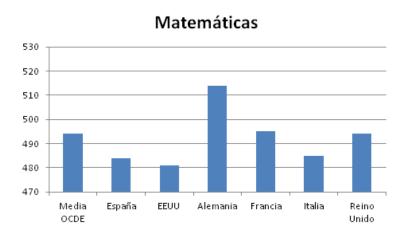



Mismatch between municipalities and economic units

- 8,117 municipalities in Spain.
- Many are tiny:
 - Almost half (3,877 municipalities) have fewer than 500 inhabitants.
 - 15% (1,202 municipalities) have fewer than 100 inhabitants.
- Large urban areas are fragmented administratively:
 - The Barcelona Metropolitan Area has 36 municipalities.
 - The Barcelona urban area has 165 municipalities (Ministerio de Fomento definitions).

The drop in mobility across urban areas during the crisis

Comparing younger and older workers

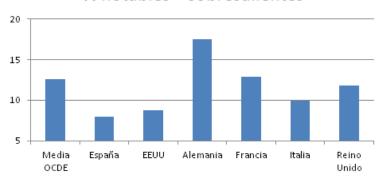

Important challenges in university education

- Little student mobility (70% stay in the region, those who study elsewhere tend to commute from parents' home).
- Few places of excellence (no incentives, if it arises nevertheless bureaucracy discourages it).
- Specific problems in science and engineering:
 - Declining share (over 20% drop in student registrations over last decade).
 - Particularly bright students face unusually high failure rates:
 - * 40% failed credits.
 - * 25% quit or change subject within first year.
 - * Only 25% get a grade of 7/10 or higher (lowest, compared with 43% across fields).
 - Contrast with medicine where bright students tend to complete their studies and obtain particularly high grades (7.2 average)
- Excellence is built slowly, but destroyed rapidly.

Important challenges in pre-university education

- High dropout rate: over 30% of 18-24 year olds have not completed upper-secondary education but are no longer studying.
- Low performance.
- The system does reasonably well in teaching routine tasks to weak students.
- But does not make the most of the best students.
- It emphasises routine skills instead of creative skills.

Under-average performance of Spanish students in PISA tests

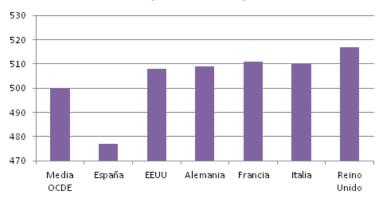


Important challenges in pre-university education

- High dropout rate: over 30% of 18-24 year olds have not completed upper-secondary education but are no longer studying.
- · Low performance.
- The system does reasonably well in teaching routine tasks to weak students.
- But does not make the most of the best students.
- It emphasises routine skills instead of creative skills.

Few students with top grades

Matemáticas,
% notables + sobresalientes


Source: Libertad González - NeG from PISA data

Important challenges in pre-university education

- High dropout rate: over 30% of 18-24 year olds have not completed upper-secondary education but are no longer studying.
- · Low performance.
- The system does reasonably well in teaching routine tasks to weak students.
- But does not make the most of the best students.
- It emphasises routine skills instead of creative skills.

...but it is in problem solving where the difference is striking

Resolución práctica de problemas

Source: Libertad González - NeG from PISA data

Important challenges in pre-university education

- High dropout rate: over 30% of 18-24 year olds have not completed upper-secondary education but are no longer studying.
- Low performance.
- The system does reasonably well in teaching routine tasks to weak students.
- But does not make the most of the best students.
- It emphasises routine skills instead of creative skills.