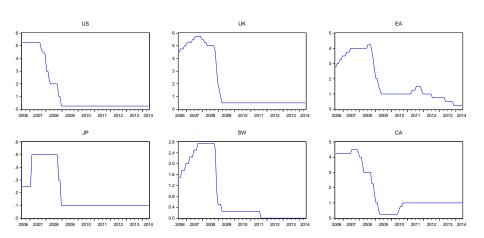
State-Dependent Pricing and the Paradox of Flexibility

Luca Dedola and Anton Nakov

ECB and CEPR

May 2014

Policy rates in major economies have been constant for years



In theory leading to amplification of shocks

- Recent literature shows that ZLB leads to the amplification of shocks:
 - Eggertsson and Krugman (2012): "paradoxes of thrift, toil, and flexibility"
 - Woodford (2011), Christiano, Eichenbaum, Rebelo (2011): "fiscal multiplier is large at ZLB"
 - ► Erceg and Linde (2014), Del Negro et al. (2013), Kiley (2014) ...
- Mechanism:
 - ▶ If $i_t = i$, then $c_t = \gamma^{-1} \sum_{k=1}^{T} E_t \pi_{t+k} + c_{t+T} \approx \gamma^{-1} (E_t p_{t+T} p_t)$
 - ▶ $G_t \uparrow \Rightarrow C_t \uparrow$ provided monetary policy implies that the price level at exit exceeds the current price level
 - ▶ Then $\frac{\partial Y_t}{\partial G_t} > 1$

The paradox of flexibility

- ullet The "paradox of flexibility": with $i_t=i$ increasing price or wage flexibility leads to a larger response of cumulative inflation and larger amplification
- I.e. it leads to a deeper recession and deflation when hit by a deflationary shock (Eggertsson and Krugman)
- Also leads to a larger government spending multiplier (Christiano et. al., Erceg and Linde)

What role for the form of nominal price rigidities?

- These papers all assume Calvo price setting
 - ▶ Ohanian (2012): Results depend on price rigidity in Calvo model, but incentives to change prices rise during turbulent/crisis periods
- In general the details of price setting at the micro level may matter a great deal for the dynamics of aggregate variables
- E.g. in a fixed menu cost model a la Golosov-Lucas (2007) a strong selection effect makes the price level a lot more flexible than in a Calvo model with the same average frequency of adjustment

This paper

- Looks at the effects of a shock to government spending when the nominal interest rate is held constant for T periods
- Across three pricing models: Calvo, fixed menu cost, and encompassing model
- Encompassing model is "smoothly state-dependent" (Costain and Nakov, 2011): adjustment probability is a smoothly increasing function of the adjustment gain
- We look at different monetary policy rules with/without CIR

Main finding

- With constant interest rates SDP can produce even larger amplification than Calvo
- The surprising results at the ZLB are a feature of sticky prices, not just an artifact of Calvo.
- Firm idiosyncratic shocks also affect aggregate price flexibility and amplification (Vavra, 2012)

A very large literature

- ZLB/constant rate in (large) DSGE models
- Normative analyses
- Empirical studies about amplification at ZLB
- We do not pretend to say anything about what happened in reality;
 we only try to shed light on a theoretical mechanism

Outline of the talk

- Introduction ✓
- Model
- Results
- Conclusions

Model: added ingredients

- Model is a two-step deviation from textbook New Keynesian model:
 - Idiosyncratic shocks
 - State-dependent pricing
- We focus on dynamics under a constant interest rate for T periods (anticipated shocks to Taylor rule, Galí 2012)

Model: households

The household's period utility is

$$\frac{C_t^{1-\gamma}}{1-\gamma} - \frac{\chi N_t^{1+\psi}}{1+\psi} + \log(M_t/P_t)$$

Consumption is a CES aggregate of differentiated products

$$C_t = \left\{ \int_0^1 C_{it}^{\frac{\epsilon - 1}{\epsilon}} di \right\}^{\frac{\epsilon}{\epsilon - 1}}$$

The household's nominal period budget constraint is

$$\int_0^1 P_{it} C_{it} di + M_t + R_t^{-1} B_t = W_t N_t + M_{t-1} + T_t + B_{t-1}$$

Model: household optimality conditions

- Households choose C_{it} , N_t , B_t , M_t to maximize expected utility, subject to the budget constraint
- Optimal consumption across the differentiated goods

$$C_{it} = (P_t/P_{it})^{\epsilon} C_t$$

$$P_t \equiv \left[\int_0^1 P_{it}^{1-\epsilon} di \right]^{\frac{1}{1-\epsilon}}$$

