# Great Moderation or Great Mistake: Can overconfidence in low macro-risk explain the boom in asset prices?

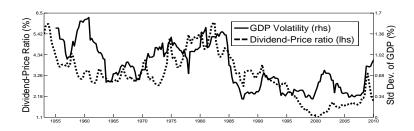
Tobias Broer, IIES Stockholm University and CEPR Afroditi Kero, University of Cyprus

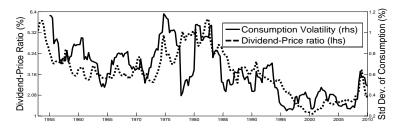
**ESSIM 2012** 

Motivation

1. Macroeconomic Volatility and Asset Prices

# Macro-volatility and US PD ratio





 Structural Break in Macro-Volatility noticed by Kim and Nelson (1999), McConnell and Perez-Quiros (1997, 2000)

- Structural Break in Macro-Volatility noticed by Kim and Nelson (1999), McConnell and Perez-Quiros (1997, 2000)
- But: uncertainty about origin and persistence of GM

- Structural Break in Macro-Volatility noticed by Kim and Nelson (1999), McConnell and Perez-Quiros (1997, 2000)
- But: uncertainty about origin and persistence of GM
  - Academic literature: "Good Luck or Good Policy", better inventory management, globalisation, financial liberalisation or development, etc.

- Structural Break in Macro-Volatility noticed by Kim and Nelson (1999), McConnell and Perez-Quiros (1997, 2000)
- But: uncertainty about origin and persistence of GM
  - Academic literature: "Good Luck or Good Policy", better inventory management, globalisation, financial liberalisation or development, etc.
  - 2. Market Participants:

"The ongoing deterioration in surprise risk should be seen as one of the arguments behind the declining risk premium. Whether this is due to a more effective central bank policy, a major improvement in the forecast ability of economic observers around the globe, sheer luck or maybe a mix of all three factors can't finally be answered."

Unicredit (2006)

3. "Overconfidence" and the Great Mistake

# 3. "Overconfidence" and the Great Mistake

"But what matters is how market participants responded to these benign conditions. They are faced with what is, in essence, a complex signal-extraction problem. But whereas many such problems in economics involve learning about first moments of a distribution, this involves making inferences about higher moments. The longer such a period of low volatility lasts, the more reasonable it is to assume that it is permanent. But as tail events are necessarily rarely observed, there is always going to be a danger of underestimating tail risks."

Charles Bean, European Economic Association, 25 August 2009

# 3. "Overconfidence" and the Great Mistake

"From the Great Moderation to the Great Conflagration: The decline in volatility led the financial institutions to underestimate the amount of risk they faced, thus essentially (though unintentionally) reintroducing a large measure of volatility into the market."

Thomas F. Cooley, Forbes.com, 11 December 2008

The stress-tests required by the authorities over the past few years were too heavily influenced by behavior during the Golden Decade. [...] The sample in question was, with hindsight, most unusual from a macroeconomic perspective. The distribution of outcomes for both macroeconomic and financial variables during the Golden Decade differed very materially from historical distributions."

Andrew Haldane, Bank of England, 13 February 2009



#### Motivation

- Late 80s / early 90s
  - Abrupt fall in macro-volatility (to  $\approx 40-45\%$  of pre-GM StDev) followed by strong gradual rise in PD ratio (75 -200%)
  - GM noticed by academics and market-participants, but uncertainty about its origin and persistence
- Recent crisis
  - Abrupt rise in volatility and fall in PD ratio
  - Policymakers and academics blame overconfidence in benign macro-environment for overvaluation in asset prices

 Adds Bayesian learning about the persistence of volatility regimes to standard asset pricing model, to analyse a scenario similar to US post-WW II history.

- Adds Bayesian learning about the persistence of volatility regimes to standard asset pricing model, to analyse a scenario similar to US post-WW II history.
- Research Questions
  - 1. Can learning significantly increase "confidence" in the Great Moderation?

- Adds Bayesian learning about the persistence of volatility regimes to standard asset pricing model, to analyse a scenario similar to US post-WW II history.
- Research Questions
  - 1. Can learning significantly increase "confidence" in the Great Moderation?
  - 2. How large is the resulting boom in asset prices relative to that observed in the data?

- Adds Bayesian learning about the persistence of volatility regimes to standard asset pricing model, to analyse a scenario similar to US post-WW II history.
- Research Questions
  - 1. Can learning significantly increase "confidence" in the Great Moderation?
  - 2. How large is the resulting boom in asset prices relative to that observed in the data?
  - 3. Is there "overvaluation" relative to full information / no learning?

