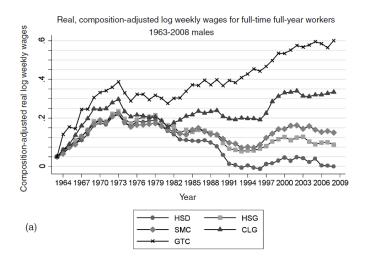

Offshoring and Directed Technical Change

D. Acemoglu, G. Gancia and F. Zilibotti


ESSIM 2012

The US Skill Premium

since the 1980s the US skill premium has increased relentlessly...

Trends in US Real Wages

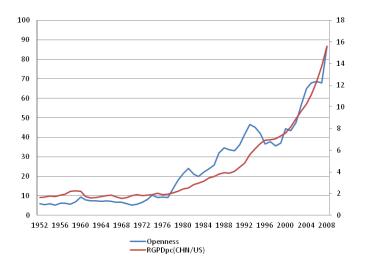
...and the real wage of unskilled workers has declined/stagnated

Conventional Wisdom

- two popular explanations:
 - Skill-Biased Technical Change
 - North-South trade
- some shortcomings:
 - SBCT is hard to reconcile with the fall in real wages
 - what triggered SBTC?
 - the volume of NS trade is considered too small
- the recent boom in offshoring to China/India has led to reconsider the role of trade
- this paper:
 - ▶ the *interaction* between offshoring and directed technical change can help to solve the above shortcomings

The Rise of Offshoring I

- offshoring:
 - sourcing of input goods or services from a foreign country
- not a new phenomenon:
 - ▶ already in the 1970s, IKEA established production facilities in Poland
 - ▶ already in the 1980s, Swissair had moved accounting tasks to India
- recent boom triggered by
 - economic transformation in East Asia
 - advances in ICT
- share of imported inputs in total purchases in US manufacturing:
 - ▶ 6% in 1980
 - ▶ 27% in 2006


Offshoring: an Example

- Apple's Video iPod:
 - sold at \$299 on the US market
 - \$163 is captured by American companies
 - ▶ \$132 by part makers in Asian countries, \$4 by Chinese workers
- iPod-related jobs by country and category in 2006:

	Production	Retail and other non-professional	Engineering and other professional	Total
U.S.	30	7.789	6,101	13,920
China	11,715	*	555	12,270
Philippines	4,500	*	250	4,750
Japan	700	*	1,140	1,840
Singapore	825	*	100	925
Korea	600	*	600	1,200
Thailand	750	*	50	800
Taiwan	70	*	270	340
Other	0	4,825*	300	5,125
Total	19,190	12,614	9,366	41,170

^{*}Includes all non-U.S. retail and other non-professionals.

The Rise of China

since the 1980s, spectacular growth of GDP and trade volumes

This Paper

• the *interplay*

offshoring ≒ technical progress

can explain both skill premia and the level of wages worldwide

- take the canonical model of DTC:
 - skilled and unskilled workers (H and L)
 - two sectors producing/using imperfectly substitutable "intermediates"
 - endogenous factor-augmenting technologies
- add offshoring:
 - two countries, West and East
 - the West can produce all intermediates
 - by paying a fixed cost, a Western firm can produce in East
- offshoring has:
 - ▶ an "efficiency" effect → tends to benefit all workers and foster growth
 - redistributional effects, which depends also on DTC

Preview of Results

- in our preferred parametrization, offshoring:
 - raises the skill premium in the short run
 - ▶ lowers the real wage of unskilled workers in West
 - triggers SBTC initially, but UBTC after a critical level
- the skill premium is a inverted-U function of offshoring:
 - highest for relatively low volumes of trade
- offshoring and innovation are complements in the long run, but substitute in the short run
 - offshoring may be Pareto improving if technical progress is fast enough
- including high-skill offshoring:
 - offshoring can increase skill premia both in East and West

Some Related Literature

- DTC and trade:
 - ► Acemoglu (1998), Acemoglu & Zilibotti (2001), Acemoglu (2003)
- offshoring and wages:
 - ► Samuleson (2004), Rodriguez-Clare (2011), di Giovanni et al. (2012)
 - Feenstra & Hanson (1999, 2003), Trefler & Zhu (2005), Antras & al. (2006), Grossman & Rossi-Hansberg (2008)
- offshoring and growth:
 - Helpman (1993), Dinopoulos & Segerstrom (2008), Branstetter & Saggi (2011)
- empirics:
 - Autor, Dorn & Hanson (2011), Liu & Trefler (2011), Hummels et al. (2011), Crinó (2010)

