Risk-taking, Rent-seeking, and Corporate Short-Termism when Financial Markets are Noisy

Elias Albagli - Central Bank of Chile

Christian Hellwig - Toulouse School of Economics

Aleh Tsyvinski- Yale University

Motivation

Conventional wisdom on firm investment, managerial incentives, and financial markets

- 1. Shareholder Value Maximization:
 - Optimal firm decisions should focus on maximizing stock market valuation
- 2. Efficient Markets Hypothesis:
 - ▶ Shareholder and firm's incentives aligned with social welfare when P(z; k) = V(z; k)
- 3. Pay-for-Performance Contracts:
 - Align firm and shareholder's incentives by tying compensation to share price
- 4. Regulation: Optimality of Laisser Faire
 - No need for, but possibly harm from, regulatory or market interventions

This paper: Explore impact of Shareholder Value Maximization on firm decisions decisions, when financial markets are not efficient

Contribution and Results

Revisit "conventional wisdom" when EMH fails

- ► Stage 1: firm takes an investment decision
- ▶ Stage 2: incumbent shareholders sell fraction of shares in financial market with noisy info aggregation

Key insights/results

- 1. Market friction: Ex ante, market returns ≠ fundamental returns
 - Firm's investment decisions distorted by shareholder rent-seeking

2. Applications

- Excess risk-taking and leverage
- Social value of public information
- Sensitivity of investment to stock prices
- Time inconsistency in firm's decisions

3. Normative implications

- Managerial incentives
- Direct regulation; tax policies; market interventions

Literature

1. Information aggregation and real investment

▶ Leland (JPE 92); Dow and Gorton (JF 97); Subrahmanyam and Titman (JF 99); Dow and Rahi (JB 03); Chen, Goldstein and Jiang (RFS 07); Goldstein and Guembel (REStud 08); Roll, Schwartz and Subrahmanyam (JFE 09).

2. Managerial compensation and investment efficiency

Stein (QJE 89); Bebchuk and Fried (JEP 03); Bolton, Scheinkman, and Xiong (RES 06); Benmelech, Kandel and Veronesi (QJE 10).

Roadmap

- 1. Baseline Model
- 2. Investment with Market Frictions
- 3. Applications
- 4. Managerial incentives and normative implications

Baseline Model

Setup

- ▶ Three periods: t = 1, 2, 3.
 - t=1: investment $k \ge 0$ is chosen by incumbent shareholders (or manager hired by them)
 - lacktriangledown t= 2: firm shares traded in financial markets. Incumbent shareholders sell fraction lpha of shares
 - ▶ t = 3: dividend $\Pi(\theta, k) = R(\theta) \cdot k C(k)$, $\theta \sim N(0, \lambda^{-1})$
- t = 2: (financial market)
 - ▶ risk neutral informed traders: observe $x_i \sim N(\theta, \beta^{-1})$; purchase $d_i(x, P) \in (0, \alpha)$
 - ▶ Noise traders: demand $\alpha\Phi(u)$; $u \sim N(0, \delta^{-1})$
 - market clears at $P = P(\theta, u)$

Equilibrium characterization

1. Demand strategy: threshold $\hat{\mathbf{x}}(\mathbf{P})$

$$\mathbf{d}(\mathbf{x},\mathbf{P}) = \left\{ \begin{array}{ll} \alpha & \qquad \text{if } \mathbf{x_i} \geq \hat{\mathbf{x}}(\mathbf{P}) \\ \mathbf{0} & \qquad \text{if } \mathbf{x_i} < \hat{\mathbf{x}}(\mathbf{P}) \end{array} \right.$$

2. Price = dividend expectation of marginal trader $(x_i = \hat{\mathbf{x}}(\mathbf{P}))$

$$\mathbf{P} = \mathbb{E}[\Pi(\boldsymbol{\theta}, k)|x_i = \hat{\mathbf{x}}(\mathbf{P}), \mathbf{P}]$$

3. Market clearing (info aggregation):

$$\alpha = \int \mathbf{d}(\mathbf{x}_i, \mathbf{P}) d\Phi(\sqrt{\beta}(x - \theta)) + \alpha \Phi(\mathbf{u})$$

$$\Rightarrow \hat{\mathbf{x}}(\mathbf{P}) = \theta + 1/\sqrt{\beta} \cdot \mathbf{u} \equiv \mathbf{z}$$

