Heterogeneity, Selection and Labor Market Disparities

Alessandra Bonfiglioli Gino Gancia

UPF and CREI

ESSIM, 30 May 2014

Bonfiglioli and Gancia (UPF and CREI)

Labor Market Disparities

Motivation

- developed countries differ markedly in a number of social and economic indicators
 - inequality
 - labor and total factor productivity
 - human capital
 - firms characteristics and distribution
- proposed explanations:
 - policy distortions
 - culture
- our answer:
 - multiple equilibria sustained by different beliefs on the importance of effort for finding good jobs

Beliefs, Selection and Multiple Equilibria

key assumptions:

- ability can be increased investing effort, but effort raises also the variance of the ability distribution
- \blacktriangleright firms can screen workers at a cost \rightarrow screeing profitable if ability is dispersed enough
- complementarity between between effort choice and firms' hiring policy
 - \blacktriangleright if agents put effort \rightarrow higher heterogeneity \rightarrow firms screen workers
 - \blacktriangleright if firms screen workers \rightarrow agents find it profitable to put effort

The Model in Brief

- heterogeneous firms and workers à la Helpman et al. (2010)
- labor market frictions:
 - search frictions
 - costly screening of workers' ability
- technology:
 - decreasing returns to employed worker
 - output increasing in average ability of employed workers
- firms screen workers only if *ability* is *sufficiently dispersed*
 - more productive firms screen more, hire more able workers, pay higher wages

Effort and Multiple Equilibria

- workers can invest costly effort to improve ability before seeking a job
 - effort raises both mean and variance of ability
- if workers believe that firms will screen, they put effort → ability sufficiently dispersed → firms screen
- self-sustaining beliefs and screening
- two equilibria: screening vs no screening

Main Results

• with screening (relative to no screening):

- higher productivity
 - ★ higher ability
 - ★ better workers selection
 - ★ tougher firm selection
- firm-level outcomes:
 - ★ bigger firms in terms of revenue
 - ★ positive sorting between firms and workers
 - ★ more dispersion
- higher wage inequality (both between and within)
- unemployment may be lower

→ < ∃ →</p>

Motivating Evidence: Economic Disparities

• wage inequality and labor productivity:

	College Premium	Var. log wages	GDP/hour
US	1.8	0.44	60.2\$
IT	1.51	0.17	45.6\$
ES	1.48	0.23	47.5\$

• firm-level outcomes:

- US firms are bigger + higher covariance (size, productivity) (Bartelsman et al., 2013)
- ▶ dispersion: st.dev. In(revenue) 30% higher in US than IT/ES
- \blacktriangleright selection: survival probability at 4 years 10% lower in US than IT
- ▶ US firms value more selecting talented workers (Bloom et al., 2010)

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Motivating Evidence: Cultural Disparities

• World Value Survey, respondents who strongly agree that:

- ► "hard work brings success" USA → 26.4%, ITA→ 14.6%, ESP→ 12.2%
- ▶ "success is a matter of luck and connections" USA \rightarrow 2.3%, ITA \rightarrow 8.9%, ESP \rightarrow 7.8%
- ▶ "competition is good" USA \rightarrow 29.6%, ITA \rightarrow 19.2%, ESP \rightarrow 15.6%

Motivating Evidence: Human Capital Disparities

- share of working-age (or 25-34) population with tertiary education (OECD, 2013):
 - ► USA → 42% (43%)
 - ► ITA → 15% (21%)
 - ► ESP → 32% (39%)
- expenditure in tertiary education as a share of GDP (OECD, 2013):
 - USA \rightarrow 2.8%
 - ITA \rightarrow 1%
 - ESP \rightarrow 1.3%
- education outcome: test results (e.g., PISA)
 - USA higher average scores than ITA and ESP
 - USA more dispersed scores than ITA and ESP
 - USA more discipline at school than ITA and ESP

Related Literature

- multiple equilibria based on
 - political preferences:
 - * Piketty (1998), Benabou (2000) and Alesina & Angeletos (2005)
 - human capital externalities:
 - Azariadis & Drazen (1990), Galor & Zeira (1993), Hassler & Rodriguez Mora (2000)
 - statistical discrimination:
 - * e.g., Coate & Loury (1993)
- allocation of talent and economic performance
 - ► Acemoglu (1996), Hsieh et al. (2012), Bonfiglioli & Gancia (2014)
- wage inequality with imperfect labor markets and firm heterogeneity
 - Acemoglu (1997), Helpman, Itskhoki & Redding (2008, 2010), Eeckhout & Kircher (2012)

