The Global Welfare Impact of China: Trade Integration and Technological Change

Julian di Giovanni1 Andrei A. Levchenko2 Jing Zhang3

1International Monetary Fund and University of Toronto
2University of Michigan and NBER
3University of Michigan

25 May, 2012

The views expressed in this paper are those of the authors and should not be attributed to the International Monetary Fund, its Executive Board, or its management.
Motivation

• Trade integration of China
 • 1.3 billion people
 • 12-fold growth in exports since 1990
 • 10% of global imports now come from China
China’s Exports
1990=100

![Graph showing China's exports from 1960 to 2010 compared to the world's exports. The graph displays a significant increase in China's exports after 1990, while the world's exports show a more gradual increase.](image)
Share of China in Global Imports

OECD

East and South Asia

Latin America and Caribbean

East. Europe and Cent. Asia

Middle East and North Africa

Sub-Saharan Africa

di Giovanni, Levchenko, and Zhang
The Global Welfare Impact of China
05/2012
4/35
Concerns

- **Among developing countries:** China’s integration might lower welfare due to similar comparative advantage
 Devlin, Estevaeordal and Rodriguez-Clare, eds (2005), Gallagher, Moreno-Brid and Porzecanski (2008)

- **Among advanced countries:** China catching up in its comparative disadvantage sectors might reduce welfare

- Evaluating these concerns is challenging: a rich/tractable model with multilateral trading relations, reliable measures of sectoral comparative advantage across countries
This Paper

- Assess the welfare impact of
 - China’s trade integration to date
 - Balanced and unbalanced productivity growth in China
- Construct a Ricardian-HO model of 75 countries 20 sectors
 - Multiple factors of production; fully fledged input-output linkages; a non-tradeable sector; inter- and intra-sectoral trade
 - Analytical results on the “Samuelson conjecture” when there are more than 2 countries
- Measure comparative advantage following EK
 - Trade data reveal CA after netting out differences in factor costs and trade costs
Quantitative Results

- Welfare gains in two counterfactual growth scenarios:
 - World: balanced (0.01%) $<<$ unbalanced (0.42%)
 - Diametrically opposite to the Samuelson conjecture
- Welfare gains from China's trade integration today
 - China: 3.72%; the world: 0.13%; Asia: 0.23%
 - 9 countries lose (mostly textile and apparel producers): Honduras (-0.27%), El Salvador (-0.21%)
Analytical Results

- In a simplified 2-sector model, vary country 1’s *relative* productivity, keeping its *average* productivity constant.

- Which level of relative productivity minimizes welfare?
 - With only 2 countries, welfare in country 2 is lowest when relative productivity is identical across countries.
 - With more than 2 countries, welfare in country 2 is lowest when relative productivity is identical to the relative average productivity *of all other countries serving country 2*, weighted by unit and trade costs.

- Intuition: China’s pattern of comparative advantage is “common” in the world. Unbalanced growth actually makes China *more* different from the average country.
Preferences

• Countries $n, i = 1, \ldots, N$; sectors $j, k = 1, \ldots, J + 1$; sector $J + 1$ nontradeable

• Consumption of the final good:

$$Y_n = \left(\sum_{j=1}^{J} \omega_j^\frac{1}{\eta} (Y_j^\frac{1}{\eta-1}) \right)^{\frac{\eta}{\eta-1} \xi_n} \left(Y_{J+1} \right)^{1-\xi_n},$$

where Y_{J+1}^n is the nontradable-sector composite good, and Y_j^n is the composite good in tradable sector $j = 1, \ldots, J$.