 \rightarrow **P** info equivalent to $\hat{\mathbf{x}}(\mathbf{P}) = \mathbf{z}$: endogenous signal (precision $\beta \delta$)

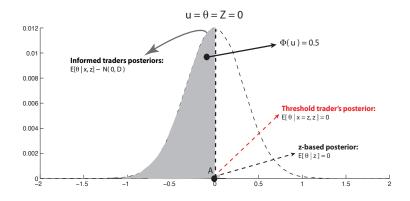
Information Aggregation Wedge

- $V(z) \equiv \mathbb{E}[R(\theta)|z] \cdot k C(k)$
 - Expected dividend, conditional on public signal z only
 - ightharpoonup Bayesian weight γ_V on signal ${f z}$
- $P(z) = \mathbb{E}[R(\theta)|x = z, z] \cdot k C(k)$
 - Threshold trader conditions on public signal z; private signal x_i = z
 - ▶ Bayesian weight $\gamma_P > \gamma_V$ on signal **z**
 - Price conveys information, but must also clear the market
- Information aggregation wedge:

$$\Omega(\mathbf{z}) \equiv \mathbf{P}(\mathbf{z}) - \mathbf{V}(\mathbf{z}) = k \cdot \{ \; \mathbb{E}[R(\theta)|\mathbf{x} = \mathbf{z}, \mathbf{z}] - \mathbb{E}[R(\theta)|\mathbf{x} = \mathbf{z}] \; \}$$

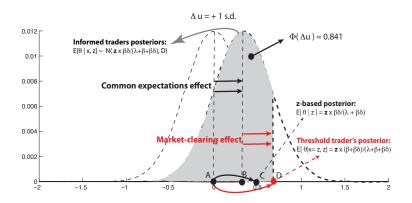
- ▶ depends on realization of z
- magnitude scales up with manager's investment choice k

Posterior beliefs: no shocks



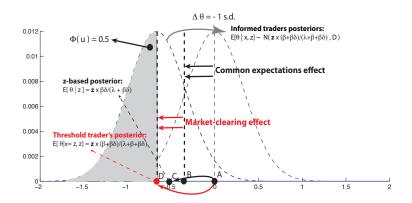
→ Posterior of mean and mg trader coincide

Posterior beliefs: $\Delta u = +1 \ s.d.$



- → (+) Noisy demand shock: prices increase higher signal z
- → All traders' posteriors increase due to higher z: common expectations effect
- \rightarrow But to accommodate Δu , posterior of mg trader must increase more: market clearing effect

Posterior beliefs: $\Delta \theta = -1 \ s.d.$



- → (-) Fundamentals shock: prices fall higher signal z
- → All traders' posteriors fall due to lower z: common expectations effect
- → But since private signals are lower, informed traders' demands drop even more: market clearing effect

Unconditional Wedge

Lemma (unconditional wedge): for any $k \ge 0$, the unconditional wedge is given by

$$\mathbb{E}[\Omega(\mathbf{z})] = k \cdot \int_0^\infty (R'(\theta) - R'(-\theta))(\Phi(\sqrt{\lambda} \cdot \theta) - \Phi(\sqrt{\lambda_P} \cdot \theta))d\theta.$$

- ▶ 1st component: **shape** of $R(\theta)$ (cash flow risks)
- ▶ 2nd component: **informational frictions** $\lambda_P^{-1} > \lambda^{-1}$
 - λ_{R}^{-1} : market-implied variance of fundamental
 - ▶ Increases in degree of information frictions: precision of private vs. public info
- ▶ 3rd component: endogenous investment decision, k

Theorem: unconditional wedge and cash-flow risks

- (i) If $R(\cdot)$ has symmetric risk: $\mathbb{E}[\Omega(\cdot)] = 0$
- (ii) If $R(\cdot)$ has upside risk: $\mathbb{E}[\Omega(\cdot)] > 0$
- (iii) If $R(\cdot)$ has downside risk: $\mathbb{E}[\Omega(\cdot)] < 0$
- (iv) for given k, $|\mathbb{E}[\Omega(\cdot)]|$ increasing in info frictions λ_P^{-1}

Investment with Market Frictions

Over- and under-investment

- ▶ Efficient investment: $C'(k^*) = \mathbb{E}[R(\theta)]$
- Investment chosen by incumbent shareholders:

$$C'(\hat{k}) = \alpha \cdot \mathbb{E}\{\mathbb{E}[R(\theta)|\mathbf{x} = \mathbf{z}, \mathbf{z}]\} + (1 - \alpha) \cdot \mathbb{E}[R(\theta)]$$

