Heterogeneity, Selection and Labor Market Disparities

Alessandra Bonfiglioli Gino Gancia

UPF and CREI

ESSIM, 30 May 2014
Motivation

- developed countries differ markedly in a number of social and economic indicators
 - inequality
 - labor and total factor productivity
 - human capital
 - firms characteristics and distribution
- proposed explanations:
 - policy distortions
 - culture
- our answer:
 - multiple equilibria sustained by different beliefs on the importance of effort for finding good jobs
Beliefs, Selection and Multiple Equilibria

- key assumptions:
 - ability can be increased investing effort, but effort raises also the variance of the ability distribution
 - firms can screen workers at a cost \rightarrow screening profitable if ability is dispersed enough
- complementarity between between effort choice and firms’ hiring policy
 - if agents put effort \rightarrow higher heterogeneity \rightarrow firms screen workers
 - if firms screen workers \rightarrow agents find it profitable to put effort
The Model in Brief

- heterogeneous firms and workers à la Helpman et al. (2010)
- labor market frictions:
 - search frictions
 - costly screening of workers’ ability
- technology:
 - decreasing returns to employed worker
 - output increasing in average ability of employed workers
- firms screen workers only if ability is sufficiently dispersed
 - more productive firms screen more, hire more able workers, pay higher wages
workers can invest costly effort to improve ability before seeking a job
 - effort raises both mean and variance of ability

if workers believe that firms will screen,
they put effort \rightarrow ability *sufficiently dispersed* \rightarrow firms screen

self-sustaining beliefs and screening

two equilibria: screening vs no screening
Main Results

- with screening (relative to no screening):
 - higher productivity
 - higher ability
 - better workers selection
 - tougher firm selection
 - firm-level outcomes:
 - bigger firms in terms of revenue
 - positive sorting between firms and workers
 - more dispersion
 - higher wage inequality (both between and within)
 - unemployment may be lower
Motivating Evidence: Economic Disparities

- **wage inequality and labor productivity:**

<table>
<thead>
<tr>
<th>Country</th>
<th>College Premium</th>
<th>Var. log wages</th>
<th>GDP/hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>1.8</td>
<td>0.44</td>
<td>60.2$</td>
</tr>
<tr>
<td>IT</td>
<td>1.51</td>
<td>0.17</td>
<td>45.6$</td>
</tr>
<tr>
<td>ES</td>
<td>1.48</td>
<td>0.23</td>
<td>47.5$</td>
</tr>
</tbody>
</table>

- **firm-level outcomes:**
 - US firms are bigger + higher covariance (size, productivity) (Bartelsman et al., 2013)
 - dispersion: st.dev. ln(revenue) 30% higher in US than IT/ES
 - selection: survival probability at 4 years 10% lower in US than IT
 - US firms value more selecting talented workers (Bloom et al., 2010)
Motivating Evidence: Cultural Disparities

- World Value Survey, respondents who strongly agree that:
 - "hard work brings success"
 - USA → 26.4%, ITA→ 14.6%, ESP→ 12.2%
 - "success is a matter of luck and connections”
 - USA → 2.3%, ITA → 8.9%, ESP → 7.8%
 - "competition is good"
 - USA → 29.6%, ITA → 19.2%, ESP → 15.6%
Motivating Evidence: Human Capital Disparities

- share of working-age (or 25-34) population with tertiary education (OECD, 2013):
 - USA → 42% (43%)
 - ITA → 15% (21%)
 - ESP → 32% (39%)

- expenditure in tertiary education as a share of GDP (OECD, 2013):
 - USA → 2.8%
 - ITA → 1%
 - ESP → 1.3%

- education outcome: test results (e.g., PISA)
 - USA higher average scores than ITA and ESP
 - USA more dispersed scores than ITA and ESP
 - USA more discipline at school than ITA and ESP
Related Literature

- multiple equilibria based on
 - political preferences:
 - human capital externalities:
 - statistical discrimination:
 - e.g., Coate & Loury (1993)