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preferences and Demand

• unite mass of households with size \overline{L} and utility function:

$$U=q+rac{Q^{\zeta}}{\zeta}, \quad \zeta\in(0,1)$$

homogeneous goods: Q "advanced", q "residual"

demand for Q:

$$Q=P^{-\frac{1}{1-\zeta}}$$

- p = 1 price of the residual good (numeraire)
- assume q > 0 in eq.

Technology

- both goods are produced with labor
- q requires 1 unit of labor per unit of output and is sold at p = w = 1
- Q produced by heterogeneous firms with DRS and:
 - fixed entry cost f_e
 - ▶ productivity θ drawn from a Pareto: $G(\theta) = 1 (1/\theta)^{z}$, z > 1
 - fixed production cost f_d
 - exit if profits $\pi < 0$
 - ▶ free entry: mass *M* of entering firms is endogenous
 - all costs expressed in terms of the residual good

A B F A B F

Technology and Frictions

• output of firm with θ productivity, *h* employees of average ability \bar{a} :

$$y = \theta h^{\gamma} \bar{a},$$

- $\gamma \in (0,1)$: span of control
- $a = ability \sim Pareto: I(a) = 1 (1/a)^k$, k > 1
- firm pays bn to match randomly with $n \ge h$ workers
 - b will depend on labor market tightness
- unobservable ability

Firm pays $\left[\left(a^*\right)^{\delta}-1\right]c/\delta$ to *screen* out workers with $a < a^*$

$$ar{a} = rac{k}{k-1} a^*$$
 and $h = n \left(rac{1}{a^*}
ight)^k$

• if $k < 1/\gamma$, then y increases with screening:

$$y = \theta \frac{k}{k-1} \left(\mathbf{a}^* \right)^{1-\gamma k} \mathbf{n}^{\gamma}$$

Firm's Problem

- wage bargaining as in Stole and Zwiebel (1996):
 - firm's share of revenues = $1/(1+\gamma)$
- firm solves

$$\pi\left(\theta\right) = \max_{n > 0, a^* \ge 1} \left\{ \frac{r\left(\theta\right)}{1 + \gamma} - bn - c \frac{\left(a^*\right)^{\delta} - 1}{\delta} - f_d \right\}$$

• with
$$r(\theta) = Q^{-(1-\zeta)} \theta n^{\gamma} k (a^*)^{1-\gamma k} / (k-1)$$

• f.o.c.:

$$\begin{array}{ll} n & : & \displaystyle \frac{\gamma}{1+\gamma} r\left(\theta\right) = bn\left(\theta\right) \\ {\mathsf{a}}^* & : & \displaystyle \frac{1-\gamma k}{1+\gamma} r\left(\theta\right) = c \left({\mathsf{a}}^*\left(\theta\right)\right)^\delta \ \text{for} \ k < 1/\gamma \end{array}$$

- more productive firms sample more workers: *n* increasing in θ
- more productive firms screen harder: a^* increasing in θ

< A

- 3

Firm-Level Outcomes

• profits of firms with θ productivity become:

$$\pi\left(\theta\right) = \frac{\Gamma}{1+\gamma}r\left(\theta\right) - f$$

• with
$$\Gamma \equiv 1 - \gamma - \mathbb{I}_s \frac{1 - \gamma k}{\delta} > 0$$
 and $f = f_d - \mathbb{I}_s c / \delta$

- indicator $\mathbb{I}_s = 1$ if $a^* > 1$, zero otherwise
- $\bullet\,$ revenues are increasing in θ \rightarrow firms exit if $\theta < \theta^*$
- wages and employment of firms with θ productivity become:

$$w\left(heta
ight)=ba^{st}\left(heta
ight)^{k}$$
 and $h\left(heta
ight)=rac{\gamma ca^{st}\left(heta
ight)^{\delta-k}}{\left(1-\gamma k
ight)b}$

• also w and h increasing in θ (assume $\delta > k$)