Proposition: over- and under-investment

- $\qquad \qquad \textbf{(i)} \,\, \hat{k} \overset{\geq}{\gtrless} \, k^* \,\, \text{whenever} \,\, \mathbb{E}\{\mathbb{E}[R(\theta)|\mathbf{x}=\mathbf{z},\mathbf{z}]\} \overset{\geq}{\gtrless} \, \mathbb{E}[R(\theta)]$
 - Prices differ systematically from dividends, due to info frictions in financial market
 - ▶ Incumbents will over-invest if $R(\theta)$ has upside risk: $E[P] > E[\Pi(\cdot)]$
 - ...and under-invest if $R(\theta)$ has downside risk $E[P] < E[\Pi(\cdot)]$
- lacktriangle (ii) If $R(\cdot)$ has upside/downside risk, $|\hat{k}/k^*-1|$ increasing in λ_P^{-1}

Efficiency losses

▶ Efficiency benchmark: $\Delta \equiv 1 - \hat{V}/V^*$, with

$$V^* \equiv \mathbb{E}[R(\theta)] \cdot k^* - C(k^*), \text{ and } \hat{V} \equiv \mathbb{E}[R(\theta)] \cdot \hat{k} - C(\hat{k})$$

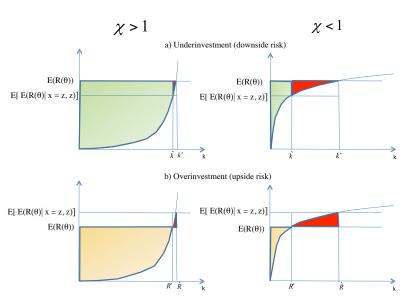
▶ Let $C(k) = k^{1+\chi}/(1+\chi)$

Proposition: efficiency losses

- ▶ (i) Comp statics: $\Delta = 0$ iff $\mathbb{E}\{\mathbb{E}[R(\theta)|\mathbf{x} = \mathbf{z}, \mathbf{z}]\} = \mathbb{E}[R(\theta)]$, or when $\chi \to \infty$
- (ii) Bounded losses on downside: if $\mathbb{E}\{\mathbb{E}[R(\theta)|\mathbf{x}=\mathbf{z},\mathbf{z}]\} < \mathbb{E}[R(\theta)]$, then $\Delta < 1$
- ▶ (iii) Unbounded losses on upside: if $\mathbb{E}\{\mathbb{E}[R(\theta)|\mathbf{x}=\mathbf{z},\mathbf{z}]\} > \mathbb{E}[R(\theta)]$, then $\Delta \to \infty$ if
 - $\mathbb{E}\{\mathbb{E}[R(\theta)|\mathbf{x}=\mathbf{z},\mathbf{z}]\}/\mathbb{E}[R(\theta)]\to\infty$, or
 - $\lambda \chi \to 0$
- (iv) Negative expected dividends: implemented \hat{k} leads to $\mathbb{E}(\Pi(\theta)) < 0$ whenever:

$$\alpha\left(\frac{\mathbb{E}\{\mathbb{E}(R(\theta)|x=z,z)\}}{\mathbb{E}(R(\theta))}-1\right)>\chi$$

Investment distortions and efficiency losses



Applications

Application 1: Leverage and risk-taking

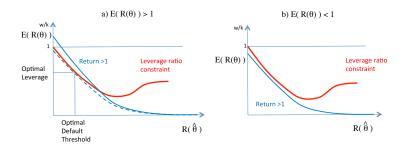
- ▶ Internal funds at t = 1: w. If k > w, must borrow $b \ge k w$ (cost = k)
- ▶ Costly state verification: Lender must pay $\varepsilon R(\theta)$ to verify dividend
- Contract design
 - Firm borrows $b \ge k w$. Promises payoff B. Lender verifies upon default.
 - ▶ Default threshold $\hat{\theta}$: $B = R(\hat{\theta})$
- ▶ Lender break-even condition: $\frac{b}{k} \leq (1 \varepsilon) \int_{-\infty}^{\hat{\theta}} R(\theta) d\Phi \left(\sqrt{\lambda}\theta\right) + R(\hat{\theta}) \left(1 \Phi\left(\sqrt{\lambda}\theta\right)\right)$

$$\frac{\textit{w}}{\textit{k}} \geq 1 - \mathbb{E}[\textit{R}(\theta)] + \varepsilon \int_{-\infty}^{\hat{\theta}} \textit{R}(\theta) \textit{d}\Phi \left(\sqrt{\lambda}\theta\right) + \int_{\hat{\theta}}^{\infty} \left(\textit{R}(\theta) - \textit{R}(\hat{\theta})\right) \textit{d}\Phi \left(\sqrt{\lambda}\theta\right)$$