- allocation of talent and economic performance

- wage inequality with imperfect labor markets and firm heterogeneity
Preferences and Demand

- unite mass of households with size \bar{L} and utility function:

$$U = q + \frac{Q^\zeta}{\zeta}, \quad \zeta \in (0, 1)$$

homogeneous goods: Q "advanced", q "residual"

- demand for Q:

$$Q = P^{-\frac{1}{1-\zeta}}$$

 - $P = \text{price of the advanced good}$
 - $p = 1 \text{ price of the residual good (numeraire)}$

- assume $q > 0$ in eq.
Technology

- both goods are produced with labor
- \(q \) requires 1 unit of labor per unit of output and is sold at \(p = w = 1 \)
- \(Q \) produced by heterogeneous firms with DRS and:
 - fixed entry cost \(f_e \)
 - productivity \(\theta \) drawn from a Pareto: \(G(\theta) = 1 - (1/\theta)^z, \ z > 1 \)
 - fixed production cost \(f_d \)
 - exit if profits \(\pi < 0 \)
 - free entry: mass \(M \) of entering firms is endogenous
 - all costs expressed in terms of the residual good
Technology and Frictions

- output of firm with θ productivity, h employees of average ability \bar{a}:

$$y = \theta h^{\gamma} \bar{a},$$

- $\gamma \in (0, 1)$: span of control
- $a = \text{ability} \sim \text{Pareto}: I(a) = 1 - (1/a)^k$, $k > 1$

- firm pays bn to match randomly with $n \geq h$ workers
 - b will depend on labor market tightness

- unobservable ability
 - firm pays $\left[(a^*)^\delta - 1\right] c/\delta$ to screen out workers with $a < a^*$

$$\bar{a} = \frac{k}{k-1} a^* \quad \text{and} \quad h = n \left(\frac{1}{a^*}\right)^k$$

- if $k < 1/\gamma$, then y increases with screening:

$$y = \theta \frac{k}{k-1} (a^*)^{1-\gamma} n^\gamma$$
Firm’s Problem

- wage bargaining as in Stole and Zwiebel (1996):
 - firm’s share of revenues $= 1 / (1 + \gamma)$

- firm solves

$$\pi (\theta) = \max_{n > 0, a^* \geq 1} \left\{ \frac{r (\theta)}{1 + \gamma} - bn - c \frac{(a^*)^\delta - 1}{\delta} - f_d \right\}$$

- with $r (\theta) = Q^{-(1-\zeta)} \theta n^\gamma k (a^*)^{1-\gamma^k} / (k - 1)$
- f.o.c.:

 $$n : \frac{\gamma}{1 + \gamma} r (\theta) = bn (\theta)$$
 $$a^* : \frac{1 - \gamma^k}{1 + \gamma} r (\theta) = c (a^* (\theta))^\delta \text{ for } k < 1 / \gamma$$

- more productive firms sample more workers: n increasing in θ
- more productive firms screen harder: a^* increasing in θ
Firm-Level Outcomes

- profits of firms with θ productivity become:

$$\pi (\theta) = \frac{\Gamma}{1 + \gamma} r (\theta) - f$$

- with $\Gamma \equiv 1 - \gamma - \Pi_s \frac{1-\gamma^k}{\delta} > 0$ and $f = f_d - \Pi_s c / \delta$
- indicator $\Pi_s = 1$ if $a^* > 1$, zero otherwise

- revenues are increasing in θ → firms exit if $\theta < \theta^*$

- wages and employment of firms with θ productivity become:

$$w (\theta) = ba^* (\theta)^k \quad \text{and} \quad h (\theta) = \frac{\gamma ca^* (\theta)^{\delta-k}}{(1 - \gamma k) b}$$