3

Advanced Sector Equilibrium

• find the equilibrium values of θ^* , Q and M by imposing

zero-profit cutoff

$$\pi\left(\theta^{*}\right) = rac{\Gamma}{1+\gamma}r\left(\theta^{*}
ight) - f = 0$$

free-entry

$$\mathit{f_{e}} = \int_{ heta^{*}}^{\infty} \pi\left(heta
ight) \mathsf{d} \mathit{G}\left(heta
ight)$$

product market clearing

$$PQ = M \int_{ heta^*}^{\infty} r\left(heta
ight) dG\left(heta
ight)$$

Bonfiglioli and Gancia (UPF and CREI)

3

Labor Market Equilibrium and Ability Distribution

- ability distribution depends on workers' effort choice:
 - ▶ effort, $\mathbb{I}_{\eta} \in \{0, 1\}$, costs η and raises mean and variance of *a*:

$$k = \left\{ egin{array}{cc} k_0 o \infty & ext{if } \mathbb{I}_\eta = 0 \ k_1 < 1/\gamma & ext{if } \mathbb{I}_\eta = 1 \end{array}
ight.$$

 \star individual choice unobservable, k observed by firms

occupational choice:

$$1=\frac{N}{L}\frac{wh}{n}-\mathbb{I}_{\eta}\eta$$

employment in the residual sector vs job seeking in the advanced sector
search cost b increases with tightness, N/L:

$$b = lpha \left(rac{N}{L}
ight)^eta, \quad lpha > 1 + \eta, \,\,eta > 0$$

• with N = sampled and L = job-seeking workers

Multiple Equilibria

ullet there exist two pure-strategy equilibria with $\mathbb{I}_\eta = \mathbb{I}_s$

- high effort + screening
 - \star if workers put effort $ightarrow k_1 < 1/\gamma
 ightarrow$ firms screen
 - ★ if firms screen → workers invest (or else be unemployed since 1 < a*)
- Iow effort + no screening
 - \star if workers do not invest $o k_0 o \infty o$ firms do not screen
 - ★ if firms do not screen → workers do not invest (or else they would face equal job opportunities, but waste the cost η)
 - the result generalizes to any $k_0>1/\gamma$, under parameter restrictions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Comparing Equilibria: Unemployment

unemployment rate

$$u=1-\frac{N}{L}\frac{H}{N}$$

- in the screening equilibrium:
 - frictional unemployment (N/L) is lower (to compensate workers for η)
 - but screening generates unemployment (H/N < 1)
 - overall the unemployment rate is lower if

$$(1+\eta)^{\frac{1}{1+\beta}} > \frac{z\Gamma_1 - 1 - k_1/\delta}{z\Gamma_1 - 1} \mathbf{a}^* \left(\theta_1^*\right)^k$$

Comparing Equilibria: Wages

• in the screening equilibrium, wage inequality is higher

• between the two sectors: "skill premium" = $\bar{w}/1$

$$\frac{\bar{w}_{1}}{\bar{w}_{0}} > \frac{w_{1}\left(\theta_{1}^{*}\right)}{b_{0}} = \frac{b_{1}a^{*}\left(\theta_{1}^{*}\right)^{k_{1}}}{b_{0}} > 1$$

with $\bar{w} =$ average wage in the advanced sector • within the advanced sector:

$$SD(\log w_1) = rac{k_1}{k_1 + \delta(\Gamma_1 z - 1)} > 0 = SD(\log w_0)$$

Comparing Equilibria: Firm Productivity

- in the screening equilibrium, firms are more productive
 - firm selection:

$$rac{ heta_1^*}{ heta_0^*} = \left(rac{z\Gamma_0 - 1}{z\Gamma_1 - 1}rac{f_1}{f_0}
ight)^{1/z} > 1$$

- ★ since $\Gamma_0/\Gamma_1 > f_0/f_1$ (for $a^*(\theta_1^*) > 1$), and hence also $\bar{\theta}_1 > \bar{\theta}_0$
- ★ intuition: screening makes more productive firms even more profitable
 → least productive firms must exit
- higher average ability of all workers

$$\mathbb{E}\left[\mathbf{a}|\mathbb{I}_{s}=1\right]=\frac{k_{1}}{k_{1}-1}>1=\mathbb{E}\left[\mathbf{a}|\mathbb{I}_{s}=0\right].$$