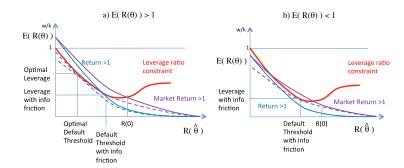
leverage ratio restriction

▶ Incumbents' return: $\rho\left(w/k,\hat{\theta}\right) = (k/w) \cdot \int_{\hat{\theta}}^{\infty} \left(R(\theta) - R(\hat{\theta})\right) d\Phi\left(\sqrt{\lambda}\theta\right)$

Efficient leverage and investment



Leverage and investment with information frictions



Application 1: Leverage and risk-taking

Proposition: market frictions cause excessive leverage and risk-taking

- (i) Excess leverage and risk-taking
 - ▶ If $R(\theta)$ symmetric, or with upside risk, and $\mathbb{E}[R(\theta)] > 1$: $\Rightarrow \hat{k} > k^*, \hat{\theta} > \theta^*$
- (ii) Inefficient investment
 - ► There exists $\bar{R} < 2$, s.t. if $\lim_{\theta \to \infty} R(\theta) > \bar{R}$, and λ_P^{-1} sufficiently large, incumbent shareholders will borrow and invest $\hat{k} > w$
 - Intuition
 - Bankruptcy costs limits borrowing and investment: tradeoff returns vs. increased borrowing costs
 - Market frictions: borrowing costs partially offset by upside shift of incumbents' payoffs
 - Leads to higher investment, larger borrowing
 - ▶ Might invest even if $\mathbb{E}[R(\theta)] < 1$
 - \blacktriangleright Might over invest even if $R(\cdot)$ has downside risk: leverage convexifies incumbents' payoffs

Application 2: Social Value of Public Information

- ▶ Now, a noisy public signal is observed at t = 1: $y \sim N(\theta, \kappa^{-1})$
 - ▶ New prior of θ : $\theta \sim N\left(\frac{\kappa}{\lambda + \kappa}y, (\lambda + \kappa)^{-1}\right)$
- Let $R(\theta) = e^{\theta}$, and $C(k) = k^{1+\chi}/(1+\chi)$

Proposition: noisy public news may reduce welfare

- ▶ If $1 + \chi < e^{\frac{1}{2\delta(\beta + \beta\delta)}}$, there exists $\hat{\kappa} > 0$ s.t. $\hat{V} < 0$, and $\partial \hat{V} / \partial \kappa < 0$ for $\lambda + \kappa \leq \hat{\kappa}$.
- $\hat{\kappa} o \infty$ as $\chi o 0$
- Intuition
 - Public signal offers additional margin to shift rents
 - Public signal predicts future value of z, helps align k with market returns

Application 3: Stock-price Sensitivity of Investment

- ▶ Assume now investment is undertaken conditional on z
 - Incumbent shareholders choose k(z) ex ante; implemented by the firm after market opens
 - ► (Commitment results from internal procedures/status quo bias, or managerial incentives)
- ▶ Investors can infer k(z), so eq. characterization is as before
- $\hat{k}(z)$ now satisfies:

$$C'\left(\hat{k}(z)\right) = \alpha(\mathbb{E}(R(\theta)|x=z,z)) + (1-\alpha)(\mathbb{E}(R(\theta)|z))$$

- ▶ Relative to $k^*(z)$, $\hat{k}(z)$ is more aligned with market's expectations of returns
 - → Endogenous element of upside risk!

Distorting the response to market signals

Let \hat{z} be such that $\mathbb{E}(R(\theta)|x=z,z) \stackrel{\geq}{\underset{\sim}{=}} \mathbb{E}(R(\theta)|z)$, for $z \stackrel{\geq}{\underset{\sim}{=}} \hat{z}$.

