#### Financial Shocks in Production Chains

Sebnem Kalemli-Ozcan Se-Jik Kim Hyun Song Shin Bent E. Sørensen Sevcan Yesiltas

> ESSIM Tarragona May 2014



### Production networks in economics

#### Plan of paper:

- Outline stylized model of trade credit and moral hazard in production chains
- Test if broad empirical predictions hold in the data
- Preliminary and incomplete!

### Production networks in economics

#### Technological stories:

- Kremer (1993), Jones (2009)
  - ➤ Complementarity between high productivity workers
  - ➤ Weakest link in chain important for total output
- Disorganization in the former Soviet Union (Blanchard and Kremer (1997), Marin and Schnitzer (2004))
  - ➤ Loss of suppliers after break down of command economy

## Production networks in economics

#### Financial stories:

- Bigio and La'O (2013)
  - > Complementarity plus financing contraints
  - ➤ Large financial multiplier

## Trade credit

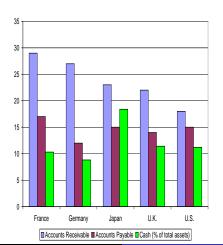
#### **Empirical observations:**

- Many firms have accounts payable even if the apparently have good access to (cheaper) credit
- Firms typically have large accounts payable and receivable at the same time
- Some theories extant: informed lenders to customers, insurance against bad products,...
- Kim and Shin (2012)—theory for current paper
- Accounts payable transfers rent to suppliers—overcomes moral hazard
  - > Suppliers may have other options
  - ➤ Departure of supplier disrupts the whole production chain



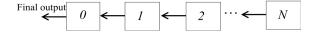
## This paper

#### **Broad intuition:**


- Net working capital is the "glue" that binds firms in a production chain
- Net working capital is equity stake in the production chain as a whole
- Delay in payment builds up net working capital
- Working capital varies across countries:

# Developed Country Corporate Balance Sheets

Financial Shocks in Production Chains


2

# **Developed Country Corporate Balance Sheets**



#### Production chain

• Final output sold by firm 0 at price q.



- Firm i + 1 supplies intermediate good to firm i.
- It takes time to build in production process.
- Success of project depends on effort of all firms in the production chain.



#### Cash Flows before Transfers

|      |     | Firms   |        |       |            |        |  |  |
|------|-----|---------|--------|-------|------------|--------|--|--|
|      |     | 0       | 1      |       | N-1        | N      |  |  |
|      | 0   |         |        |       |            | $-w_N$ |  |  |
|      | 1   |         |        |       | $-w_{N-1}$ | $-w_N$ |  |  |
| date | :   |         |        |       | $-w_{N-1}$ | $-w_N$ |  |  |
| t    | N-1 |         | $-w_1$ |       | $-w_{N-1}$ | $-w_N$ |  |  |
|      | N   | $-w_0$  | $-w_1$ |       | $-w_{N-1}$ | $-w_N$ |  |  |
|      | N+1 | $q-w_0$ | $-w_1$ | • • • | $-w_{N-1}$ | $-w_N$ |  |  |
|      | N+2 | $q-w_0$ | $-w_1$ |       | $-w_{N-1}$ | $-w_N$ |  |  |
|      | •   | :       | •      |       | :          | :      |  |  |

Wage cost  $w_i$  cannot be deferred, and must draw on firm i's cash holdings. Working capital needed to start production chain.

#### Technology

- In each period, firm *i* chooses from {high effort, low effort}
- Private benefit from low effort,  $bw_i$  (b > 0)
- Probability of failure
  - $\triangleright$  0 if all exert high effort,  $\varepsilon$  if one or more exert low effort
  - $\triangleright$  Borrowing rate r used to discount cash flows
  - ➤ Zero liquidation value of firms
- Payment  $p_i$  to firm i by firm i-1 for intermediate good.
- Deviations from high effort deterred by large enough "skin in the game" (Kim and Shin (2012), multi-firm version of Holmstrom and Tirole (1997))

#### Recursive Moral Hazard

• Payoff from consistent high effort

$$(p_i - p_{i+1} - w_i) \sum_{\tau=0}^{\infty} \frac{1}{(1+r)^{\tau}}$$
 (1)



The expected payoff to producer i from deviating to low effort today for one period is:

- Instant reward  $bw_i$
- Payment for *i* periods for sure until substandard product reaches consumer:

$$(p_i - p_{i+1} - w_i) (1 + 1/(1+r) + \dots + 1/(1+r)^i)$$

• After i periods payments stop with probability  $\epsilon$ , otherwise continue