A Model of Offshoring and DTC

world output (numeraire):

$$Y = \left(Y_{l}^{rac{\epsilon-1}{\epsilon}} + Y_{h}^{rac{\epsilon-1}{\epsilon}}
ight)^{rac{\epsilon}{\epsilon-1}}$$
 ,

where:

$$Y_l = E_l \left[\int_0^{A_l} x_{l,i}^{\alpha} di \right]^{1/\alpha}$$
 and $Y_h = E_h \left[\int_0^{A_h} x_{h,i}^{\alpha} di \right]^{1/\alpha}$

- note:
 - \triangleright Y_l , Y_h are produced with sector-specific intermediates
 - A_I , A_h = state of technology in the two sectors
- key parameters:
 - $ightharpoonup \epsilon > 1$, elasticity of substitution between Y_l and Y_h
 - $\sigma = 1/(1-\alpha) > 1$, elasticity of substitution between intermediates

Production and Market Structure

- Y, Y_L and Y_H are produced by competitive firms: $\frac{P_h}{P_l} = \left[\frac{Y_l}{Y_h}\right]^{1/\epsilon}$
- intermediates are produced by monopolists, either in West or East:
 - linear technology using one type of labor:

$$x_{l,i} = l_i$$
 and $x_{h,i} = Zh_i$

prices = markup over wages:

$$p_{h,w} = w_{h,w}/Z\alpha$$

$$p_{l,w} = w_{l,w}/\alpha$$

$$p_{l,e} = w_{l,e}/\alpha$$

resource constraint:

$$\int_0^{A_I} l_i di \le L_w + L_e \quad \text{and} \quad \int_0^{A_h} h_i di \le H_w$$

note: $H_e = 0$ (for now)

Exogenous Offshoring and Technology

- assumptions:
 - West can produce all intermediates
 - lacktriangle a fraction $\kappa < ar{\kappa} \equiv rac{L_e}{L_e + L_w}$ of intermediates A_l can be offshored to East
- implications:
 - $\kappa < \bar{\kappa} \rightarrow w_{l,e} < w_{l,w}$
 - ▶ all offshorable goods will be produced in East
- symmetry and labor market clearing pin down production, $x_{h,w}$, $x_{l,w}$ and $x_{l,e}$
- West/East wage gap:

$$\frac{w_{l,w}}{w_{l,e}} = \left(\frac{L_e}{L_w} \frac{1-\kappa}{\kappa}\right)^{1-\alpha}$$

• falls with κ , $w_{l,e} \rightarrow w_{l,w}$ as $\kappa \rightarrow \bar{\kappa}$

Offshoring and World Efficiency

world output:

$$Y_I = A_I \hat{L},$$

where

$$\hat{L} \equiv \left[\kappa^{1-\alpha} L_e^{\alpha} + (1-\kappa)^{1-\alpha} L_w^{\alpha} \right]^{1/\alpha}$$

• efficiency effect $(\kappa < \bar{\kappa})$:

$$\frac{\partial \hat{L}}{\partial \kappa} \geq 0$$

$$\lim_{\kappa \to 0} \frac{\partial \hat{L}}{\partial \kappa} = \infty \quad \text{and} \quad \lim_{\kappa \to \bar{\kappa}} \frac{\partial \hat{L}}{\partial \kappa} = 0$$

- intuition:
 - moving production where labor is cheaper raises efficiency
 - ▶ the marginal effect is infinite when $w_{l,e} \simeq 0$ and vanishes at $w_{l,e} \simeq w_{l,w}$

Offshoring and the Skill Premium

skill premium in West:

$$\omega_w \equiv \frac{w_{h,w}}{w_{l,w}} = \left(\frac{ZA_h}{A_l}\right)^{1-1/\epsilon} \left(\frac{L_w}{1-\kappa}\right)^{1-\alpha} \left(\frac{H_w}{\hat{L}}\right)^{-1/\epsilon} \frac{1}{\hat{L}^{1-\alpha}}$$