 Learning about the great moderation can explain a boom and bust in asset prices of 30-80 percent

- Learning about the great moderation can explain a boom and bust in asset prices of 30-80 percent
- 50 90 percent of this is due to overconfidence, as effect of Great Moderation on full information prices is small

- Learning about the great moderation can explain a boom and bust in asset prices of 30-80 percent
- 50 90 percent of this is due to overconfidence, as effect of Great Moderation on full information prices is small
- Non-linearity of prices in transition probabilities gives special role to uncertainty about persistence

1. Asset prices with learning

- 1. Asset prices with learning
  - ... about mean growth: Adam et al (2010)

- 1. Asset prices with learning
  - ... about mean growth: Adam et al (2010)
  - ... about volatility: Branch et al (2010)

- 1. Asset prices with learning
  - ... about mean growth: Adam et al (2010)
  - ... about volatility: Branch et al (2010)
  - ... about different regimes:

#### 1. Asset prices with learning

- ... about mean growth: Adam et al (2010)
- ... about volatility: Branch et al (2010)
- ... about different regimes:
  - Zeira (1999): Unknown length of high prod. regime
  - Cogley et al (2008b): Post-depression pessimism about transition probability to low-growth regime
  - Boz et al (2010): Unknown persistence of pre-crisis high-leverage regime

- 1. Asset prices with learning
  - ... about mean growth: Adam et al (2010)
  - ... about volatility: Branch et al (2010)
  - ... about different regimes:
    - Zeira (1999): Unknown length of high prod. regime
    - Cogley et al (2008b): Post-depression pessimism about transition probability to low-growth regime
    - Boz et al (2010): Unknown persistence of pre-crisis high-leverage regime
- Lettau et al (2008 hf LLW) "The Declining Equity Premium: What Role Does Macroeconomic Risk Play?"
  - Switch to a regime of low volatility as in US leads to asset price boom only if it is (essentially) permanent
  - Uncertainty about current regime (posterior probabilities estimated in statistical model): boom muted, rel to full info



This paper

# This paper

 Bayesian learning about persistence of volatility regimes in LLW asset pricing model

1. Model



- 1. Model
- 2. Quantitative results

- 1. Model
- 2. Quantitative results
- 3. Sensitivity analysis

An asset pricing model with volatility regimes

# An asset pricing model with volatility regimes

• Infinitely-lived representative agent

# An asset pricing model with volatility regimes

- Infinitely-lived representative agent
- Preferences over  $\{C_t\}_{t=0}^{\infty}$ :

$$U_t = \left[ (1 - \beta) C_t^{\frac{1 - \gamma}{\alpha}} + \beta (E_t U_{t+1}^{1 - \gamma})^{\frac{1}{\alpha}} \right]^{\frac{\alpha}{1 - \gamma}}$$

with 
$$\alpha = \frac{1-\gamma}{1-\frac{1}{\imath b}}$$
 and  $\psi$  IES

# $HH\ problem$

$$egin{array}{l} \max \limits_{C_t,S_t} \ U_t \ s.t. \ S_t P_t + C_t = S_{t-1}(P_t + D_t) \ S_0 \ \emph{given} \end{array}$$

#### First order condition

$$P_t = E_t[M_{t+1}(P_{t+1} + D_{t+1})]$$
 (1)

$$\Rightarrow p_{t} \equiv \frac{P_{t}}{D_{t}} = E_{t} [M_{t+1}(p_{t+1}+1) \frac{D_{t+1}}{D_{t}}]$$

$$with M_{t+1} = (\beta (\frac{C_{t+1}}{C_{t}})^{-\frac{1}{\psi}})^{\alpha} R_{w,t+1}^{\alpha-1}$$
(2)

# Consumption growth process with volatility regimes

$$\Delta \ln C_t = \bar{g} + \varepsilon_t$$

$$\varepsilon_t \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 \in \{\sigma_I^2, \sigma_h^2\}$$

# Consumption growth process with volatility regimes

$$\Delta \ln C_t = \bar{g} + \varepsilon_t$$

$$\varepsilon_t \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 \in \{\sigma_L^2, \sigma_h^2\}$$

• 
$$\Pr(\sigma_{t+1}^2 = \sigma_i^2 \mid \sigma_t^2 = \sigma_j^2)$$
 given by

$$\mathbf{F} = \left[ \begin{array}{cc} F_{||} & 1 - F_{||} \\ 1 - F_{hh} & F_{hh} \end{array} \right]$$

# "Leveraged" Dividend Process

As in Campbell 1986, Abel 1999, LLW 2008, dividend growth is (potentially) more volatile than consumption

$$\Delta InD_t = \overline{g} + \lambda \varepsilon_t \quad \lambda \ge 1$$

• Given random walk assumption,  $p_t$  depends only on volatility regime

$$p_{i} = p(\sigma_{t}^{2} = \sigma_{i}^{2})$$

$$= F_{ii}E_{\varepsilon|\sigma_{i}^{2}}\varphi(p'_{i}, \varepsilon') + F_{ij}E_{\varepsilon|\sigma_{j}^{2}}\varphi(p'_{j}, \varepsilon') \quad i, j \in \{I, h\}$$
(3)

ullet Given random walk assumption,  $p_t$  depends only on volatility regime

$$p_{i} = p(\sigma_{t}^{2} = \sigma_{i}^{2})$$

$$= F_{ii}E_{\varepsilon|\sigma_{i}^{2}}\varphi(p'_{i}, \varepsilon') + F_{ij}E_{\varepsilon|\sigma_{j}^{2}}\varphi(p'_{j}, \varepsilon') \quad i, j \in \{l, h\}$$
(3)