• Budget constraint/trade balance in country N:

$$P_n Y_n = w_n L_n + r_n K_n,$$

where $P_n = B_n \left(\sum_{j=1}^{J} \omega_j (p_n^j)^{1-\eta} \right)^{\frac{1}{1-\eta} \xi_n} (p_n^{J+1})^{1-\xi_n}$
Technology

- Each sector’s output Q^j_n aggregates a continuum of varieties $q \in [0, 1]$ unique to each sector:

$$Q^j_n = \left[\int_0^1 Q^j_n(q) \frac{\varepsilon-1}{\varepsilon} dq \right]^{\frac{\varepsilon}{\varepsilon-1}}$$

- Producing one unit of good q in sector j in country n requires $\frac{1}{z^j_n(q)}$ input bundles.

 - $z^j_n(q)$ is drawn from the Fréchet distribution with cdf

$$F^j_n(z) = e^{-T^j_n z^{-\theta}},$$

 where T^j_n varies by country and sector

- Costly trade: $d^j_{ni} \geq 1$
Quantitative Model Setup

- Input bundle has a cost:

\[c_n^j = \left(w_n^{\alpha_j} r_n^{1-\alpha_j} \right)^{\beta_j} \left(\prod_{k=1}^{J+1} \left(p_k^n \right)^{\gamma_{k,j}} \right)^{1-\beta_j} \]

- Production is Cobb-Douglas in \(L \), \(K \), and intermediate inputs coming from sectors \(1, \ldots, J+1 \)

- Full set of I-O linkages between all sectors, including nontradeable

- Factor and intermediate input intensities differ by sector – HO feature
Prices and Trade Shares

- Multilateral resistance Φ_n^j summarizes country n’s access to production technology in sector j

$$\Phi_n^j = \sum_{i=1}^{N} T_i^j \left(c_i d_{ni}^j \right)^{-\theta}$$

- Price p_n^j in sector j and country n:

$$p_n^j = \Gamma \left(\Phi_n^j \right)^{-\frac{1}{\theta}}$$

- Share of sector j’s varieties originating in country i that country n consumes π_{ni}^j

$$\pi_{ni}^j = \frac{T_i^j \left(c_i d_{ni}^j \right)^{-\theta}}{\Phi_n^j}$$
Closing the Model

- Goods market clearing:

\[p_j^i Q_n^i = p_n^j Y_n^j + \sum_{k=1}^{J} (1-\beta_k) \gamma_{j,k} \left(\sum_{i=1}^{N} \pi_{in}^k p_i^k Q_i^k \right) + (1-\beta_{J+1}) \gamma_{j,J+1} p_{n+1}^{J+1} Q_{n+1}^{J+1} \]

- Factor market clearing:

\[\sum_{j=1}^{J+1} L_n^j = L_n \quad \text{and} \quad \sum_{j=1}^{J+1} K_n^j = K_n \]
Simplified Version

- One factor of production: labor

- Two EK sectors (A and B) and one homogeneous good \(H \)
 - \(H \) is freely traded and produced in all countries
 - Wages are pinned down by productivity of good H (Helpman, Melitz and Yeaple, 2004, Chaney, 2008)

- Utility: \(U_n = A_n^{\frac{\alpha}{2}} B_n^{\frac{\alpha}{2}} H_n^{1-\alpha} \)

- Thought experiment:
 - Vary \(\frac{T_1^A}{T_1^B} \) while keeping \((T_1^A T_1^B)^{1/2} = c \) to examine the impact of “technological similarity” across countries
Welfare in Simplified Model

- Price in sector \(j \in \{A, B\} \) and country \(n \):

\[
p_n^j = \Gamma \left(\Phi_n^j \right)^{-\frac{1}{\theta}} = \Gamma \left(\sum_{i=1}^{N} T_{ij} \left(w_i d_{ni}^j \right)^{-\theta} \right)^{-\frac{1}{\theta}}
\]

- Aggregate price level:

\[
P_n \propto \left(p_n^A p_n^B \right)^{\frac{1}{2} \alpha} \left(p_n^H \right)^{1-\alpha}
\]

- Welfare (indirect utility):

\[
w_n/P_n = w_n \left(p_n^A p_n^B \right)^{-\frac{1}{2} \alpha} \left(p_n^H \right)^{\alpha-1}
\]
Lemma 1