- effects of κ :
 - ▶ labor-supply effect: fewer firms in the West \rightarrow less demand for $L_w \rightarrow$ higher skill premium
 - price effect: lower $P_I/P_h \rightarrow$ higher skill premium
 - efficiency effect: cost saving on intermediates $[0, \kappa]$ increases the demand for intermediates $[\kappa, 1] \rightarrow$ lower skill premium
- if $\sigma > \epsilon$:
 - ▶ the efficiency effect is dominated $o rac{\partial \omega_{\scriptscriptstyle W}}{\partial \kappa} > 0$
 - ightharpoonup otherwise, $\omega_{\it W}$ is U-shaped in κ

Offshoring and Real Wages

real wage of unskilled in West:

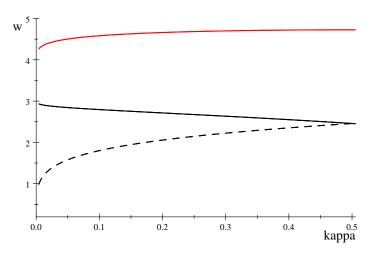
$$w_{l,w} = \alpha A_l P_l \hat{L}^{1-\alpha} \left(\frac{1-\kappa}{L_w}\right)^{1-\alpha}$$

- effects of κ :
 - ▶ price effect: lower P_I → lower $w_{I,w}$
 - efficiency effect: cost saving on intermediates $[0, \kappa]$ increases the real wage of all workers \rightarrow higher $w_{l,w}$
 - ▶ labor-supply effect: less firms in the West \rightarrow less demand for $L_w \rightarrow$ lower $w_{l,w}$
- iff $\omega_w \frac{H_w}{L_w} > \frac{\epsilon}{\sigma \epsilon}$:
 - lacktriangle the real wage of the unskilled must fall with κ
 - otherwise, $w_{l,w}$ is an inverted-U function of κ

Which is the Empirically Relevant Case?

conventional estimates are:

$$\epsilon \in [1.5, 2]$$
 $\sigma > 4$


- under this parametrization, offshoring always raises the skill premium
- moreover, the condition:

$$\omega_w \frac{H_w}{L_w} > \frac{\epsilon}{\sigma - \epsilon}$$

is likely to be satisfied too

- offshoring lowers the real wage of unskilled workers
- \bullet focus mostly on the case $\epsilon < \sigma$

Offshoring and Wages

Red: $w_{h,w}$, Dashed: East, $\epsilon=1.6$, $\sigma=5$

Comparison with Grossman & Rossi-Hansberg (2008)

- GRH (2008) assume:
 - no substitutability across "tasks"
 - foreign wage fixed
 - offshoring requires a per-unit cost which varies across tasks
- main results:
 - fall in offshoring costs increases the "effective productivity" of the offshored factor
 - wages for the offshored factor may increase
- our model incorporates the productivity effect, but raises two caveats:
 - ▶ offshoring increases wages in East → the productivity effect may get weaker
 - allowing for substitutability shows that the productivity effect may well be dominated

Endogenous Technical Change and Offshoring

- both innovation and offshoring require a setup investment
 - cost of innovation: μ units of Y
 - cost of offshoring: f units of Y
- value of firms:

$$\begin{array}{rcl} r V_h & = & \pi_h + \dot{V}_h \\ r V_{l,w} & = & \max \left\{ \pi_{l,w} + \dot{V}_l, \ r \left(V_l^o - f \right) \right\} \\ r V_{l,e}^o & = & \max \{ \pi_{l,w}, \pi_{l,e} \} + \dot{V}_l^o \end{array}$$

Free-Entry conditions:

$$\begin{array}{cccc} V_{l,e} - V_{l,w} & \leq & f \\ V_{l,w} & \leq & \mu \\ V_h & \leq & \mu \end{array}$$

BGP: Offshoring

- in a BGP, all FE conditions holds as equalities
- combining them, offshoring goes on until:

$$\pi_{\mathit{I,e}} = \left(rac{f}{\mu} + 1
ight)\pi_{\mathit{h,w}}$$

- ▶ i.e, until the profit difference compensates the additional cost
- solving for offshoring:

$$\kappa = \left[1 + \left(f/\mu + 1\right)^{1/\alpha} L_w/L_e\right]^{-1}$$

- increases with the relative size of East, L_e/L_w
- decreases with its cost, f
- lacktriangleright increases with the cost of innovation, μ