So total expected payoff is

$$bw_{i} + (p_{i} - p_{i+1} - w_{i}) \left( \sum_{\tau=0}^{i} \frac{1}{(1+r)^{\tau}} + (1-\varepsilon) \sum_{\tau=i+1}^{\infty} \frac{1}{(1+r)^{\tau}} \right)$$
(2)

#### Recursive Moral Hazard

Comparing (1) and (2), the incentive compatibility constraint against a one period deviation to low effort is

$$p_i \ge p_{i+1} + (1+b_i) w_i \tag{3}$$

where  $b_i$  is the positive constant

$$b_i = \frac{b \cdot r \left(1 + r\right)^i}{\varepsilon} \tag{4}$$



#### Recursive Moral Hazard

• Substituting terms in the recursion gives condition:

$$p_i \ge \sum_{k=i}^{N} (1 + b_k) w_k$$

- Prices  $\{p_i\}$  incorporate rents  $\{b_k w_k\}$  for all the upstream firms k along the production chain
- Chain unravels unless  $q \ge \sum_{k=0}^{N} (1 + b_k) w_k$
- Parallels "disorganization" of Blanchard and Kremer (1997)



#### Working Capital as "Glue"

Firm i receives payment from firm i-1 after delay.

Accounts payable amortized at constant rate  $a_i p_i$  (actuarially fair).

#### Distinction between

- invoice price  $(1 + a_i) p_i$
- Now  $p_i$  fundamental price.

The fundamental price covers cost of production:

$$p_i = \sum_{k=i}^{N} (1+r)^{k-i+1} w_k$$

or

$$p_i = (1+r)w_i + (1+r)p_{i+1}$$
(5)



Incentive compatibility constraint with accounts receivable/payable

$$(1 + a_i) p_i \ge (1 + a_{i+1}) p_{i+1} + (1 + b_i) w_i$$
 (6)

Here, the interpretation of  $a_i$  is the rent transferred via late payment, price plus rent has to cover cost of input plus provide incentives.



Production chain is *sustainable* if expected profit of firm 0 is non-negative under the optimal contract,  $p_i$  covers cost of production, and IC constraint holds. Combining (5) and (6):

$$a_{i}p_{i} - a_{i+1}p_{i+1} = -(1+r)w_{i} - rp_{i+1} + (1+b_{i})w_{i}$$

$$= \left(b_{i} - r\frac{p_{i+1}}{w_{i}} - r\right)w_{i}$$

$$= \left(\frac{b(1+r)^{i}}{\varepsilon} - \frac{p_{i+1}}{w_{i}} - 1\right)rw_{i}$$

### Net Working Capital

Evaluating flows as perpetuities, accounts receivables  $(R_i)$  and payables  $(P_i)$  satisfy  $(R_i - P_i)r = a_ip_i - a_{i+1}p_{i+1}$  or

$$R_i - P_i = \left(\frac{b(1+r)^i}{\varepsilon} - \frac{p_{i+1}}{w_i} - 1\right) w_i$$

Expression in brackets is

- increasing in i ("upstreamness")
- increasing in r (financial tightness)
- non-linear in i and r



# Model predictions:

#### Empirical Hypotheses

**Proposition 1.** Net receivables relative to  $w_i$  is higher for upstream firms

**Proposition 2.** Net receivables is increasing in r for low values of r and high values of i. However, if  $r > r^*$  for threshold  $r^*$ , net receivables is declining in r.

# Measure of upstreamness (by sector)

Fally (2011), Antras, Chor, Fally and Hillberry (2012) and Antras and Chor (2013)

Input-Output matrix with coefficients  $d_{ij}$ ; sector-level measure of upstreamness satisfies

$$U_{i} = 1 + \sum_{j=1}^{N} \frac{d_{ij}Y_{j}}{Y_{i}}U_{j}.$$

 $d_{ij}Y_j/Y_i$  is share of sector i's total output purchased by sector j.

Then find U by matrix inversion.

#### Data

#### IO matrices

- OECD input-output tables for 16 countries
- Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, Germany, Greece, Hungary, Italy, Netherlands, Portugal, Slovakia, Slovenia, Spain, and United States
- 18 sub-industries of manufacturing

### Data

#### Firm-level data

- Annual firm-level data from ORBIS; sample 2000  $\sim$  2009
- $\bullet$  > 150,000 firms, > 600,000 firm-year observations