Proposition: Endogenous Upside Risk

- (i) Increased Shareholder Rents: $\mathbb{E}(\Omega(z, k(z))) > \mathbb{E}(\Omega(z, k(\hat{z})).$
- (ii) Endogenous upside risk: $\mathbb{E}(\Omega(z, k(z))) > 0$ if either $\mathbb{E}(R(\theta)|x=z,z) \geq \mathbb{E}(R(\theta)|z)$, or $\mathbb{E}(R(\theta)|x=z,z) \leq \mathbb{E}(R(\theta)|z)$ and $\inf_z k'(z)/k(z)$ sufficiently large.
 - ▶ (iii) Unbounded Rents: If $\inf_z k'(z)/k(z) \to \infty$, then $\mathbb{E}(\Omega(z,k(z))) \to \infty$, for any $R(\cdot)$.

Intuition: we can write $\mathbb{E}(\Omega(z, k(z))) = \mathbb{E}(\Omega(z, \mathbb{E}(k(z)))) + Cov\{k(z); \mathbb{E}(R(\theta)|x = z, z) - \mathbb{E}(R(\theta)|z)\}$

- First term: expected wedge when k(z) set at its unconditional value
- ▶ Second term: endogenous feedback from prices to investment → enhances upside risk!

Excess Sensitivity of Investment

Proposition: Market noise creates investment volatility

- (i) Excess investment sensitivity: Investment distortion $|\hat{k}(z)/k^*(z) 1|$ increases in z.
- (ii) Fundamentals vs. market noise: If market noise is sufficiently important, investment volatility is high, but correlation with future returns is low.
- (iii) Unbounded rents and welfare losses: If market friction sufficiently important, or $\chi \to 0$, $\mathbb{E}(\Omega(z, k(z)))$ is unboundedly large, but $\mathbb{E}(V(z); k(z))$ lower than with pre-determined investment \hat{k} .

Application 4: Time-inconsistency in firm's decisions

- Assume now technology is: $\Pi(\theta, k, \ell) = e^{\theta} k^{\sigma} \ell^{1-\sigma} \ell C(k)$
 - Ex-ante decision: incumbent shareholders choose k
 - **E**x-post decision (after P(k, z) observed): new shareholders choose ℓ
- ▶ Surplus max. choice of inputs

$$C'(k^*) = \sigma(1-\sigma)^{\frac{1-\sigma}{\sigma}} \mathbb{E}\left(\mathbb{E}\left(e^{\theta}|z\right)^{\frac{1}{\sigma}}\right)$$

Incumbent shareholders preferred choices: max. value of share price

$$\hat{\ell}(z) = \hat{k}(1-\sigma)^{\frac{1}{\sigma}} \mathbb{E}\left(e^{\theta} | x=z, z\right)^{\frac{1}{\sigma}},$$

$$C'(\hat{k}) = \sigma(1-\sigma)^{\frac{1-\sigma}{\sigma}} \mathbb{E}\left(\mathbb{E}\left(e^{\theta}|x=z,z\right)^{\frac{1}{\sigma}}\right)$$

Application 4: Time-inconsistency in firm's decisions

- What does firm end up choosing, with sequential decision-making by different shareholders?
 - New shareholders will choose: $\tilde{\ell}(z) = \tilde{k}(1-\sigma)^{\frac{1}{\sigma}} \mathbb{E}\left(e^{\theta}|z\right)^{\frac{1}{\sigma}}$,
 - Incumbent shareholders therefore pick:

$$\tilde{k} = \sigma \left(1 - \sigma\right)^{\frac{1 - \sigma}{\sigma}} \mathbb{E}\left(\mathbb{E}\left(e^{\theta}|\mathbf{z}\right)^{\frac{1}{\sigma}} \left[1 + \frac{1}{\sigma}\left(\frac{\mathbb{E}\left(e^{\theta}|\mathbf{z} = \mathbf{z}, \mathbf{z}\right)}{\mathbb{E}\left(e^{\theta}|\mathbf{z}\right)} - 1\right)\right]\right)$$

Proposition: Market frictions cause dynamically inconsistent firm behavior

- ▶ Whenever $\tilde{k} \neq k^*$, equilibrium choices of \tilde{k} and $\tilde{\ell}$ are strictly Pareto-inferior
- Intuition:
 - ▶ Incumbents choose *k* to "commit" future shareholders to decide upon share-price max.
 - Final shareholders pick the appropriate k/ℓ ratio; but ex-ante, incumbents over-invest $(\tilde{k}>k^*)$
 - Firm choices max. neither the initial, nor final shareholder's objectives