The relative technology \(\left(\frac{T_A^1}{T_B^1} \right)_n \) of country 1 that minimizes welfare in country \(n \) subject to the constraint that \(\left(T_A^1 T_B^1 \right)^{1/2}_n = c \) is given by:

\[
\left(\frac{T_A^1}{T_B^1} \right)_n = \frac{\sum_{i=2}^{N} T_A^i \left(\frac{w_i d_A^{ni}}{d_A^{n1}} \right)^{-\theta}}{\sum_{i=2}^{N} T_B^i \left(\frac{w_i d_B^{ni}}{d_B^{n1}} \right)^{-\theta}}.
\]
Example: 2 vs. 3 Countries

Suppose trade is costless. Then the country 1 relative technology T_A^1/T_B^1 that minimizes welfare in countries 1 and 2 is: With 2 countries:

$$\left(\frac{T_A^1}{T_B^1} \right)_1 = \left(\frac{T_A^1}{T_B^1} \right)_2 = \frac{T_A^2}{T_B^2}.$$

With 3 countries:

$$\left(\frac{T_A^1}{T_B^1} \right)_1 = \left(\frac{T_A^1}{T_B^1} \right)_2 = \left(\frac{T_A^1}{T_B^1} \right)_3 = \frac{T_A^2 w_2^{-\theta} + T_A^3 w_3^{-\theta}}{T_B^2 w_2^{-\theta} + T_B^3 w_3^{-\theta}}.$$
Estimation Strategy

- Three types of parameters:
 - Estimated by us from the data: α_j, β_j, $\gamma_{k,j}$, L_n, K_n, ξ_n
 - Estimated by others/commonly used: θ, η, ε
 - Estimated by us within the model: T^i_n, d^i_{ni}, ω_j

- 2 major steps of estimation strategy:
 - Tradeable T^i_n relative to U.S.: gravity-based estimation following EK and others
 - T^i_n for the U.S., T^{i+1}_n for $n = 1, ..., N$, ω_j for $j = 1, ..., J$
Tradeable Sectors

• Eaton-Kortum procedure:

\[\frac{\pi^j_{ni}}{\pi^j_{nn}} = \frac{T^j_i (c^j_i d^j_{ni})^{-\theta}}{T^j_n (c^j_n)^{-\theta}} \]

in logs:

\[\ln \left(\frac{\pi^j_{ni}}{\pi^j_{nn}} \right) = \ln \left(T^j_i (c^j_i)^{-\theta} \right) - \ln \left(T^j_n (c^j_n)^{-\theta} \right) - \theta \ln d^j_{ni} \]

• Iceberg costs:

\[\ln d^j_{ni} = \delta^j_k + b^j_{ni} + CU^j_{ni} + RTA^j_{ni} + ex^j_i + \nu^j_{ni} \]

• \(d^j_{ni} \) will vary by \(j \); generally \(d^j_{ni} \neq d^j_{in} \); fixed effect on the exporter (Waugh 2010)
Estimating Equation

\[\ln \left(\frac{\pi_{jn}}{\pi_{nn}} \right) = \ln \left(\frac{T_i^j(c_i^j)}{T_n^j(c_n^j)} \right)^{-\theta} - \theta\text{ex}_i^j - \ln \left(\frac{T_n^j(c_n^j)}{T_i^j(c_i^j)} \right)^{-\theta} \]

- Exporter Fixed Effect
- Importer Fixed Effect
- \(-\theta\delta_k^j - \theta b_{ni}^j - \theta CU_{ni}^j - \theta RTA_{ni}^j - \theta\nu_{ni}^j\)
 - Bilateral Observables
 - Error Term

- Importer fixed effect yields technology-cum-unit-cost term relative to a reference country—the US:

\[s_n^j = \frac{T_n^j}{T_{us}^j} \left(\frac{c_n^j}{c_{us}^j} \right)^{-\theta} \]
Extracting T^j_n's