- also w and h increasing in θ (assume $\delta > k$)
Advanced Sector Equilibrium

- find the equilibrium values of θ^*, Q and M by imposing
 - zero-profit cutoff
 \[\pi (\theta^*) = \frac{\Gamma}{1 + \gamma} r (\theta^*) - f = 0 \]
 - free-entry
 \[f_e = \int_{\theta^*}^{\infty} \pi (\theta) \, dG (\theta) \]
 - product market clearing
 \[PQ = M \int_{\theta^*}^{\infty} r (\theta) \, dG (\theta) \]
ability distribution depends on workers’ effort choice:

- effort, $\eta \in \{0, 1\}$, costs η and raises mean and variance of a:

$$k = \begin{cases}
 k_0 \to \infty & \text{if } \eta = 0 \\
 k_1 < 1/\gamma & \text{if } \eta = 1
\end{cases}$$

- individual choice unobservable, k observed by firms

occupational choice:

$$1 = \frac{N}{L} \frac{wh}{n} - \eta \eta$$

- employment in the residual sector vs job seeking in the advanced sector

search cost b increases with tightness, N/L:

$$b = \alpha \left(\frac{N}{L} \right)^\beta, \quad \alpha > 1 + \eta, \quad \beta > 0$$

- with $N = $ sampled and $L = $ job-seeking workers
Multiple Equilibria

- there exist two pure-strategy equilibria with $I_\eta = I_s$
 1. high effort + screening
 - if workers put effort $\rightarrow k_1 < 1/\gamma \rightarrow$ firms screen
 - if firms screen \rightarrow workers invest
 (or else be unemployed since $1 < a^*$)

 2. low effort + no screening
 - if workers do not invest $\rightarrow k_0 \rightarrow \infty \rightarrow$ firms do not screen
 - if firms do not screen \rightarrow workers do not invest
 (or else they would face equal job opportunities, but waste the cost η)

- the result generalizes to any $k_0 > 1/\gamma$, under parameter restrictions
Comparing Equilibria: Unemployment

- unemployment rate

\[u = 1 - \frac{N H}{L N} \]

- in the screening equilibrium:
 - frictional unemployment \((N/L)\) is lower (to compensate workers for \(\eta\))
 - but screening generates unemployment \((H/N < 1)\)
 - overall the unemployment rate is lower if

\[
(1 + \eta)^{1+\beta} > \frac{z\Gamma_1 - 1 - k_1/\delta}{z\Gamma_1 - 1} a^* (\theta_1^*)^k
\]
Comparing Equilibria: Wages

- in the screening equilibrium, wage inequality is higher
 - between the two sectors: "skill premium" = \(\bar{w}/1 \)
 \[
 \frac{\bar{w}_1}{\bar{w}_0} > \frac{w_1 (\theta_1^*)}{b_0} = \frac{b_1 a^* (\theta_1^*)^{k_1}}{b_0} > 1
 \]
 with \(\bar{w} = \) average wage in the advanced sector
 - within the advanced sector:
 \[
 SD (\log w_1) = \frac{k_1}{k_1 + \delta (\Gamma_1 z - 1)} > 0 = SD (\log w_0)
 \]
Comparing Equilibria: Firm Productivity

- in the screening equilibrium, firms are more productive
 - firm selection:
 \[\frac{\theta_1^*}{\theta_0^*} = \left(\frac{z\Gamma_0 - 1 f_1}{z\Gamma_1 - 1 f_0} \right)^{1/z} > 1 \]
 - since \(\Gamma_0 / \Gamma_1 > f_0 / f_1 \) (for \(a^* (\theta_1^*) > 1 \)), and hence also \(\bar{\theta}_1 > \bar{\theta}_0 \)
 - intuition: screening makes more productive firms even more profitable
 \(\rightarrow \) least productive firms must exit
 - higher average ability of all workers
 \[\mathbb{E} [a|I_s = 1] = \frac{k_1}{k_1 - 1} > 1 = \mathbb{E} [a|I_s = 0]. \]
 - workers’ selection \(\rightarrow \) higher average ability of hired workers:
 \[\mathbb{E} [\bar{a}|I_s = 1] = \frac{k_1 a^* (\theta_1^*)}{k_1 - 1} \frac{k_1 + \delta (\Gamma_1 z - 1)}{k_1 + \delta (\Gamma_1 z - 1) - 1} > 1 \]
Comparing Equilibria: Firm’s Revenue and Employment