# Firms Across Countries, 2000-2009: Number of Observations/Firms by Country (not all)

| Country        | Firm-Year | Number of Firms |
|----------------|-----------|-----------------|
|                |           |                 |
| Austria        | 1247      | 665             |
| Belgium        | 30343     | 5495            |
| Czech Republic | 27792     | 7528            |
| Denmark        | 4887      | 1515            |
| Estonia        | 9141      | 1613            |
| Finland        | 30633     | 5407            |
| Germany        | 38527     | 14335           |
| Greece         | 22128     | 6451            |
| Hungary        | 10886     | 3539            |
| Italy          | 282404    | 67605           |
| Netherlands    | 3504      | 1076            |
| Portugal       | 44378     | 11358           |
| Spain          | 52436     | 10357           |
| United States  | 40929     | 15723           |
| Total          | 616354    | 156868          |

Table 1: Firms Across Countries, 2000-2009: Number of Observations/Firms by Type

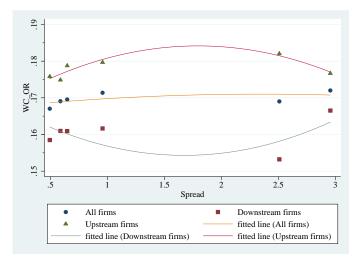
| Type       | Firm-Year | Number of Firms |
|------------|-----------|-----------------|
| All        | 616354    | 156868          |
| Medium     | 436963    | 114400          |
| Large      | 140208    | 33742           |
| Very Large | 39183     | 8726            |
| Listed     | 13094     | 2834            |
| Unlisted   | 451594    | 107732          |
| Young      | 72260     | 30107           |
| Mature     | 530662    | 124472          |

# Descriptive Statistics: OECD Sample, 2000–2009

Table 2: Descriptive Statistics: OECD Sample, 2000–2009

| Variable           | Mean | Median | St. dev. | Min.  | Max  | Kurtosis |
|--------------------|------|--------|----------|-------|------|----------|
| Payable/TA         | 0.23 | 0.20   | 0.16     | 0.01  | 0.67 | 3.15     |
| Receivable/TA      | 0.33 | 0.31   | 0.19     | 0.02  | 0.76 | 2.45     |
| Working Capital/TA | 0.28 | 0.28   | 0.19     | -0.10 | 0.7  | 2.45     |
| Short-term Debt/TA | 0.36 | 0.33   | 0.23     | 0.02  | 0.85 | 2.16     |
| Bank Debt/TA       | 0.22 | 0.20   | 0.19     | 0.00  | 0.68 | 2.25     |
| Total Debt/TA      | 0.46 | 0.47   | 0.24     | 0.03  | 0.91 | 1.99     |
| Payable/OR         | 0.18 | 0.16   | 0.12     | 0.01  | 0.52 | 3.2      |
| Receivable/OR      | 0.26 | 0.24   | 0.16     | 0.02  | 0.67 | 2.78     |
| Net Receivable/OR  | 0.08 | 0.07   | 0.13     | -0.19 | 0.42 | 3.15     |
| Working Capital/OR | 0.23 | 0.21   | 0.18     | -0.07 | 0.74 | 3.33     |

# Descriptive Statistics by Firm Types


| Firm Type  | Variable      | Obs.   | Mean | Med  | St.dev. | Min  | Max  |
|------------|---------------|--------|------|------|---------|------|------|
| Medium     | Receivable/TA | 436423 | 0.34 | 0.32 | 0.19    | 0.02 | 0.76 |
|            | Payable/TA    | 430238 | 0.24 | 0.21 | 0.16    | 0.01 | 0.67 |
| Large      | Receivable/TA | 140093 | 0.31 | 0.29 | 0.18    | 0.02 | 0.76 |
|            | Payable/TA    | 137753 | 0.21 | 0.19 | 0.14    | 0.01 | 0.67 |
| Very Large | Receivable/TA | 39134  | 0.21 | 0.18 | 0.16    | 0.02 | 0.76 |
|            | Payable/TA    | 38567  | 0.14 | 0.1  | 0.13    | 0.01 | 0.67 |
| Unlisted   | Receivable/TA | 451376 | 0.33 | 0.32 | 0.19    | 0.02 | 0.76 |
|            | Payable/TA    | 443721 | 0.23 | 0.21 | 0.16    | 0.01 | 0.67 |
| Listed     | Receivable/TA | 13072  | 0.16 | 0.14 | 0.11    | 0.02 | 0.76 |
|            | Payable/TA    | 12930  | 0.09 | 0.07 | 0.09    | 0.01 | 0.67 |
| Young      | Receivable/TA | 72095  | 0.35 | 0.34 | 0.21    | 0.02 | 0.76 |
|            | Payable/TA    | 71004  | 0.28 | 0.25 | 0.19    | 0.01 | 0.67 |
| Mature     | Receivable/TA | 530142 | 0.32 | 0.3  | 0.18    | 0.02 | 0.76 |
|            | Payable/TA    | 522173 | 0.22 | 0.2  | 0.15    | 0.01 | 0.67 |