BGP: Offshoring and Technical Change

relative value of innovations:

$$\frac{V_{h,w}}{V_{l,w}} = \frac{P_h}{P_l} \frac{ZH_w}{\hat{L}^{1-\alpha} \left[L_w / (1-\kappa)\right]^{\alpha}}$$

- offshoring:
 - ▶ raises $P_h/P_l = [Y_l/Y_h]^{1/\epsilon} \rightarrow SBTC (\uparrow A_h/A_l)$
 - ▶ increases the market for unskilled technologies \rightarrow UBTC ($\downarrow A_h/A_l$)
 - which effect dominates depends on the level of offshoring
- imposing $V_{l,w} = V_{h,w}$:

$$\frac{A_h}{A_l} = \frac{(ZH_w)^{\epsilon-1} \hat{L}^{1-\epsilon+\epsilon\alpha}}{[L_w/(1-\kappa)]^{\epsilon\alpha}}$$

- if $\sigma > \epsilon$:
 - ▶ at $\kappa \to 0$ $\frac{\partial \hat{L}}{\partial \kappa} \to \infty$, strong price effect \to SBTC
 - at $\kappa \to \bar{\kappa}$, $\frac{\partial \hat{L}}{\partial \kappa} \to 0$, no price effect $\to \mathsf{UBTC}$

Comparison with Acemoglu (2002)

• in models of DTC, the relative value of innovations is:

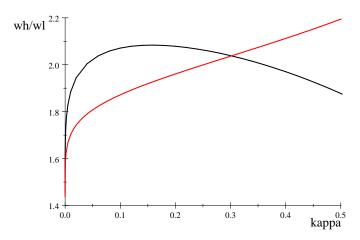
$$\frac{V_h}{V_l} = \frac{P_h}{P_l} \frac{H}{L}$$

- effect of NS trade:
 - without IPR protection in S, $\frac{P_h}{P_l}$ increases in N \rightarrow SBTC (price effect)
 - with IPR protection in S, $\frac{H}{L}$ falls \rightarrow UBTC (market size effect)
- in our model the relative strength of the two effects depends on the level of offshoring
 - endogenous switch from SBTC to UBTC

BGP: Skill Premium

Skill Premium:

$$\omega_{w} = Z^{\epsilon-1} H_{w}^{\epsilon-2} \hat{L}^{1-\epsilon+\epsilon\alpha} \left(\frac{L_{w}}{1-\kappa} \right)^{1-\epsilon\alpha}$$


- effect of offshoring:
 - relationship between ω_w and κ is inverted-U if

$$\frac{\sigma}{\sigma - 1} = \frac{1}{\alpha} < \epsilon < \frac{1}{1 - \alpha} = \sigma$$

- ▶ plausible: if $\sigma = 5$ → the condition is satisfied for $\epsilon \in (1.25, 5)$
- intuition:
 - given (A_I, A_h) , offshoring increases ω_w
 - for low $\kappa \to SBTC$, ω_w increases even further
 - ▶ for high $\kappa \to \mathsf{UBTC}$, ω_w decreases

Offshoring and the Skill Premium

Red: constant (A_h,A_l) ; $\epsilon=1.6$, $\sigma=5$

• SBTC: large amplification effect for low levels of offshoring

Offshoring and Economic Growth

• in the BGP:

$$r = \frac{\pi_{l,e} - \pi_{l,w}}{f} = \frac{\pi_{l,w}}{\mu} = \frac{\pi_{h,w}}{\mu}$$

solving:

$$r = \left\{ \left[\hat{L}^{1-\alpha} \left(\frac{L_w}{1-\kappa} \right)^{\alpha} \right]^{\epsilon-1} + (ZH)^{\epsilon-1} \right\}^{\frac{1}{\epsilon-1}} \frac{1-\alpha}{\mu}$$

offshoring increases profitability and overall growth


Transitional Dynamics

dynamic system (log utility):

$$\begin{split} \frac{\dot{C}_t}{C_t} &= r_t - \rho \\ \left(\dot{A}_{h,t} + \dot{A}_{l,t} \right) \mu + \left(\kappa \dot{A}_{l,t} + A_{l,t} \dot{\kappa}_t \right) f = Y_t - C_t \\ r_t &= \max \left\{ \frac{\pi_{l,e,t} - \pi_{l,w,t}}{f}, \frac{\pi_{l,w,t}}{\mu}, \frac{\pi_{h,w,t}}{\mu} \right\} \end{split}$$

