Non-Fundamental Dynamics and Financial Markets Integration

Giacomo Rondina

University of California, San Diego

ESSIM, Tarragona, May 2014

increase in financial markets integration since mid-1990's

Chinn-Ito Index of Capital Account Openness

increase in financial markets integration since mid-1990's

- increase in financial markets integration since mid-1990's
- major bubble-like fluctuations in asset prices in advanced economies

US Stocks, US Real Estate and Gold

- increase in financial markets integration since mid-1990's
- major bubble-like fluctuations in asset prices in advanced economies

- increase in financial markets integration since mid-1990's
- major bubble-like fluctuations in asset prices in advanced economies

this paper: theoretical model that can predict 2 from 1

framework

- two-region global equilibrium model
- heterogeneous financial development
- financial investors' sentiments

framework

- two-region global equilibrium model
- heterogeneous financial development
- financial investors' sentiments

predictions

- in financial autarky sentiments remain "dormant"
- under financial integration sentiments can drive fluctuations

framework

- two-region global equilibrium model
- heterogeneous financial development
- financial investors' sentiments

predictions

- in financial autarky sentiments remain "dormant"
- under financial integration sentiments can drive fluctuations

key mechanism: non-monotonic impact of financial development

Related Literature

financial globalization and macroeconomic volatility

• Kose, Prasad, Rogoff and Wei (HDE, 2009)

more closely related

- Tirole (ECMA, 1985), Martin and Ventura (AER, 2012)
- Caballero, Farhi and Gourinchas (AER, 2008)

Plan of the Talk

- i the model and equilibrium
- ii closed economy
- iii global economy

The Model: Basics

 $neoclassical \ growth \ model \ with \ overlapping \ generations$

The Model: Basics

neoclassical growth model with overlapping generations

- 3 generations: young, adult and old, each of measure 1
- ullet consumption linearly valued only when old, $\mathbb{E}_{it-1}(c_{it+1})$
- output technology

$$y_t = k_t^{\alpha} \ell_t^{1-\alpha}, \quad \alpha \in (0,1)$$

- capital fully depreciates after production
- ullet factors are paid at marginal return, unitary prices R_t^k and w_t
- young supply 1 unit of labor inelastically, adult and old do not work

The Model: Basics

neoclassical growth model with overlapping generations

- 3 generations: young, adult and old, each of measure 1
- ullet consumption linearly valued only when old, $\mathbb{E}_{it-1}(c_{it+1})$
- output technology

$$y_t = k_t^{\alpha} \ell_t^{1-\alpha}, \quad \alpha \in (0,1)$$

- capital fully depreciates after production
- ullet factors are paid at marginal return, unitary prices R^k_t and w_t
- ullet young supply 1 unit of labor inelastically, adult and old do not work
- ullet young and adult can invest output at t in production of t+1 capital

$$k_{it+1} = A_{it+1}x_{it}$$

- A_{it+1} productivity specific to investing agent i
- ullet young and adult can deposit output with an intermediary with return R_t^d

let $ho \equiv R^d/R^k$, then if $A_i \geq
ho$ invest, deposit otherwise

let $\rho \equiv R^d/R^k$, then if $A_i \ge \rho$ invest, deposit otherwise

The Model: Financial Friction

The Model: Financial Friction

- \bullet investing agent i at t can borrow amount $l_{it+1}\text{,}$ at gross interest rate R_{t+1}^f
- limited pledgeability of capital investment income

$$l_{it+1}R_{t+1}^f \leq \theta R_{t+1}^k k_{it+1}$$
 where $\theta \in [0,1]$

[microfoundation: moral hazard problem, Holmstrom and Tirole (2010)]

The Model: Financial Intermediation

The Model: Financial Intermediation

representative intermediary, operating under price-taking and zero-profit

- issue one-period deposit contracts d_t , return R_{t+1}^d
- ullet extend one-period loans l_t , return R_{t+1}^f

in equilibrium $R_{t+1}^f = R_{t+1}^d$ and intermediary balance sheet

$$l_t = d_t$$

The Model: Aggregate Leverage

The Model: Aggregate Leverage

- linear investment technology implies investing agents borrow to the limit
- aggregate capital produced by investing adults

$$k_{t+1} = \rho_{t+1} U_{\theta}(\rho_{t+1}) w_t^A$$

ullet where U is "leverage function"

$$U_{\theta}(\rho) \equiv \int_{A \ge \rho} \frac{A}{\rho} \frac{1}{1 - \theta \frac{A}{\rho}} dG$$

features of U: decreasing in ρ , increasing in θ , non-linear in A

The Model: Pledgeability, Productivity and Leverage

The Model: Fundamental Equilibrium

The Model: Fundamental Equilibrium

The Model: Fundamental Equilibrium with low heta

equilibrium $ho_{t+1} = \underline{a}$ [economy has severe asset supply "shortage"]