# Testing Proposition 1

#### Dependent variables

|                       | $\left(\frac{REC}{OR}\right)$ | $\left(\frac{PAY}{OR}\right)$ | $\left(\frac{N\_REC}{OR}\right)$ | $\left(\frac{WC}{OR}\right)$ |
|-----------------------|-------------------------------|-------------------------------|----------------------------------|------------------------------|
| UPS                   | 0.014***                      | 0.005***                      | 0.009***                         | 0.013***                     |
|                       | (47.29)                       | (21.23)                       | (31.65)                          | (32.62)                      |
| country fixed effects | yes                           | yes                           | yes                              | yes                          |
| year fixed effects    | yes                           | yes                           | yes                              | yes                          |
| Adjusted $R^2$ Obs.   | 0.335 $609497$                | 0.318 $600425$                | 0.079<br>599886                  | 0.097 $599032$               |

# "Testing" Proposition 2 (US only)



Median normalized end-year working capital of US firms into upstream, downstream and

## Testing Proposition 2

Dependent variables

|                                            | $\frac{RI}{O}$      | $\frac{\Xi C}{R}$ ) | $(\frac{P_A}{C})$   | $\frac{AY}{DR}$ )   |                     | $\frac{REC}{R}$ )  |    |
|--------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|----|
| UPS                                        | 0.015***            |                     | 0.005***            |                     | 0.010***            |                    | (  |
| ${\rm UPS} \times {\rm spread}$            | (47.77)<br>0.018*** | 0.017***            | (20.13)<br>0.010*** | 0.010***            | (33.24)<br>0.008*** | 0.007***           | (  |
| $_{\mathrm{UPS}} \times \mathrm{spread}^2$ | (8.52)<br>-0.004*** | (8.32)<br>-0.004*** | (6.23)<br>-0.003*** | (6.25)<br>-0.003*** | (3.70)<br>-0.001*   | (3.46)<br>-0.001** | -( |
|                                            | (-6.87)             | (-7.13)             | (-6.32)             | (-6.20)             | (-1.96)             | (-2.29)            |    |
| country fixed effects                      | yes                 | yes                 | yes                 | yes                 | yes                 | yes                |    |
| year fixed effects                         | yes                 | yes                 | yes                 | yes                 | yes                 | yes                |    |
| sector fixed effects                       | no                  | yes                 | no                  | yes                 | no                  | yes                |    |
| Adjusted $R^2$                             | 0.335               | 0.342               | 0.318               | 0.320               | 0.079               | 0.086              |    |
| Obs.                                       | 609497              | 609497              | 600425              | 600425              | 599886              | 599886             |    |

# Working capital in great recession and run-up

| Panel A: Dependent variable, average growth of $\frac{WC}{OR}$ (04–06)     |                      |
|----------------------------------------------------------------------------|----------------------|
| UPS                                                                        | 0.029*               |
|                                                                            | (1.80)               |
| Adjusted $R^2$                                                             | 0.018                |
| Panel B: Dependent variable, average growth of $\frac{WC}{OR}$ (07–09) UPS | -0.045***<br>(-2.83) |
| Adjusted $R^2$                                                             | 0.017                |
|                                                                            |                      |
| Obs.                                                                       | 47414                |
| Country effects                                                            |                      |

# Cyclical pattern at the firm level

Dependent variable, average growth of  $\frac{WC}{OR}$  (07–09)

| average growth of $\frac{WC}{OR}$ (04–06) | -0.013**<br>(-2.57) | -0.012**<br>(-2.43) |
|-------------------------------------------|---------------------|---------------------|
| Country fixed effects                     | yes                 | yes                 |
| Sector fixed effects                      | no                  | yes                 |
| Clustered std. errors by                  | no                  | no                  |
| Adjusted $R^2$                            | 0.011               | 0.018               |
| Obs.                                      | 47860               | 47860               |

## Conclusion

- Financial interlinkages in supply chains through accounts receivables and payables may mitigate inefficiency due to bargaining and incentives
- Efficiency through delayed settlement
  - Possible explanation for why accounts receivable and payable are so large?
- Downside of delayed settlement is large demands on working capital

## Conlusions: Development

How can developing countries with poorly capitalized firms achieve lengthening of production chain?

Two hurdles:

- Working capital to finance the initial "triangle of costs"
- Sustaining long production chain

Both can be solved if firms have sufficient initial capital Both are problematic when firms are poorly capitalized Vertical integration may be a (second best) solution