- an unexpected fall in offshoring costs f triggers a 2-stage transition:
 - stage 1: offshoring only $(\dot{\kappa} > 0, \dot{A}_l = \dot{A}_h = 0)$
 - ▶ stage 2: offshoring + SBTC (low κ) or + UBTC (high κ)
- offshoring and innovation:
 - are complements in the long run, but substitutes in the short run

Transitional Dynamics: Wages

Red: $w_{h,w}$, Dashed: East, $\epsilon=1.6$, $\sigma=5$

Welfare Analysis I

- consider an agent i with wage $w_{i,t}$ and assets $a_{i,0}$
 - integrating the Euler equation at t = 0:

$$\begin{array}{rcl} U_{i,0} & = & \frac{\ln C_{i,0}}{\rho} + \int_0^\infty \mathrm{e}^{-\rho t} \left(\int_0^t r_s ds - \rho t \right) dt \\ \\ C_{i,0} & = & \rho \left[\int_0^\infty w_{i,t} \exp \left(- \int_0^t r_s ds \right) dt + a_{i,0} \right] \end{array}$$

- welfare effects of offshoring:
 - higher growth, $[r_t]_{t=0}^{\infty}$
 - ▶ affects the present value of wages, $[w_{i,t}, r_t]_{t=0}^{\infty}$
 - \triangleright capital loss: $a_{i,0}$ falls because during the transition:

$$V_{l,w} \leq \mu$$

 $V_h \leq \mu$

new effect: offshoring reduces (temporarily) the value of existing firms

Welfare Analysis II

- some preliminary simulations
 - basic parameters:

$$H_w=L_w=L_e$$
, $\epsilon=1.6$, $Z=1.8$, $ho=0.04$, $a_{i,0}\propto w_{i,0}$

• offshoring shock: $\kappa_0 = 0.02 \rightarrow \kappa_T = 0.05$

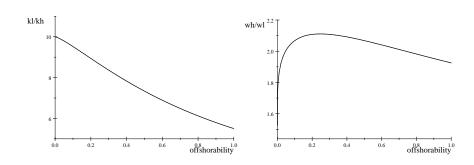
	$\alpha = 0.8$	$\alpha = 0.7$
g	$\Delta\omega=+4.6\%$	$\Delta\omega=+4.7\%$
1%	$\Delta c_{I}^{st} = -1\%$; $\Delta c_{h}^{st} = +2\%$	$\Delta c_{l}^{*} = -0.27\%$, $\Delta c_{h}^{*} = +3\%$
2%	$\Delta c_{I}^{*} = -0.19\%; \Delta c_{h}^{*} = +3\%$	$\Delta c_I^* = +0.6\%, \Delta c_h^* = +4\%$

- who gains from offshoring?
 - skilled workers in West, East (big time)
 - unskilled in West only if growth is high enough
 - agents with low assets

High-Skill Offshoring I

- new assumptions:
 - ▶ East is endowed with H_e units of skilled labor and $H_w/L_w > H_e/L_e$
 - cost of offshoring is identical
- free entry in BGP imply:

$$\frac{\pi_{\textit{I},e}}{\pi_{\textit{I},w}} = (1 + \textit{f}/\mu) = \frac{\pi_{\textit{h},e}}{\pi_{\textit{h},w}}$$


- but then the wage gap for both workers must be the same
- conditional FPE:

$$\frac{w_{l,w}}{w_{l,e}} = \frac{w_{h,w}}{w_{h,e}}$$

same skill-premium in East and West, despite complete specialization

High-Skill Offshoring II

- ullet to equalize skill premia, there must be more offshoring in the L sector
- effects on wages:
 - qualitatively, same results as before
 - ▶ initially, offshoring will increase skill premia worldwide

• offshorability: $[f/\mu + 1]^{-1} = \lambda \in [0, 1]$

Conclusions

- offshoring and technical change are key determinants of wages
 - we argue that their interaction is important in explaining wage dynamics
- in our preferred parametrization, offshoring:
 - lowers the real wage of unskilled workers in West
 - ▶ induces SBTC initially, then UBTC
 - crowds out innovation initially, but foster growth in the long run
- unlike trade integration:
 - offshoring increases the skill premium for low volumes of trade
 - offshoring may increase skill premia in all countries
- welfare and redistributional implications vary with the level of offshoring and with asset holdings
 - all workers benefit if growth is sufficiently high