Discussion of: **Unemployment Inertia and the Fiscal Multiplier**

Andrea Caggese (UPF & Barcelona GSE)

ESSIM 2012

May 23, 2012

Labour market frictions, wage rigidities, and the fiscal multiplier at the zero lower bound.

- Cash m is storable and is the numeraire.
- p_t is the price of output in terms of the numeraire.
- ▶ Households supply labour inelastically. Full employment is normalised 1.
- $lacktriangleright n_t \leq 1$ operating firms employ workers and produce z_t

$$y_t = z_t n_t$$

▶ Unemployment $u_t = 1 - n_t$

Labour market frictions

Free entry of risk neutral entrepreneurs. Vacancies v satisfies:

$$k = \phi\left(\frac{v_t}{u_t}\right) J_t$$

Where $\phi\left(\frac{v_t}{u_t}\right)$ is the probability to fill the vacancy J is the market value of a firm:

$$J_t = eta E_t \left[rac{u'(c_{t+1})}{u'(c_t)} \left(rac{\widetilde{p_t z_t - \widetilde{w}}}{p_{t+1}} + (1 - \lambda) J_{t+1}
ight)
ight]$$

Nominal wages are assumed to be rigid: $\widetilde{w}_t = \widetilde{w}$

Money demand

Cash in advance constraint (with associated multiplier μ):

$$x_{t+1} = M_t - p_t c_t \ge 0$$

If the equilibrium interest rate on bonds falls to zero, $\mu=0$ and the household hoards "excess" cash, $x_{t+1}>0$.

Aggregate equilibrium:

$$\overbrace{x_{t} + w_{t-1}}^{m} = p_{t}y_{t} + x_{t+1}$$

$$p_{t} = \frac{m - x_{t+1}}{y_{t}}$$

Experiment

 z_t is constant and equal to 1 until t=0. At time t=0 agents learn that $z_1=0.93$. $z_t=1$ for $t\geq 2$

$$k = \phi\left(rac{v_t}{u_t}
ight)J_t$$
 $J_t = eta E_t \left[rac{u'(c_{t+1})}{u'(c_t)}\left(rac{\widetilde{p_t z_t - \widehat{w}}}{p_{t+1}} + (1-\lambda)J_{t+1}
ight)
ight]$
 $p_0 = rac{m-x_1}{y_0}$

▶ In normal times $x_1 = 0$. News about z_1 reduces J_0 , because \widetilde{w} fixed $\Rightarrow v_0, n_0$ and y_0 falls. This increases p_0 and reduces real wages (dampening).

$$k = \phi\left(rac{v_t}{u_t}
ight)J_t$$
 $J_t = eta E_t \left[rac{u'(c_{t+1})}{u'(c_t)}\left(rac{\widetilde{p_t z_t - \widehat{w}}}{p_{t+1}} + (1-\lambda)J_{t+1}
ight)
ight]$
 $p_0 = rac{m-x_1}{y_0}$

- ▶ In normal times $x_1 = 0$. News about z_1 reduces J_0 , because \widetilde{w} fixed $\Rightarrow v_0, n_0$ and y_0 falls. This increases p_0 and reduces real wages (dampening).
- 1. At the zero lower bound, $x_1 > 0 \rightarrow p_0$ falls. J_0 and n_0 fall further.

$$k = \phi\left(rac{v_t}{u_t}
ight)J_t$$
 $J_t = eta E_t \left[rac{u'(c_{t+1})}{u'(c_t)}\left(rac{\stackrel{ ext{dividends}}{p_t z_t - \widehat{w}}}{p_{t+1}} + (1-\lambda)J_{t+1}
ight)
ight]$
 $p_0 = rac{m-x_1}{y_0}$

- In normal times $x_1 = 0$. News about z_1 reduces J_0 , because \widetilde{w} fixed $\Rightarrow v_0, n_0$ and y_0 falls. This increases p_0 and reduces real wages (dampening).
- 1. At the zero lower bound, $x_1 > 0 \rightarrow p_0$ falls. J_0 and n_0 fall further.
- 2. Household expect persistent future unemployment, want to reduce c_0 and increase x_1 further. (Amplification!)

$$k = \phi\left(rac{v_t}{u_t}
ight)J_t$$
 $J_t = eta E_t \left[rac{u'(c_{t+1})}{u'(c_t)}\left(rac{\widetilde{p_t z_t - \widehat{w}}}{p_{t+1}} + (1-\lambda)J_{t+1}
ight)
ight]$
 $p_0 = rac{m-x_1}{y_0}$

- In normal times $x_1 = 0$. News about z_1 reduces J_0 , because \widetilde{w} fixed $\Rightarrow v_0, n_0$ and y_0 falls. This increases p_0 and reduces real wages (dampening).
- 1. At the zero lower bound, $x_1 > 0 \rightarrow p_0$ falls. J_0 and n_0 fall further.
- 2. Household expect persistent future unemployment, want to reduce c_0 and increase x_1 further. (Amplification!)
- An increase in government spending increases p₀ and breaks this vicious circle.

Comments

- Not the first paper to argue that the fiscal multiplier is large at the zero lower bound.
 - New mechanism.
 - Highlights and interesting amplification effect.
- Quantitative result, but very stylised model.
 - Dramatic news!!! (Large drop in productivity)
 - How much unemployment would wage rigidity alone create? (i.e. you do not allow for cash, only bonds, and the interest rate can be negative).
 - What about rigidity of real wages?

Comments

- ▶ If we interpret this shock as a recession, How realistic are dynamics? (Vacancies, Real wages,...).
- Story about saving, but there is no unemployment risk in the model, and no aggregate uncertainty except for the one time shock.
- Quantitative result in a more realistic setting? (Aggregate uncertainty and realistic wealth dynamics)

8 / 10

Comments

For example, suppose households are ex-ante identical but face unemployment risk—distribution of wealth.

- Some households have very low wealth because unemployed (binding borrowing constraint, consume unemployment benefit)
- ► Some households are rich because have been employed for long time and accumulated precautionary assets.

The shock hits, then:

- ▶ Poor households are already consuming the minimum.
- Rich households should be less sensitive to the aggregate shock.

Smaller effect?

Small technical points

- ▶ How do you solve for J after the shock? Solution is more complicated than in the paper because now J depends on the evolution of future $U(c_{t+s})$, $s \ge 0$
- ▶ Do you need the superscript for *q*?