- Cost of the input bundle relative to the U.S.:
 \[
 \frac{c^j_n}{c^j_us} = \left(\frac{w_n}{w_{us}} \right)^{\alpha_j \beta_j} \left(\frac{r_n}{r_{us}} \right)^{(1-\alpha_j)\beta_j} \left(\prod_{k=1}^{J} \left(\frac{p^k_n}{p^k_{us}} \right)^{\gamma_{k,j}} \right)^{1-\beta_j} \left(\frac{p^{J+1}_n}{p^{J+1}_{us}} \right)^{\gamma_{J+1,j}(1-\beta_j)}
 \]

- Price level in tradable sector j relative to the U.S.:
 \[
 \frac{p^j_n}{p^j_{us}} = \left(\frac{\pi_{nn}^j}{\pi_{us,us}^j} \frac{1}{s^j_n} \right)^{\frac{1}{\theta}}
 \]

- Use data for the rest: $\frac{w_n}{w_{us}}$, $\frac{r_n}{r_{us}}$, $\frac{p^{J+1}_n}{p^{J+1}_{us}}$
Data

- 19 tradable sectors; 75 countries; 2000-2007
- Output, wages, value added, α_j, β_j: UNIDO
- Bilateral, sector-level trade: COMTRADE
- Distance, RTA, currency Union: CEPII, WTO, Rose (2004)
- $\gamma_{k,j}$, α_{J+1}, β_{J+1}, ω_j: U.S. 1997 Detailed Make and Use tables
- L_n, K_n, per capita income: Penn World Tables
- p_{n}^{J+1}/p_{us}^{J+1}, p_{n}^{J+1}/p_{T}^{J+1}: ICP Program
- ξ_n: Yi and Zhang (2010)
- $\theta = 8.28$ (EK preferred value); $\eta = 2$; $\varepsilon = 4$
<table>
<thead>
<tr>
<th>ISIC code</th>
<th>Sector Name</th>
<th>α_j</th>
<th>β_j</th>
<th>$\gamma_{j+1,j}$</th>
<th>ω_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Food and Beverages</td>
<td>0.315</td>
<td>0.281</td>
<td>0.303</td>
<td>0.209</td>
</tr>
<tr>
<td>16</td>
<td>Tobacco Products</td>
<td>0.264</td>
<td>0.520</td>
<td>0.527</td>
<td>0.01</td>
</tr>
<tr>
<td>17</td>
<td>Textiles</td>
<td>0.467</td>
<td>0.371</td>
<td>0.295</td>
<td>0.025</td>
</tr>
<tr>
<td>18</td>
<td>Wearing Apparel, Fur</td>
<td>0.493</td>
<td>0.377</td>
<td>0.320</td>
<td>0.089</td>
</tr>
<tr>
<td>19</td>
<td>Leather, Leather Products, Footwear</td>
<td>0.485</td>
<td>0.359</td>
<td>0.330</td>
<td>0.014</td>
</tr>
<tr>
<td>20</td>
<td>Wood Products (Excl. Furniture)</td>
<td>0.452</td>
<td>0.372</td>
<td>0.288</td>
<td>0.009</td>
</tr>
<tr>
<td>21</td>
<td>Paper and Paper Products</td>
<td>0.366</td>
<td>0.344</td>
<td>0.407</td>
<td>0.012</td>
</tr>
<tr>
<td>22</td>
<td>Printing and Publishing</td>
<td>0.484</td>
<td>0.469</td>
<td>0.407</td>
<td>0.004</td>
</tr>
<tr>
<td>23</td>
<td>Coke, Refined Petroleum Products, Nuclear Fuel</td>
<td>0.244</td>
<td>0.243</td>
<td>0.246</td>
<td>0.092</td>
</tr>
<tr>
<td>24</td>
<td>Chemical and Chemical Products</td>
<td>0.308</td>
<td>0.373</td>
<td>0.479</td>
<td>0.002</td>
</tr>
<tr>
<td>25</td>
<td>Rubber and Plastics Products</td>
<td>0.385</td>
<td>0.387</td>
<td>0.350</td>
<td>0.014</td>
</tr>
<tr>
<td>26</td>
<td>Non-Metallic Mineral Products</td>
<td>0.365</td>
<td>0.459</td>
<td>0.499</td>
<td>0.071</td>
</tr>
<tr>
<td>27</td>
<td>Basic Metals</td>
<td>0.381</td>
<td>0.299</td>
<td>0.451</td>
<td>0.002</td>
</tr>
<tr>
<td>28</td>
<td>Fabricated Metal Products</td>
<td>0.448</td>
<td>0.398</td>
<td>0.364</td>
<td>0.012</td>
</tr>
<tr>
<td>29C</td>
<td>Office, Accounting, Computing, and Other Machinery</td>
<td>0.473</td>
<td>0.390</td>
<td>0.388</td>
<td>0.094</td>
</tr>
<tr>
<td>31A</td>
<td>Electrical Machinery, Communication Equipment</td>
<td>0.405</td>
<td>0.380</td>
<td>0.416</td>
<td>0.057</td>
</tr>
<tr>
<td>33</td>
<td>Medical, Precision, and Optical Instruments</td>
<td>0.456</td>
<td>0.428</td>
<td>0.441</td>
<td>0.036</td>
</tr>
<tr>
<td>34A</td>
<td>Transport Equipment</td>
<td>0.464</td>
<td>0.343</td>
<td>0.286</td>
<td>0.175</td>
</tr>
<tr>
<td>36</td>
<td>Furniture and Other Manufacturing</td>
<td>0.460</td>
<td>0.407</td>
<td>0.397</td>
<td>0.065</td>
</tr>
<tr>
<td>4A</td>
<td>Nontradeables</td>
<td>0.561</td>
<td>0.651</td>
<td>0.788</td>
<td></td>
</tr>
</tbody>
</table>