 \blacktriangleright workers' selection \rightarrow higher average ability of hired workers:

$$\mathbb{E}\left[\bar{\mathsf{a}}|\mathbb{I}_{s}=1\right]=\frac{k_{1}\boldsymbol{a}^{*}\left(\boldsymbol{\theta}_{1}^{*}\right)}{k_{1}-1}\frac{k_{1}+\delta\left(\boldsymbol{\Gamma}_{1}\boldsymbol{z}-1\right)}{k_{1}+\delta\left(\boldsymbol{\Gamma}_{1}\boldsymbol{z}-1\right)-1}>1$$

イロト 不得下 イヨト イヨト 二日

Comparing Equilibria: Firm's Revenue and Employment

- in the screening equilibrium:
 - revenues are higher

$$\frac{\bar{r}_1}{\bar{r}_0} = \frac{z\Gamma_0 - 1}{z\Gamma_1 - 1}\frac{f_1}{f_0} > 1$$

★ screening \rightarrow *r* steeper in θ + higher $\overline{\theta}$

and more dispersed

$$rac{SD\left(\log r_{1}
ight)}{SD\left(\log r_{0}
ight)}=rac{\Gamma_{0}}{\Gamma_{1}}rac{f_{1}}{f_{0}}>1$$

employment may be higher or lower:

$$\frac{h_{1}(\theta_{1}^{*})}{h_{0}(\theta_{0}^{*})} = \frac{\Gamma_{0}}{\Gamma_{1}} \frac{f_{1}}{f_{0}} \frac{b_{0}}{b_{1}} a^{*} (\theta_{1}^{*})^{-k}$$

profitability (+), tightness (-), screening (-)

Comparing Equilibria: Numerical Example

- data on US (screening eq.) and IT/ES (no-screening eq.)
- parameter set so as to match:
 - ▶ unemployment rate of 10% in IT/ES
 - skill premium in IT/ES
 - variance of sales in IT/ES
 - ▶ 10% elasticity of wage to firm size
- remaining parameters:
 - $\gamma \in \{0.2, 0.5, 0.8\}$
 - ▶ $k \in \{1.1, 1.5, 2\}$
 - here we only report k = 1.1

Comparing Equilibria: Numerical Example

		(1)	(2)	(3)	(4)	
	Data	Model A		Мос	Model B	
γ	-	0.2	0.8	0.2	0.8	
$\Delta \bar{w}$	23%	23.1%	22.3%	11.4%	11.0%	
$SD\left(In w_{1} ight)$	0.66	0.098	0.092	0.098	0.092	
<i>u</i> ₁	5%	9.7%	9.1%	9.5%	9.2%	
$\Delta \bar{r}$	150%	9.6%	5.5%	9.6%	5.5%	
$\Delta SD\left(\ln r\right)$	30%	8.8%	5.2%	8.8%	5.2%	
$\Delta \bar{h}$	50%	-11%	-13.7%	-1.7%	-5%	

Note: $\Delta=\%$ differences between eq. with/without screening

ullet explain \sim 10-20% of differences in firm/labor-market outcomes

- does well on wages
- does not generate enough dispersion and differences in size

Extensions and Robustnes

- unemployment in the residual sector
 - lower unemployment rate in the screening equilibrium becomes more likely
- costly entry in the advanced sector labor market
 - e.g., minimum education attainment costs ε
 - allows to obain skill premium + lower unemployment in the advanced sector
- search cost as a function of the unemployment rate

discarded sampled workers are hirable:
 → lower search cost in the screening equilibrium:
 b = α (H/L)^β < α (N/L)^β
 → lower unemployment in the screening equilibrium

Conclusions

• a model to explain the divergence in a set of labor market outcomes:

- multiple equilibria sustained by beliefs on the value of effort and ability
- investment in effort raises both mean and variance of ability
- complementarity between hiring policy and workers' effort
- two equilibria:
 - \star screening+high effort vs no screening-low effort
 - \star different labor market outcomes and firms distribution
- can explain around 10-20% of the differences in firm/labor-market outcomes
- policy implications: how to make the screening equilibrium more likely?
- further extensions:
 - learning dynamics and equilibrium selection
 - shocks and cyclical properties across different equilibria
 - endogenous degree of frictions

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >