Market Structure and Exchange Rate Pass-Through

Raphael Auer and Raphael Schoenle
Swiss National Bank and Brandeis University
Research Question

How do movements of the exchange rate affect “market toughness,” and to what extent can this explain incomplete pass-through?
Motivation I

Why do we care?

- Strategic price complementarities: Melitz and Ottaviano (2008), Atkeson and Burstein (2008), Gust et al. (2010 and 2011), Gopinath and Itskhoki (2010)
- If exchange rate moves “market toughness”, it leads to a firm’s optimal price not commoving 1-1 with exchange rate
- Can the incompleteness of long-run pass-through (e.g. Nakamura and Steinsson (2008)) be explained by such real rigidities?
Motivation II

Understanding the importance of strategic price complementarities is of interest because:

▶ It guides key modeling choices, also in the closed economy literature: already small menu costs have large effects if complementarities matter.
▶ It has direct relevance for monetary policy as we can understand how exchange rate affects inflation:
 ▶ What does a global “demise of the dollar” mean for US import inflation?
 ▶ What is the effect of a large trade-partner appreciation (China?) on the US?
 ▶ Can the changing structure of trade explain the decline in US PT? (see Marazzi and Sheets (2007))
Outline

1. Decomposing the Exchange Rate
 ▶ PT rate following broad USD movements.
 ▶ PT rate following idiosyncratic Trade Partner Currency (TPC) movements.

2. Decomposed Exchange Rate Shocks and Relevant Market Share:
 ▶ Does TPC PT depend on the trade partner’s market share?
 ▶ Does USD PT depend on the market share of domestic producers?

3. To what extent can a simple model of price complementarities explain PT rates when calibrated using our exchange rate decomposition, market share and other sector information?
Trade-Partner Currency vs USD Movements

Part I

Decomposing the exchange rate and PT
Trade-Partner Currency vs USD Movements

Idea:
Building on Gopinath and Itskhoki (2010), Glick and Rogoff (1995), we decompose the nominal exchange rate into two components:

- Global movements of the US: USD movements
- Trade-partner specific currency movements: TPC movements

Why do we decompose the exchange rate?

- Idiosyncratic country movements affect only few firms
- Common movements affect all importers
Trade-Partner Currency vs USD Movements

How do we decompose exchange rate movements?

Think about three currency movements: US, TP, rest of the world (ROW). Define global USD movement:

\[\Delta USD_{ROW-TP,t} \equiv \sum_{c \in (C \supset \{TP,USA\})} \omega_{c,t} \Delta USD_{c,t} \]

(1)

then,

\[\Delta TPC_{TP,t} \equiv \Delta USD_{TP,t} - \Delta USD_{ROW-TP,t} \]

(2)

where

- Note: the ROW is the anchor that tells us whether the USD appreciated or the TPC depreciated
- Also, ROW is different for each TP
Trade-Partner Currency vs USD Movements

Example 1: How do we calculate USD and TPC movements?

- Suppose there are 3 equally large US trade partners in the world: China, Canada, Mexico
- Exchange rate movements are:
 - USD/CNY: +10%
 - USD/MXN 0%
 - USD/CAD 0%
- Consider China as TP.
- ROW: Canada and Mexico.

Standard all-country, trade-weighted (TW) definition:
- TW movement: \(0.33 \times (10\% + 0\% + 0\%) = 3.33\% \)

Our definition:
- USD movement: \(0.5 \times (0\% + 0\%) = 0\% \)
- TPC movement: \(10\% - 0\% = 10\% \)
Trade-Partner Currency vs USD Movements

Example 2: Do we address the correlation structure of XRs?

Now, exchange rate movements are:

- USD/CNY: +5%
- USD/MXN: -5%
- USD/CAD: -5%

Consider China as TP.

ROW: Canada and Mexico.

Standard all-country, trade-weighted (TW) definition:

- TW movement: $0.33 \times (5\% - 5\% - 5\%) = -5\%/3$

Our definition:

- USD movement: $0.5 \times (-5\% - 5\%) = -5\%$
- TPC movement: $5\% - (-5\%) = 10\$

\Rightarrow Correlation structure does not affect decomposition.
Estimating Pass-Through

How do we estimate PT?

Estimate standard unconditional PT regression at n-month horizons for each exchange rate measure:

\[\Delta p_{c,t} = \alpha_c + \sum_{j=0}^{n} \beta_j \Delta e_{c,t-j} + \sum_{j=0}^{n} \theta_j \Delta \pi_{c,t-j} + \gamma Z_t + \epsilon_{c,t} \]

(3)

where

- \(c \) is a country
- \(e \) the log of one exchange rate measure
- \(n = 1, 2, ..., 25 \)
- controls \(Z_t \)

PT at horizon \(n \) is the sum of \(\beta_j \) up to \(j = n \).
Estimating Pass-Through

What is the data?

BLS micro price data:
- Data underlying U.S. IPP (import price index)
- Prices exclude intra-firm prices ("transfer pricing")
- Prices exclude ‘lumpy trade’ prices
- Individual "items" such as "Rug; 100% New Zealand wool; hand-tufted; hand-hooked; style name: XXX"
- Time frame: 1994-2005

Exchange rate data from IMF.
Estimating Pass-Through

Countries included:

- Major trade partners: China, Canada, Mexico, Japan, Germany, South Korea, United Kingdom, Taiwan, France, Ireland

- Minor trade partners: Austria, Denmark, Czech Republic, Finland, Greece, Hungary, Italy, Netherlands, Norway, Portugal, Singapore, Spain, Sweden, Switzerland
Results

Result 1:

Much larger estimated PT for global USD movements than TPC or nominal exchange rate movements
Results

Pass-Through into US Import Prices Following Nominal, USD, and Trade Partner Exchange Rate Changes

Estimated Pass-Through Horizon in Months

Market Structure and Exchange Rate Pass-Through
Pass-Through under Joint Estimation (With 95% C.I.)

Market Structure and Exchange Rate Pass-Through
Robustness

Are our results driven by specific sectors or countries?
Robustness

USD versus TPC Pass-Through Rates at the Sectoral Level

Estimated TPC Pass-Through vs. Estimate USD Pass-Through

Market Structure and Exchange Rate Pass-Through
Robustness

Pass-Through of USD and TPC Movements for Two Selected Industries

Estimated Pass-Through vs. Horizon in Months

Market Structure and Exchange Rate Pass-Through
Robustness

Table: Trade-Partner and USD Exchange Rate Pass-Through by Country

<table>
<thead>
<tr>
<th>Country/Horizon</th>
<th>6 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>0.16</td>
<td>0.32</td>
</tr>
<tr>
<td>Mexico</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.1</td>
<td>0.18</td>
</tr>
<tr>
<td>Norway</td>
<td>0.16</td>
<td>0.2</td>
</tr>
<tr>
<td>Finland</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>UK</td>
<td>0.04</td>
<td>-0.44</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.01</td>
<td>0.16</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.04</td>
<td>0.14</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.21</td>
<td>0.1</td>
</tr>
<tr>
<td>Mean</td>
<td>0.24</td>
<td>0.30</td>
</tr>
<tr>
<td>Median</td>
<td>0.25</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Market Structure and Exchange Rate Pass-Through
Trade-Partner Currency vs USD Movements

Result:

Much larger estimated PT for global USD movements than TPC or nominal exchange rate movements

⇒ Consistent with price complementarities: if USD moves, relative price moves for all importers, so large PT

⇒ Consistent with important role of market power

⇒ Next, we use the cross-section of sectors to discern this view from alternative ones, for example large/persistent USD shocks, i.i.d. TPC shocks.
Pass-Through and Market Share

Part II

If price complementarities matter, shouldn’t PT vary with market share?
Pass-Through and Market Share

Two questions:

▶ Does PT following USD movements depend on the general openness (i.e. the import share) of the sector?
▶ Does TP following TPC movements depend on the import share of the trade partner in the sector?
Pass-Through and Market Share

Relate pass-through to market power directly by estimating:

$$\Delta p_{k,c,t} = \alpha_c + \sum_{j=0}^{n} \beta_j \Delta e_{c,t-j} + \sum_{j=0}^{n} \theta_j \Delta e_{c,t-j} \ast s_{k,c} + \gamma s_{k,c} + \epsilon_{k,c,t}$$

(4)

where have

- $e_{c,t}$ exchange rate measure
- $s_{k,c}$ measure of market share (of country c) in sector k
- Sectors defined at HS and NAICS six-digit level

Pass-through due to market power: $\theta(n) = \sum_{j=0}^{n} \theta_j$
Pass-Through and Market Share

Does a USD movement generate pass-through because it affects the market environment?

Market share measure - sectoral import penetration:

\[1 - m_{US,k} = 1 - \frac{Domestic\ Shipments_k}{Domestic\ Shipments_k + World\ Imports_k} \]

Exchange rate: USD movements
Pass-Through and Market Share

Sectoral Import Penetration and Pass-Through of USD Movements

Estimated Average Pass-Through

Horizon (Months)

-5% 5% 15% 25% 35% 45% 55% 65% 75% 85%

- Pass-Through in Market with 100% Penetration
- Pass-Through in Market with Mean Penetration
- Pass-Through in Market with 0% Penetration
Pass-Through and Market Share

Does a TPC movement depend on the import market share of the importer?

Market share measure - sectoral importer market share:

\[m_{c,k} = \frac{\text{Imports}_{c,k}}{\text{World Imports}_k} \]

Exchange rate: TPC movements
Pass-Through and Market Share

Sectoral TP Import Share and TPC Pass-Through

Estimated Average Pass-Through

- Pass-Through of TP with 0% Import Share
- Pass-Through of TP with Mean Import Share
- Pass-Through of TP with 100% Import Share
Pass-Through and Market Share

Result:

⇒ Important role of market power for PT:
 ▶ Total import penetration
 ▶ Import market share

⇒ “Mass” of firms affected by the same shocks matters for PT.
 ▶ Next, we dig deeper into how the precise market structure matters for PT.
Model

Part III

Theory: Model and Estimation Exercise

Can a simple model of oligopoly pricing explain USD, TPC PT and how PT co-varies with market share?
Model

- Continuum of competitive firms producing final output

\[c = \left(\int_0^1 y_k^{(1-1)/\eta} \, dk \right)^{\eta/(\eta-1)} \]

- \(N \) monopolists producing inputs

\[y_k = \left(\sum_{n=1}^{N} q_{n,k}^{(\rho-1)/\rho} \right)^{\rho/(\rho-1)} \]

- Firms maximize profits subject to constant \(MC = \omega_{n,k} \)
- Closer substitutes within than across sectors: \(\rho > \eta \)
Mechanics of the Model

▶ A tiny firm $s_{n,k} \approx 0$ faces demand elasticity ρ, a monopolist $s_{n,k} = 1$ faces demand elasticity η

▶ With $s_{n,k} \in]0, 1[$ demand elasticity is variable. It:
 ▶ Decreases in own cost/exrate
 ▶ Increases in the cost/exrate of other firms

▶ Of course, all prices react to all exchange rates. We next calculate the equilibrium effect of the exchange rate.
Model

Pricing:

$$P_{n,k} = \frac{\varepsilon(s_{n,k})}{\varepsilon(s_{n,k}) - 1} \omega_{n,k}$$

$$\varepsilon(s) = \left[\frac{1}{\rho} (1 - s_{n,k}) + \frac{1}{\eta} s_{n,k} \right]^{-1}$$

Log-linearized:

$$\hat{P}_{n,k} = \Gamma(s_{n,k}) \hat{s}_{n,k} + \hat{w}_{n,k}$$

$$\hat{s}_{n,k} = (\rho - 1) \left(\hat{P}_k - \hat{P}_{n,k} \right)$$
Model

Pass-through depends on:

1. price complementarities: mass of firms co-moving with a country
2. precise distribution of firm sizes

Solve for equilibrium price and PT in two cases:

- all firms of equal size
- allowing for heterogenous firm size
Equilibrium price effect:

\[\hat{P}_{n,k} = \gamma_{n,k} \left(\sum_{j \in N_k, TP} S_j \alpha_{n,k} \hat{w}_{n,k} \right) \left(1 - \sum_{j \in N_k} S_j \gamma_{n,k} \right) + \alpha_{n,k} \hat{w}_{n,k} \]

Equilibrium Effect on \(P_k \)’s response to \(P_k \)'s direct response to \(w_{n,k} \)

Market structure works through four channels:

- a direct cost effect, sensitivity \(\alpha_{n,k} \) depending on market share
- the total impact of TP-firms on the general price level
- second-round amplification by all firms in the industry
- reaction to aggregate price level effect at rate of \(\gamma_{n,k} \) depending on firm market share
Model: Equal-Sized Firms

Solve generalized formula for PT following TPC movement:

- Equal-sized firms: $\gamma_{n,k} = \bar{\gamma}$, $\alpha_{n,k} = \bar{\alpha}$.
- Assume $w_{USD} = 0$, $w_{TPC} \neq 0$. Normalize $w_{US} = 0$.
- Then, $\hat{P}_{TPC} = \bar{\gamma} \frac{1}{1 - \gamma} n_{TP} \bar{\alpha} \hat{w}_{TPC} + \bar{\alpha} \hat{w}_{TPC}$

| Effect of TPC on \hat{P}_k | Direct Cost Effect |

- PT depends on market position of TP.
Model: Equal-Sized Firms

Solve generalized formula for PT following USD movement:

- Assume $w_{USD} \neq 0$, $w_{TPC} = 0$.
- Then,

$$\hat{P}_{USD} = \gamma \frac{1}{1 - \gamma} (n_{ROW} + n_{TP}) \bar{\alpha} \hat{w}_{USD} + \underbrace{\bar{\alpha} \hat{w}_{USD}}_{Direct\,Cost\,Effect}$$

- Effect of USD on \hat{P}_k

PT depends on degree of import penetration.
Model Proposition

Key implications:

- USD PT > TP PT as $n_{ROW} > 0$
- USD PT increasing in import penetration
- TPC PT increasing in TP market share
- Precise distribution of firm sizes matters
Model Estimation

Map model directly back to data:

- Can we match observed price changes with the calibrated model?
- How important are our findings economically? Can we explain pass-through differences across countries?
Model Estimation

Horizon in Months

Coefficient on Predicted Price Change

Upper Bound 95% C.I.

Lower Bound 95% C.I.
Can we qualitatively match actual pass through rates?

- Use model to predict PT at the three-digit NAICS level for each trade partner.
- Compare to actual, estimated PT.
- Significant, positive association?
- Regression slope of 1 and a constant of 0?
Model Estimation II: PT Rates

![Graph showing the relationship between estimated and predicted sectoral PT rates.](image-url)
Can we match PT rates?

- Aggregate to country level.
- Compare actual and estimated PT.
- Two tests:
 - Hard one: regression slope of 1 and a constant of 0?
 - Realistic One: how much of the variation in PT rates across countries and industries can we explain?
The R^2 of the volume weighted regression (red line) is 47%!

Model Estimation II: PT Rates

Market Structure and Exchange Rate Pass-Through
Conclusion

Conclusion: Important role of market Structure for Pricing

- Pass-through for global USD movements larger than TPC or nominal exchange rate movements. Two to three times as large at long horizons.
- Oligopoly model of pricing can explain USD, TPC PT.
- Implications for modeling: nominal vs. real rigidities, PTM, decomposing the exchange rate
- Implications for policy-makers: US import inflation, TPC shocks