Mean 0.414 0.393 0.399 0.053
Min 0.244 0.243 0.246 0.002
Max 0.561 0.651 0.788 0.209
Model Fit

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.369</td>
<td>0.333</td>
</tr>
<tr>
<td>median</td>
<td>0.133</td>
<td>0.145</td>
</tr>
<tr>
<td>corr(model, data)</td>
<td>0.993</td>
<td></td>
</tr>
<tr>
<td>Return to capital:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.850</td>
<td>0.919</td>
</tr>
<tr>
<td>median</td>
<td>0.718</td>
<td>0.698</td>
</tr>
<tr>
<td>corr(model, data)</td>
<td>0.955</td>
<td></td>
</tr>
<tr>
<td>π_{nn}^j</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.626</td>
<td>0.568</td>
</tr>
<tr>
<td>median</td>
<td>0.690</td>
<td>0.611</td>
</tr>
<tr>
<td>corr(model, data)</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td>$\pi_{ni}^j, i \neq n$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.0054</td>
<td>0.0058</td>
</tr>
<tr>
<td>median</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>corr(model, data)</td>
<td>0.902</td>
<td></td>
</tr>
</tbody>
</table>
Model Fit

![Model Fit Diagram](image)

- **China Pairs**: Red circles
- **Non-China Pairs**: Blue circles

di Giovanni, Levchenko, and Zhang

The Global Welfare Impact of China

05/2012
Welfare Impact of Balanced vs. Unbalanced Growth

![Graph showing the ratio of world frontier to actual and counterfactual growth rates, with markers for actual, unbalanced, and balanced counterfactual scenarios.](image-url)
Welfare Impact of Balanced vs. Unbalanced Growth

