Discussion:

"Labor Market Reform and the Cost of Business Cycles"

by T. Krebs and M. Scheffel

Petr Sedláček

University of Bonn

ESSIM 2014

Main point

Labor market reform

Main point

Labor market reform can reduce cost of business cycles

Main point

Labor market reform can reduce cost of business cycles

- different angle
- channels at play
- numbers

Lucas (1987)
$$\mathbb{E} \sum_t \beta^t U\left((1+\lambda)C_t\right) = \sum_t \beta^t U(\mathbb{E}C_t)$$

$$C_t = A \exp(\mu t) \exp(-1/2\sigma^2)\epsilon_t \qquad \log(\epsilon_t) \sim N(0,\sigma^2)$$

$$\lambda \approx 1/2\sigma^2$$

3 / 15

Lucas (1987)
$$\mathbb{E} \sum_t \beta^t U\left((1+\lambda)C_t\right) = \sum_t \beta^t U(\mathbb{E}C_t)$$

$$C_t = A \exp(\mu t) \exp(-1/2\sigma^2)\epsilon_t \qquad \log(\epsilon_t) \sim N(0,\sigma^2)$$

$$\lambda \approx 1/2\sigma^2$$

What others have done:

volatility-growth effects

Lucas (1987)
$$\mathbb{E} \sum_t \beta^t U\left((1+\lambda)C_t\right) = \sum_t \beta^t U(\mathbb{E}C_t)$$

$$C_t = \frac{A}{2} \exp(\mu t) \exp(-1/2\sigma^2)\epsilon_t \qquad \log(\epsilon_t) \sim N(0,\sigma^2)$$

$$\lambda \approx 1/2\sigma^2$$

What others have done:

- volatility-growth effects
- volatility-level effects

Lucas (1987)
$$\mathbb{E} \sum_{t} \beta^{t} \underline{\textbf{\textit{U}}} \left((1+\lambda)C_{t} \right) = \sum_{t} \beta^{t} \underline{\textbf{\textit{U}}} (\mathbb{E}C_{t})$$

$$C_{t} = A \exp(\mu t) \exp(-1/2\sigma^{2})\epsilon_{t} \qquad \log(\epsilon_{t}) \sim N(0, \sigma^{2})$$

$$\lambda \approx 1/2\sigma^{2}$$

What others have done:

- volatility-growth effects
- volatility-level effects
- alternative preferences

Lucas (1987)
$$\mathbb{E} \sum_t \beta^t U\left((1+\frac{\lambda}{\lambda})C_t\right) = \sum_t \beta^t U(\mathbb{E}C_t)$$

$$C_t = A \exp(\mu t) \exp(-1/2\sigma^2)\epsilon_t \qquad \log(\epsilon_t) \sim N(0,\sigma^2)$$

$$\lambda \approx 1/2\sigma^2$$

What others have done:

- volatility-growth effects
- volatility-level effects
- alternative preferences
- heterogeneity

Lucas (1987)
$$\mathbb{E} \sum_t \beta^t U\left((1+\lambda)C_t\right) = \sum_t \beta^t U(\mathbb{E}C_t)$$

$$C_t = A \exp(\mu t) \exp(-1/2\sigma^2)\epsilon_t \qquad \log(\epsilon_t) \sim N(0, \sigma^2)$$

$$\lambda \approx 1/2\sigma^2$$

What others have done:

- volatility-growth effects
- volatility-level effects
- alternative preferences
- heterogeneity

Tom and Martin propose that σ is endogenous

$$C = A(1 - U)$$

$$C = A(1 - U)$$

$$\frac{\hat{U}}{\overline{U}} = \left(\frac{\hat{A}}{\overline{A}}\right)^{-\gamma}$$

$$C = A(1 - U)$$

$$\frac{\hat{U}}{\overline{U}} = \left(\frac{\hat{A}}{\overline{A}}\right)^{-\gamma}$$

$$U \approx -\gamma(a - \overline{a})\overline{U} + \overline{U}$$

$$C = A(1 - U)$$

$$\frac{\hat{U}}{\overline{U}} = \left(\frac{\hat{A}}{\overline{A}}\right)^{-\gamma}$$

$$U \approx -\gamma(a - \overline{a})\overline{U} + \overline{U}$$

$$c = a + \log(1 - U) \approx a - U$$

$$C = A(1 - U)$$

$$\frac{\hat{U}}{\overline{U}} = \left(\frac{\hat{A}}{\overline{A}}\right)^{-\gamma}$$

$$U \approx -\gamma(a - \overline{a})\overline{U} + \overline{U}$$

$$c = a + \log(1 - U) \approx a - U$$

$$c \approx a(1 + \gamma \overline{U}) - \overline{U}(1 + \gamma \overline{a})$$

$$c\approx a(1+\gamma\overline{U})-\overline{U}(1+\gamma\overline{a})$$

$$c \approx a(1 + \gamma \overline{U}) - \overline{U}(1 + \gamma \overline{a})$$

Reform which reduces steady state unemployment has

a level effect

$$c \approx a(1 + \gamma \overline{U}) - \overline{U}(1 + \gamma \overline{a})$$

Reform which reduces steady state unemployment has

- a level effect and
- a volatility effect, i.e. affects cost of business cycle!

$$c \approx a(1 + \gamma \overline{U}) - \overline{U}(1 + \gamma \overline{a})$$

Reform which reduces steady state unemployment has

- a level effect and
- a volatility effect, i.e. affects cost of business cycle!
- works via a smaller number of affected agents

$$\frac{\lambda_{after}}{\lambda_{before}} \approx \frac{1/2\sigma_{after}^2}{1/2\sigma_{before}^2}$$

$$\frac{\lambda_{after}}{\lambda_{before}} \approx \frac{1/2\sigma_a^2 (1 + \gamma \overline{U}_{after})^2}{1/2\sigma_a^2 (1 + \gamma \overline{U}_{before})^2}$$

$$\frac{\lambda_{after}}{\lambda_{before}} pprox \frac{1/2\sigma_{after}^2}{1/2\sigma_{before}^2}$$

$$\frac{\lambda_{after}}{\lambda_{before}} \approx \frac{1/2\sigma_a^2(1+\gamma \overline{U}_{after})^2}{1/2\sigma_a^2(1+\gamma \overline{U}_{before})^2}$$

- regress log unemployment on log real output per worker
- HP-filtered with smoothing parameter 100,000
- $\gamma \approx 4$

$$\frac{\lambda_{after}}{\lambda_{before}} \approx \frac{1/2\sigma_{after}^2}{1/2\sigma_{before}^2}$$

$$\frac{\lambda_{after}}{\lambda_{before}} \approx \frac{1/2\sigma_a^2(1+\gamma\overline{U}_{after})^2}{1/2\sigma_a^2(1+\gamma\overline{U}_{before})^2}$$

- regress log unemployment on log real output per worker
- HP-filtered with smoothing parameter 100,000
- $\gamma \approx 4$

$$\frac{\lambda_{after}}{\lambda_{before}} \approx \left(\frac{1+4*0.074}{1+4*0.1}\right)^2 \approx 0.85$$

2. Channels at play

- ullet the above is valid for a given γ
- \bullet reform is likely to change both \overline{U} and γ
 - lacktriangle call $\Delta \overline{U}$ "level effect"
 - call $\Delta \gamma$ "elasticity effect"

- a) ↑ match efficiency
 - \bullet directly and via search effort UE rate \uparrow
 - ullet ightarrow unemployment falls

- a) ↑ match efficiency
 - ullet directly and via search effort UE rate \uparrow
 - ullet unemployment falls
 - changes influence also EU rate (den Haan et al. 2005)
 - easier to find jobs, separation rate increases!
 - → unemployment increases

- b) ↓ unemployment insurance
 - increases search effort of both short- and long-term unemployed
 - ullet o o UE rate and unemployment falls

- b) ↓ unemployment insurance
 - increases search effort of both short- and long-term unemployed
 - ullet o o UE rate and unemployment falls
 - as above, this affects EU rate, which falls
 - ullet unemployment falls further

2. Channels at play - "Elasticity effect" of reform

Jung and Kuhn (2014)

2. Channels at play - "Elasticity effect" of reform

Jung and Kuhn (2014)

- ↑ match efficiency:
 - no effect on UE rate volatility
 - ▶ \downarrow of EU rate volatility (about 1-for-1 for $\eta = 0.5$)
 - $lackbox{ }\rightarrow$ lower unemployment rate elasticity

2. Channels at play - "Elasticity effect" of reform

Jung and Kuhn (2014)

- ↑ match efficiency:
 - no effect on UE rate volatility
 - ▶ \downarrow of EU rate volatility (about 1-for-1 for $\eta=0.5$)
 - $lackbox{ }
 ightarrow$ lower unemployment rate elasticity
- ↓ unemployment insurance:
 - ▶ ↓ of both UE and EU rate volatility
 - ▶ → lower unemployment rate elasticity

- ↑ match efficiency
 - 1-for-1 on UE rate and (almost) 1-for-1 on unemployment
 - ullet ightarrow unemployment falls by about 6%

- ↑ match efficiency
 - 1-for-1 on UE rate and (almost) 1-for-1 on unemployment
 - ullet unemployment falls by about 6%
 - ullet model predicts a 16% drop
 - search effort effect quantitatively reasonable?

- ↑ match efficiency
 - 1-for-1 on UE rate and (almost) 1-for-1 on unemployment
 - ullet unemployment falls by about 6%
 - model predicts a 16% drop
 - search effort effect quantitatively reasonable?
- ↓ unemployment insurance
 - sanity check with Costain and Reiter (2008)
 - model implied elasticity $\epsilon_{u,b} \approx 1.85$

3. Numbers - "elastcity effect" of reform

non-existent (exogenous EU rate and no concept of surplus)?

- IRFs before and after the reform
- ullet ightarrow smaller unemployment response after reform

3. Numbers - "elastcity effect" of reform

non-existent (exogenous EU rate and no concept of surplus)?

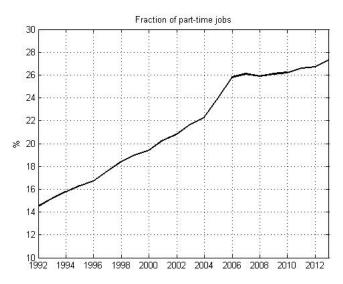
- IRFs before and after the reform
- ullet ightarrow smaller unemployment response after reform
- however, relative volatility unemployment basically identical
- not really due to increased labor market flexibility...

3. Numbers - welfare numbers

what extent of asymmetry to take?

3. Numbers - welfare numbers

what extent of asymmetry to take?


- not clear
- at the same time, we KNOW that business cycles are costly
- ullet drop lpha discussion altogether?

3. Numbers - types of jobs created

What jobs were created after reform?

3. Numbers - types of jobs created

What jobs were created after reform?

4. Other smaller stuff

- is b(su) = w really a normalization? Must matter for welfare?
- what fraction of welfare is due to tax changes?
- how does ignoring Hartz I-II affect the calibration?
- employed are more productive than unemployed
- decomposition of welfare effects into "unemployment" and "valuation" effects
- why not also Hartz I-II and hiring subsidies (Jung, Kuester 2014)