Managerial incentives; Regulation and intervention

Managerial Contracts: Implementing SH's desired Investment

- ▶ Now, shareholders hire a risk-neutral manager, set pay scheme $W(\Pi)$.
- Let $\underline{k} = \lim_{\theta \to -\infty} k^{FB}(\theta)$, $\bar{k} = \lim_{\theta \to \infty} k^{FB}(\theta)$: $(\underline{k}, \overline{k})$ contains all efficient k's (for some θ)
- ▶ Incumbents choose triplet $\{W(\Pi), \hat{k}, P(z, k)\}$ to max $\mathbb{E}\{P(\theta, u; k) W(\Pi(\theta; k))\}$, s.t.
 - \triangleright $P(\cdot)$: REE market-clearing price at the financial market stage
 - ▶ IRC: $\mathbb{E}\{W(\Pi(\theta; \hat{k}))\} \geq \bar{w}$
 - ▶ ICC: $\hat{k} \in \operatorname{argmax}_{k} \mathbb{E}\{W(\Pi(\theta; \hat{k}))\}$

Proposition: (Almost) anything is implementable with equity, options, caps, and floors

- (i) Efficient investment k^* obtained with $W = \omega \Pi$.
- (ii) Any $k \in (k^*, \bar{k})$ can be implemented with **equity** and **floors**: $W(\Pi) = max\{\underline{W}, \omega\Pi\}$.
- (iii) Any $k \in (\underline{k}, k^*)$ can be implemented with **equity** and **caps**: $W(\Pi) = min\{\bar{W}, \omega\Pi\}$.

Takeaway: pretty much any \hat{k} can be implemented with simple contracts!

Managerial Contracts: Wages paid by final shareholders

- ▶ Incumbents assess wage cost through market lens
 - ▶ $\mathbb{E}\{\mathbb{E}(W(\Pi(\theta;k))|x=z,z)\}$ vs. $\mathbb{E}(W(\Pi(\theta;k)))$
 - Additional margin to shift rents by shifting upside vs. downside risk between incumbents, manager
 - Unlikely to be an important feature (wages small compared to overall dividends)

Managerial Contracts: risk aversion and hidden effort

- ▶ let $R = R(\theta, e)$, with effort $e \in \{0, 1\}$. e = 0 gives private benefit B
- ▶ Let manager's $U = U(W(\Pi(\theta; k)) + (1 e)B)$
- Usual two-stage agency problem
 - ▶ Stage 1: for each choice pair (k, e), find W(k, e)

$$\begin{array}{lcl} W\left(k,\mathrm{e}\right) & = & \min_{W\left(\cdot\right)} \mathbb{E}\left\{W\left(\Pi\left(\theta;k,\mathrm{e}\right)\right)\right\} \, \mathrm{s.t.} \\ \\ \left(k,\mathrm{e}\right) & \in & \arg\max_{\left(k',\mathrm{e}'\right)} \mathbb{E}\left\{U\left(W\left(\Pi\left(\theta;k',\mathrm{e}'\right)\right) + \left(1-\mathrm{e}'\right)B\right)\right\} \\ \\ \bar{U} & \leq & \mathbb{E}\left\{U\left(W\left(\Pi\left(\theta;k,\mathrm{e}\right)\right) + \left(1-\mathrm{e}\right)B\right)\right\} \end{array}$$

▶ Stage 2: determine pair (k, e) that max's incumbents' expected payoffs

$$(k, \mathbf{e}) \quad \in \quad \arg\max_{\left(k', \mathbf{e}'\right)} \mathbb{E}\left\{\alpha P\left(z; k', \mathbf{e}'\right) + (1 - \alpha) \Pi\left(\theta; k', \mathbf{e}'\right) - W\left(k', \mathbf{e}'\right)\right\},$$
 where $P\left(z; k, \mathbf{e}\right) = \quad \mathbb{E}\left(\Pi\left(\theta; k, \mathbf{e}\right) | x = z, z\right)$