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gains from Balanced Growth in China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>11.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.04</td>
<td>22</td>
</tr>
<tr>
<td>East and South Asia</td>
<td>0.03</td>
<td>0.04</td>
<td>-0.05</td>
<td>0.09</td>
<td>12</td>
</tr>
<tr>
<td>East. Europe and Cent. Asia</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.06</td>
<td>11</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>-0.01</td>
<td>0.00</td>
<td>-0.06</td>
<td>0.04</td>
<td>15</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.07</td>
<td>0.02</td>
<td>6</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.02</td>
<td>8</td>
</tr>
<tr>
<td>Gains from Unbalanced Growth in China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>10.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>0.17</td>
<td>0.12</td>
<td>-0.07</td>
<td>0.77</td>
<td>22</td>
</tr>
<tr>
<td>East and South Asia</td>
<td>0.84</td>
<td>0.74</td>
<td>0.22</td>
<td>1.70</td>
<td>12</td>
</tr>
<tr>
<td>East. Europe and Cent. Asia</td>
<td>0.42</td>
<td>0.34</td>
<td>0.07</td>
<td>1.52</td>
<td>11</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>0.50</td>
<td>0.49</td>
<td>0.09</td>
<td>1.68</td>
<td>15</td>
</tr>
<tr>
<td>Middle East and North Africa</td>
<td>0.48</td>
<td>0.52</td>
<td>0.19</td>
<td>0.77</td>
<td>6</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>0.23</td>
<td>0.21</td>
<td>-0.03</td>
<td>0.57</td>
<td>8</td>
</tr>
</tbody>
</table>
Balanced vs. Unbalanced Growth
Intermediate Step: Fixed \(w \) and \(r \)

- True change in welfare between baseline and counterfactual:

\[
\Delta \left(\frac{w_n(T) + r_n(T)k_n}{P_n(T, w, r)} \right)
\]

- “Intermediate” Change in Welfare: hold \(w, r \) at their baseline values:

\[
\Delta \left(\frac{\overline{w}_n + \overline{r}_n k_n}{P_n(T, \overline{w}, \overline{r})} \right)
\]

- Isolate the multilateral similarity effect operating through the price levels – counterpart to the analytical results with fixed factor prices
Intermediate Step: Fixed w and r
China’s Comparative Advantage and the World Average
Unbalanced Gains and Technological Similarity
Robustness

 - D_n is a transfer; taken directly from the data

\[
\sum_{j=1}^{J+1} p^n_j Y^n_j = w_n L_n + r_n K_n - D_n.
\]

- Adding Agriculture and Mining sectors (14% of world trade)
- Directly estimated sectoral productivity for those countries where data are available (STAN: Austria, Belgium, Czech Republic, Denmark, Finland, France, Greece, Italy, Norway, Slovenia, and Sweden)
- Alternative unbalanced counterfactuals: no absolute productivity loss, exactly the same as the US.
Alternative Unbalanced Counterfactuals

The graph shows the ratio to the world frontier for various models and counterfactuals. The x-axis represents different values, while the y-axis shows the ratio to the world frontier. The graph includes markers for:

- **Actual T**: Represents the actual scenario.
- **Counterfactual T, Linear**: Linear counterfactual scenario.
- **Counterfactual T, No Tech. Regress**: Counterfactual without technical regress.
- **Counterfactual T, Same as US**: Counterfactual scenario similar to the US.

The markers are color-coded and labeled with numbers for identification.
China’s entry into world trade has been dramatic. Concerns: for developing countries with respect to trade integration; for developed countries with respect to technological change. This paper: analytical exploration and quantitative assessment of the global welfare impact of China’s integration and sectoral growth.

- Trade integration: global impact $\sim 0.13\%$, $\sim 0.23\%$ in Asia; winners (Malaysia, Kazakhstan, Japan, Australia/NZ) and losers (Textile and Apparel producers).
- Technological change: world is 40 times (!) better off with unbalanced productivity growth in China.