Optimal labor supply, consumption, and money use

$$\chi C_t^{\gamma} N_t^{\psi} = W_t / P_t$$

$$1 = \beta R_t E_t \left[P_t C_{t+1}^{-\gamma} / \left(P_{t+1} C_t^{-\gamma} \right) \right]$$

$$M_t / P_t = C_t^{\gamma} R_t / \left(R_t - 1 \right)$$

Model: monopolistic competitor firms

- Firm i produces output $Y_{it} = A_{it}N_{it}$
- Productivity is **idiosyncratic**, $\log A_{it} = \rho_A \log A_{it-1} + \varepsilon_{it}^a$, $\varepsilon_{it}^a \sim N(0, \sigma_a^2)$
- Firm i faces demand from households, and the government, $Y_{it} = C_{it} + G_{it}$
- The government's consumption basket is also a CES,

$$G_t = \left\{ \int_0^1 G_{it}^{rac{\epsilon-1}{\epsilon}} di
ight\}^{rac{\epsilon}{\epsilon-1}}$$

Model: monopolistic competitor firms

- Demand curve, $Y_{it} = (C_t + G_t)P_t^{\epsilon}P_{it}^{-\epsilon}$
- Period profits, $U_{it} = P_{it} Y_{it} W_t N_{it}$
- Discount rate, $Q_{t,t+1} = \beta \frac{P_t C_t^{-\gamma}}{P_{t+1} C_{t+1}^{-\gamma}}$

Model: firm value function

• Value function $V(P, A, \Omega) =$

$$U(P, A, \Omega) + \beta E\left\{\left.Q_{t,t'}\left[V(P, A', \Omega') + EG(P, A', \Omega')\right]\right|A, \Omega\right\}$$
 where

 $EG(\cdot)$ is the *expected gain* from adjustment

$$EG(P, A', \Omega') \equiv \lambda \left[\frac{D(P, A', \Omega')}{W(\Omega')} \right] D(P, A', \Omega')$$

$$D(P, A', \Omega') \equiv \max_{P} V(P, A', \Omega') - V(P, A', \Omega')$$

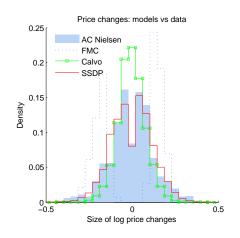
Model: adjustment function

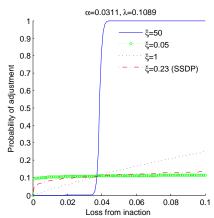
- ullet $\lambda(L)$ increases with the gain from adjustment L
- In particular, we postulate

$$\lambda(L) \equiv \frac{\bar{\lambda}}{(1-\bar{\lambda}) + \bar{\lambda} (\alpha/L)^{\xi}}$$

- where L is the relevant state
- With $\xi o 0$, $\lambda \left(L \right) = \bar{\lambda}$ Calvo
- With $\xi \to \infty$, $\lambda(L) = \mathbf{1}\{L \ge \alpha\}$ Fixed menu cost

Model: adjustment function and histogram fit





Model: monetary policy and government spending

The monetary authority follows a Taylor rule

$$\frac{R_t}{R^*} = \left[\left(\frac{P_t/P_{t-1}}{\Pi^*} \right)^{\phi_{\pi}} \right]^{1-\phi_R} \left(\frac{R_{t-1}}{R^*} \right)^{\phi_R} \prod_{i=1}^T \exp(\varepsilon_{t-i}^R)$$

where ε_{t-i}^R are anticipated shocks

Government spending

$$\log\left(\frac{G_t}{G^*}\right) = \rho_G \log\left(\frac{G_{t-1}}{G^*}\right) + \varepsilon_t^G$$

with $\varepsilon_t^G \sim N(0, \sigma_G^2)$.

Calibration

Discount factor	$\beta^{-12} = 1.04$	Golosov-Lucas (2007)
CRRA	$\gamma=2$	Ibid.
Elast. of subst.	$\epsilon = 7$	lbid.
Labor supply elast.	$\psi=1$	
Inflation target	$\Pi^* = 1$	AC Nielsen
Inflation reaction	$\phi_\pi=2$	
Length of CIR period	$T = \{24, 36\}$	Erceg and Linde (2014)
Persistence of G_t	$ ho_{\it G}=$ 0.9	lbid.
Persistence of A_{it}	$ ho_A = 0.9$	Costain-Nakov (2011)
Std. dev. of A_{it}	$\sigma_{A}=0.1$	lbid.
State dependence	$\xi = \{0, 0.23, 1\}$	lbid.
Fixed menu cost	$\alpha = 0.04$	lbid.
Calvo frequency	$ar{\lambda}=0.1$	Nakamura-Steinsson (2008)