Managerial Contracts: risk aversion and hidden effort

- ▶ Efficient vs. chosen levels of investment
 - ▶ Socially efficient investment: $\mathbb{E}(R(\theta, e)) = C'(k^*) + W_k(k^*, e)$
 - ▶ Chosen investment: $\mathbb{E}\{\mathbb{E}(R(\theta, e)|x = z, z)\} = C'(\hat{k}) + W_k(\hat{k}, e)$
 - Again, investment distortions due to incumbent shareholders' objectives
- ▶ Interaction between agency and market frictions
 - Key insight: increasing agency costs can be welfare improving
 - Intuition: agency friction reduces incumbent SH's scope for manipulating incentives

Normative implications 1: Direct regulation

- Direct regulatory oversight: size caps or floors
 - ▶ Direct limits to $\hat{k} = k^*$ requires knowledge of k^* by regulators
- Minimum capital requirements
 - Reduces SH's ability to shift rents through increased leverage
- Regulation of executive pay
 - Limit CEO compensation to set of a set of fixed N+1 contracts
 - Each contract defines expected compensation $T_n(k)$
 - Let $T_0(k) = \mathbb{E}(R(\theta))k C(k) = \text{transfer associated with restricted equity claim}$

Proposition: It's efficient to limit incentive pay to restricted equity.

A set of contracts $\{T_n(\cdot)\}$ implements k^* if and only if $(\hat{k} - k^*) T'_n(k^*) \leq 0$ for all n.

Normative implications 2: Tax Policies

- Financial transaction tax
 - ▶ Uncontingent tax τ : shareholders maximize $\mathbb{E}\left(\left(1-\tau\right)\alpha P\left(z;k\right)+\left(1-\alpha\right)V\left(z,k\right)\right)$
 - Property Reduces relative weight on the share price from lpha to $lpha\left(1- au
 ight)/\left(1-lpha au
 ight)$
 - Can never fully correct externality.
- Contingent tax: τ(z)
 - ▶ Modifies the incumbent objective to $\alpha \mathbb{E}\left(\left(1-\tau\left(z\right)\right)P\left(z,k\right)\right)+\left(1-\alpha\right)\mathbb{E}\left(\Pi\left(\theta,k\right)\right)$
 - ▶ Implements k^* if and only if $\mathbb{E}\{(1-\tau(z))P_k(z,k^*)\}=0$.

Proposition: Contingent transaction taxes lean against return asymmetries.

▶ For τ (z), let $\hat{\tau}$ (z) = (τ (z) − \mathbb{E} (τ (z))) / (1 − \mathbb{E} (τ (z))). τ (·) implements k^* iff

$$1 - \frac{\mathbb{E}\left(R\left(\theta\right)\right)}{\mathbb{E}\left(\mathbb{E}\left(R\left(\theta\right)\mid z=z,z\right)\right)} = \int_{-\infty}^{\infty} \left(1 - \Phi\left(\sqrt{\frac{\beta\delta}{\lambda + \beta\delta}} \lambda z\right)\right) \left\{\frac{\mathbb{E}\left(\mathbb{E}\left(R\left(\theta\right)\mid z=z',z'\right)\mid z'\geq z\right)}{\mathbb{E}\left(\mathbb{E}\left(R\left(\theta\right)\mid z=z,z\right)\right)} - 1\right\} d\hat{\tau}\left(z\right).$$

Normative implications 3: Market Interventions

- ► Alternative Policy instruments: Market Interventions (TARP, OMT)
 - Focus on return $R(\theta)$ that is dominated by downside risks
 - lacktriangle Policy maker announces to buy shares at a pre-determined price $ar{P}$
 - Efficient markets: policy subsidizes initial shareholders, generates upwards distortion of investment
 - ▶ With market inefficiencies, can increase investment towards k*
 - ...but not revenue neutral: winner's curse
 - ▶ An efficient, tax-neutral intervention: price-support policy, plus transaction/dividend tax
 - Not distribution-neutral: policy shifts rents from initial to final shareholders.

Conclusions

- Proposed theory of incentive and investment distortions due to info frictions
 - Friction leads to systematic over- or under-pricing.
 - ▶ Rent-seeking motive for initial shareholders (conflict of interest w. final shareholders).
 - Initial shareholders' concern about equity value leads to systematic distortion in response to new information.
- Real investment and capital structure implications
 - Distortions, welfare losses large for investment in upside risks, near constant returns to scale.
 - Excessive leverage; risk-taking.
- Normative implications
 - Direct regulation; tax policies; market interventions
 - Restrictions on executive pay as key element for optimal regulation.