The Model: Introducing the Non-Fundamental Asset b_{t}

The Model: Introducing the Non-Fundamental Asset b_t

- ullet intermediary can trade on a "non-fundamental" asset with value b_t
- supply of asset is fixed (or out of control of agents and intermediary)
- return on asset is from capital gain

$$R_{t+1}^b = \frac{\mathbb{E}_t(b_{t+1})}{b_t}$$

intermediary balance sheet

$$b_t + l_t = d_t$$

- \bullet b_t is purchased by current depositors and sold to future depositors
- conditions to hold b_t : **competitive** return, **affordable** to future depositors

The Model: Non-Fundamental Asset, Crowding-out and Crowding-in

existence of b_t asset operates transfer of funds (completes markets)

- crowding-out: low productivity investors (young) turn depositors
- crowding-in: high productivity investors (adult) have more internal funds

Stationary Stochastic Equilibrium

Stationary Stochastic Equilibrium

define

$$z_t \equiv \frac{b_t}{W_t}$$

Stationary Stochastic Equilibrium

define

$$z_t \equiv \frac{b_t}{W_t}$$

focus on Stationary Stochastic Equilibrium (SSE)

$$\rho^*, z^* > 0$$

[similar to Weil (1987), Kocherlakota (2009), Farhi and Tirole (2011)]

Proposition

A SSE of the closed economy (ρ^*, z^*) is the solution to

$$\alpha = (1 - \alpha)U_{\theta}(\rho^*),\tag{U}$$

$$z^* = \frac{1}{2} \left[G(\rho^*) - \theta \frac{\alpha}{1 - \alpha} \right] > 0.$$
 (Z)

Proposition

A SSE of the closed economy (ρ^*, z^*) is the solution to

$$\alpha = (1 - \alpha)U_{\theta}(\rho^*),\tag{U}$$

$$z^* = \frac{1}{2} \left[G(\rho^*) - \theta \frac{\alpha}{1 - \alpha} \right] > 0.$$
 (Z)

how do (U) and (Z) depend on degree of pledgeability θ ?

Degree of Pledgeability $\boldsymbol{\theta}$ and Existence of SSE

sufficient condition for non-existence of SSE when $\theta=0$

$$\alpha > (1 - \alpha)U_0(\underline{a})$$

sufficient condition for non-existence of SSE when $\theta=0$

$$\alpha > (1 - \alpha)U_0(\underline{a})$$

increase $\theta > 0$, existence condition (U) eventually met

$$\alpha = (1 - \alpha)U_{\theta}(\rho^*)$$

sufficient condition for non-existence of SSE when $\theta=0$

$$\alpha > (1 - \alpha)U_0(\underline{a})$$

increase $\theta > 0$, existence condition (U) eventually met

$$\alpha = (1 - \alpha)U_{\theta}(\rho^*)$$

for $z^*>0$ at ρ^* there must be a fundamental asset supply shortage

$$z^* = \frac{1}{2} \left[G(\rho^*) - \theta \frac{\alpha}{1 - \alpha} \right] > 0 \tag{Z}$$

sufficient condition for non-existence of SSE when $\theta=0$

$$\alpha > (1 - \alpha)U_0(\underline{a})$$

increase $\theta > 0$, existence condition (U) eventually met

$$\alpha = (1 - \alpha)U_{\theta}(\rho^*)$$

for $z^*>0$ at ρ^* there must be a fundamental asset supply shortage

$$z^* = \frac{1}{2} \left[G(\rho^*) - \theta \frac{\alpha}{1 - \alpha} \right] > 0 \tag{Z}$$

as θ gets bigger, (Z) eventually violated

$$\text{recall } l_{\theta}(\rho) = \theta U(\rho)$$

Corollary

Equilibria with non-fundamental dynamics, $b_t > 0$ ($z_t > 0$), are possible for intermediate values of the degree of pledgeability θ .

global equilibrium, two regions, North and South

- financial capital free to move
- physical capital must be used where produced
- output good free to move
- agents cannot move

global equilibrium, two regions, North and South

- financial capital free to move
- physical capital must be used where produced
- output good free to move
- agents cannot move

pledgeability of investment income

- autarky: North region θ , South region $\tilde{\theta} \approx 0$
- financial integration:
 - ϕ fraction of North pledgeability now possible for South investors

$$\tilde{\theta} = \phi \theta$$

express variables in terms of wealth in North W_t

$$z_t^* \equiv \frac{b_t^*}{W_t}$$

relative size of wealth across regions

$$v_t = \frac{\tilde{W}_t}{W_t}$$

relative return on physical capital

$$q_{t+1} \equiv \frac{R_{t+1}^k}{\tilde{R}_{t+1}^k}$$

Stationary Stochastic Equilibrium in the Global Economy (GSSE)

Corollary

A GSSE of the global economy (ρ^*, q^*, z^*, v^*) is the solution to

$$U_{\theta}(\rho^*) = \frac{\alpha}{1 - \alpha},\tag{U}$$

$$U_{\phi\theta}(q^*\rho^*) = \frac{\alpha}{1-\alpha},\tag{U'}$$

$$z^* = \frac{1}{2} \left[G(\rho^*) + v^* \left[G(q^* \rho^*) \right] - \theta \frac{\alpha}{1 - \alpha} \left(1 + \phi v^* \right) \right] > 0, \tag{Z}$$

with
$$v^* = q^* \frac{\alpha}{1-\alpha}$$
.

can a GSSE exist when no SSE's exist for the two regions in autarky?

can a GSSE exist when no SSE's exist for the two regions in autarky?

Suppose:

can a GSSE exist when no SSE's exist for the two regions in autarky?

Suppose:

no SSE in South, due to limited leveraging potential

$$\alpha > (1 - \alpha)U_0(\underline{a})$$

can a GSSE exist when no SSE's exist for the two regions in autarky?

Suppose:

no SSE in South, due to limited leveraging potential

$$\alpha > (1 - \alpha)U_0(\underline{a})$$

no SSE in North, due to sufficient fundamental asset supply

$$G(\rho^*) \le \theta \frac{\alpha}{1-\alpha}$$
 for $\rho^* : U_{\theta}(\rho^*) = \frac{\alpha}{1-\alpha}$

Corollary

Suppose that in autarky equilibria with Non-Fundamental Dynamics are not possible in both the North and South regions.

Equilibria with Non-Fundamental Dynamics are possible when financial markets integrate if

- the North region is "close" to asset supply shortage (l^* small)
- financial integration results in an intermediate increase in the degree of pledgeability for the South region (φ intermediate).

numerical simulation

• global equilibrium model with investors' sentiment shocks

- global equilibrium model with investors' sentiment shocks
- relevance of shocks depends non-monotonically on financial development

- global equilibrium model with investors' sentiment shocks
- relevance of shocks depends non-monotonically on financial development
- investors' sentiments ineffective in autarky, effective in global equilibrium

- global equilibrium model with investors' sentiment shocks
- relevance of shocks depends non-monotonically on financial development
- investors' sentiments ineffective in autarky, effective in global equilibrium

next: risk considerations in intermediary portfolio allocation

Measures of Financial Integration

Chinn-Ito Index of Capital Account Openness

Asset Prices in Advanced Economies

US Stocks, US Real Estate and Gold

Interpretation of Non-Fundamental Asset

Interpretation of Non-Fundamental Asset

- capital investment and next period production done by "entrepreneurs"
- to become entrepreneurs agents must purchase an "empty firm" in the stock market
- \bullet if adult agent i purchases a firm at price b_t^i she can borrow up to b_t^i plus the pledgeable income
- after production the intermediary seizes the pledgeable income plus the empty firm from entrepreneur i
- the intermediary sells the empty firms to next period entrepreneurs in the stock market
- in the end, because adult can borrow entirely against purchased empty firm, depositors are those holding the non-fundamental value of the empty firm through the intermediary

Equilibrium: Recursive Representation

variables in terms of wealth in the economy at the end of time t

$$W_t = w_t + w_t^A, \qquad n_t \equiv \frac{w_t^A}{W_t}, \qquad z_t \equiv \frac{b_t}{W_t}.$$

wealth of adult at t+1 in terms of wealth at t

$$1-n_t$$

wealth of young at t+1 in terms of wealth at t

$$\frac{1-\alpha}{\alpha}U_{\theta}(\rho_{t+1})n_t$$

Equilibrium: Non-Fundamental Dynamics

Proposition

The non-negative stochastic process $\{z_t\}_{t=0}^{\infty}$ and the sequence $\{n_t, \rho_{t+1}\}_{t=0}^{\infty}$, are an equilibrium if

(a) expected return of non-fundamental asset

$$\mathbb{E}_t(z_{t+1}) = \frac{z_t}{1 - n_t + \frac{1 - \alpha}{\alpha} U_\theta(\rho_{t+1}) n_t}$$

(b) asset market clearing

$$\theta U_{\theta}(\rho_{t+1})n_t + z_t = 1 - n_t + n_t G(\rho_{t+1})$$

(c) intergenerational wealth distribution

$$n_{t+1} = \frac{1 - n_t}{1 - n_t + \frac{1 - \alpha}{\alpha} U_{\theta}(\rho_{t+1}) n_t}$$

Non-Fundamental Equilibrium: Numerical Simulation

numerical simulation of non-fundamental dynamics in global economy

Non-Fundamental Equilibrium: Numerical Simulation

numerical simulation of non-fundamental dynamics in global economy

- ullet distribution G is Uniform in $[\underline{a}, \bar{a}]$
- parameters: $\alpha = .73$, $\underline{a} = .5$, $\bar{a} = 1.5$, $\theta = .36$, $\phi = .6$
- ullet non-fundamental state: p=.15 and r=.05
- new asset supply: $z_t^A = 0.002$ and $\tilde{z}_t^A = 0.001$ when $\omega_t = NF$
- no SSE in autarky, GSSE is $z^* = .08$
- allocation of non-fundamental risk on deposits: $\mu=.5,~\varphi=\tilde{\varphi}=.5$

caveats:

agents do not take probability of non-fundamental asset creation into account one specific realization of investors' sentiments shocks reported

d back

Non-Fundamental Equilibrium: Numerical Simulation