Preliminaries: textbook Calvo model

• The flexible price multiplier is (Woodford, 2011)

$$\Gamma = \frac{\gamma}{\gamma + \psi} \le 1$$

• Log-linearized consumption Euler equation $\left(g_t = \frac{G_t - \bar{G}}{\bar{Y}}; \sigma = \gamma^{-1}\right)$:

$$y_t - g_t = E_t (y_{t+1} - g_{t+1}) - \sigma (i_t - E_t \pi_{t+1} - \bar{r})$$

Phillips curve

$$\pi_t = \kappa \sum_{j=0}^{\infty} \beta^j E_t(y_t - \Gamma g_t),$$

where $\kappa = (1 - \alpha)(1 - \alpha\beta)(\gamma + \psi)/\alpha$

Preliminaries: textbook Calvo model with Taylor rule

Under a simple Taylor rule we have

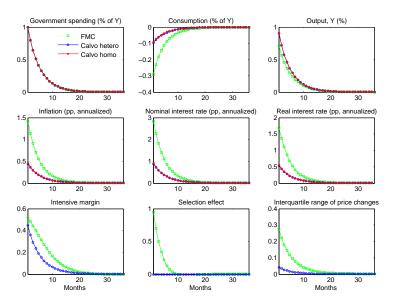
$$\gamma \left(\mu^{TR} - 1
ight) g_t = \left(\phi_\pi - 1
ight) \left(p_t - \lim_{T o \infty} \mathsf{E}_t p_{t+T}
ight)$$

Solution

$$\mu^{TR} = 1 + \frac{-\left(\frac{\phi_{\pi} - \rho}{1 - \beta\rho}\kappa + \phi_{C}\right)(1 - \Gamma)}{\left(1 - \rho\right)\gamma + \left(\frac{\phi_{\pi} - \rho}{1 - \beta\rho}\kappa + \phi_{C}\right)} < 1$$

ullet Higher κ (more flexibility) leads to smaller μ^{TR}

Results: idiosyncratic shocks + Taylor rule: FMC vs Calvo



Preliminaries: textbook Calvo model with CIR

Dynamics under CIR/ZLB

$$\gamma(y_t - g_t) = \gamma E_t (y_{t+1} - g_{t+1}) + E_t \pi_{t+1}$$
$$y_t - \Gamma g_t = \frac{\pi_t - \beta E_t \pi_{t+1}}{\kappa}$$

General solution

$$y_t - g_t = \frac{\kappa (1 - \Gamma) \rho}{(1 - \rho) (1 - \beta \rho) \gamma - \kappa \rho} g_t + a_1 \lambda_1^t + a_2 \lambda_2^t$$

Preliminaries: Woodford's special stochastic case

- Focus on case $\Delta = (1 \rho)(1 \beta \rho)\gamma \kappa \rho > 0$
- Then $\lambda_1, \lambda_2 > 1$ and so setting $a_1, a_2 = 0$ ensures a unique bounded solution:

$$y_t = g_t + \frac{\kappa (1 - \Gamma) \rho}{\Delta} g_t = \mu^{ZLB} g_t$$

- Paradox of flexibility: as $\kappa \uparrow$, $\Delta \to 0^+$ then $\mu^{ZLB} \to +\infty$
- Ohanian: paradox is limited to $\Delta > 0$, otherwise for larger κ , μ^{ZLB} is not well defined due to multiplicity of equilibria

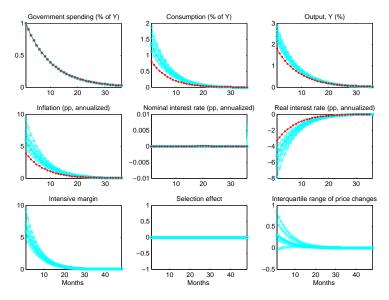
Preliminaries: Erceg and Linde's perfect foresight solution

• Difference equations valid only up to *T*; thereafter CB follows its policy rule which determines equilibrium upon liftoff:

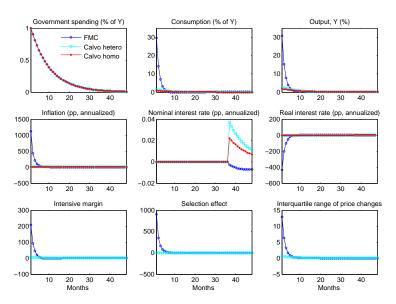
$$y_{t} = \mu^{ZLB} g_{t} - \frac{\kappa (1 - \Gamma) \rho}{\Delta} \frac{1 - \rho \beta \lambda_{1}}{1 - \beta \lambda_{1}^{2}} \left(\frac{\rho}{\lambda_{1}}\right)^{T - t} g_{t} + \frac{\pi_{T+1} + (1 - \beta \lambda_{1}) \gamma (y_{T+1} - g_{T+1})}{(1 - \beta \lambda_{1}^{2}) \gamma \lambda_{1}^{T - t}},$$

- When T sufficiently large and κ such that $\Delta \to 0^+$, solution close to $\mu^{ZLB}(\rho < \lambda_1 < 1)$
- ullet For κ larger, such that $\Delta <$ 0, $ho/\lambda_1 >$ 1, backward explosion
- The multiplier grows with T, and the Paradox of flexibility is established for any κ

Results: Calvo + idiosyncratic shocks + CIR



Results: FMC + idiosyncratic shocks + CIR



Conclusions

- Large amplification of shocks with CIR/ZLB is present also with SDP
- With active monetary policy under SDP fiscal multiplier is closer to flexible-prices (smaller) than Calvo
- But with CIR/ZLB it can be much larger, "paradox of flexibility"
- With CIR firm-level shocks increase aggregate price level responsiveness even in the Calvo model