- in the screening equilibrium:
 - revenues are higher
 \[
 \frac{\bar{r}_1}{\bar{r}_0} = \frac{z\Gamma_0 - 1}{z\Gamma_1 - 1} \frac{f_1}{f_0} > 1
 \]
 - screening \(\rightarrow r\) steeper in \(\theta\) + higher \(\bar{\theta}\)
 - and more dispersed
 \[
 \frac{SD(\log r_1)}{SD(\log r_0)} = \frac{\Gamma_0}{\Gamma_1} \frac{f_1}{f_0} > 1
 \]
 - employment may be higher or lower:
 \[
 \frac{h_1(\theta_1^*)}{h_0(\theta_0^*)} = \frac{\Gamma_0}{\Gamma_1} \frac{f_1}{f_0} \frac{b_0}{b_1} a^*(\theta_1^*)^{-k}
 \]
 - profitability (+), tightness (-), screening (-)
Comparing Equilibria: Numerical Example

- data on US (screening eq.) and IT/ES (no-screening eq.)
- parameter set so as to match:
 - unemployment rate of 10% in IT/ES
 - skill premium in IT/ES
 - variance of sales in IT/ES
 - 10% elasticity of wage to firm size

- remaining parameters:
 - $\gamma \in \{0.2, 0.5, 0.8\}$
 - $k \in \{1.1, 1.5, 2\}$
 - here we only report $k = 1.1$
Comparing Equilibria: Numerical Example

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>0.2</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>$\Delta \bar{w}$</td>
<td>23%</td>
<td>23.1%</td>
<td>22.3%</td>
</tr>
<tr>
<td>$SD (\ln w_1)$</td>
<td>0.66</td>
<td>0.098</td>
<td>0.092</td>
</tr>
<tr>
<td>u_1</td>
<td>5%</td>
<td>9.7%</td>
<td>9.1%</td>
</tr>
<tr>
<td>$\Delta \bar{r}$</td>
<td>150%</td>
<td>9.6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>$\Delta SD (\ln r)$</td>
<td>30%</td>
<td>8.8%</td>
<td>5.2%</td>
</tr>
<tr>
<td>$\Delta \bar{h}$</td>
<td>50%</td>
<td>-11%</td>
<td>-13.7%</td>
</tr>
</tbody>
</table>

Note: $\Delta = \%$ differences between eq. with/without screening

- explain $\sim 10\text{-}20\%$ of differences in firm/labor-market outcomes
 - does well on wages
 - does not generate enough dispersion and differences in size
Extensions and Robustness

- unemployment in the residual sector
 - lower unemployment rate in the screening equilibrium becomes more likely

- costly entry in the advanced sector labor market
 - e.g., minimum education attainment costs ε
 - allows to obtain skill premium + lower unemployment in the advanced sector

- search cost as a function of the unemployment rate
 - discarded sampled workers are hirable:
 - lower search cost in the screening equilibrium:
 \[b = \frac{\alpha}{\beta} \left(\frac{H}{L} \right) < \frac{\alpha}{\beta} \left(\frac{N}{L} \right) \]
 - lower unemployment in the screening equilibrium
Conclusions

- a model to explain the divergence in a set of labor market outcomes:
 - multiple equilibria sustained by beliefs on the value of effort and ability
 - investment in effort raises both mean and variance of ability
 - complementarity between hiring policy and workers’ effort
 - two equilibria:
 - screening + high effort vs no screening - low effort
 - different labor market outcomes and firms distribution

- can explain around 10-20% of the differences in firm/labor-market outcomes

- policy implications: how to make the screening equilibrium more likely?

- further extensions:
 - learning dynamics and equilibrium selection
 - shocks and cyclical properties across different equilibria
 - endogenous degree of frictions