Given log-normality, conditional expectations have closed form

ullet Given random walk assumption,  $p_t$  depends only on volatility regime

$$p_{i} = p(\sigma_{t}^{2} = \sigma_{i}^{2})$$

$$= F_{ii}E_{\varepsilon|\sigma_{i}^{2}}\varphi(p'_{i}, \varepsilon') + F_{ij}E_{\varepsilon|\sigma_{i}^{2}}\varphi(p'_{j}, \varepsilon') \quad i, j \in \{l, h\}$$
(3)

- Given log-normality, conditional expectations have closed form
- Can calculate  $p_h, p_l$  as fixed points to (3)

• Assume agents know 2-regime nature of environment, and observe realised volatility  $\sigma_t^2$ 

- Assume agents know 2-regime nature of environment, and observe realised volatility  $\sigma_t^2$
- 2 Bayesian learning schemes:

- Assume agents know 2-regime nature of environment, and observe realised volatility  $\sigma_t^2$
- 2 Bayesian learning schemes:
  - 1. ... about transition probabilities  $F_{hh}, F_{ll} \in [0,1]$  (Cogley et al 2008a,b)

- Assume agents know 2-regime nature of environment, and observe realised volatility  $\sigma_t^2$
- 2 Bayesian learning schemes:
  - 1. ... about transition probabilities  $F_{hh}, F_{ll} \in [0,1]$  (Cogley et al 2008a,b)
    - Beta prior distribution for unknown  $\{F_{hh}, F_{ll}\}$
    - Posterior distribution: function of history  $\sigma_t^2$ , t = 1, ..., T

- Assume agents know 2-regime nature of environment, and observe realised volatility  $\sigma_t^2$
- 2 Bayesian learning schemes:
  - 1. ... about transition probabilities  $F_{hh}, F_{ll} \in [0,1]$  (Cogley et al 2008a,b)
    - Beta prior distribution for unknown  $\{F_{hh}, F_{ll}\}$
    - Posterior distribution: function of history  $\sigma_t^2$ , t = 1, ..., T
  - 2. ... about possible structural break in volatility  $F_{II} \in \{\widehat{F}_{II}, 1\}$

- Assume agents know 2-regime nature of environment, and observe realised volatility  $\sigma_t^2$
- 2 Bayesian learning schemes:
  - 1. ... about transition probabilities  $F_{hh}, F_{ll} \in [0,1]$  (Cogley et al 2008a,b)
    - Beta prior distribution for unknown  $\{F_{hh}, F_{ll}\}$
    - Posterior distribution: function of history  $\sigma_t^2$ , t = 1, ..., T
  - 2. ... about possible structural break in volatility  $F_{II} \in \{\widehat{F_{II}}, 1\}$ 
    - $F_{hh} = \widehat{F_{hh}}, F_{II} = \widehat{F_{II}}$  known
    - But small (conditional) prior probability  $\hat{p}$  of structural break to permanent  $\sigma_l^2$

### 1. Learning about Transition Probabilities

#### Beta Prior, Likelihood and Posterior

• Beta distribution on [0,1] summarises prior information  $\Sigma^0$ 

$$f(F_{hh} \mid \Sigma^{0}) = beta(n_{0}^{hh}, n_{0}^{hl}) \propto F_{hh}^{n_{0}^{hh}} (1 - F_{hh})^{n_{0}^{hl}}$$
  
 $f(F_{II} \mid \Sigma^{0}) = beta(n_{0}^{II}, n_{0}^{Ih}) \propto F_{II}^{n_{0}^{II}} (1 - F_{II})^{n_{0}^{Ih}}$ 

#### Beta Prior, Likelihood and Posterior

• Beta distribution on [0,1] summarises prior information  $\Sigma^0$ 

$$f(F_{hh} \mid \Sigma^{0}) = beta(n_{0}^{hh}, n_{0}^{hl}) \propto F_{hh}^{n_{0}^{hh}} (1 - F_{hh})^{n_{0}^{hl}}$$
  
 $f(F_{II} \mid \Sigma^{0}) = beta(n_{0}^{II}, n_{0}^{Ih}) \propto F_{II}^{n_{0}^{II}} (1 - F_{II})^{n_{0}^{Ih}}$ 

Likelihood of observed transitions

$$L(\Sigma^t \mid F_{hh}) \propto F_{hh}^{n_t^{hh}} (1 - F_{hh})^{n_t^{hl}}$$
$$L(\Sigma^t \mid F_{ll}) \propto F_{ll}^{n_t^{ll}} (1 - F_{ll})^{n_t^{lh}}$$

#### Beta Prior, Likelihood and Posterior

• Beta distribution on [0,1] summarises prior information  $\Sigma^0$ 

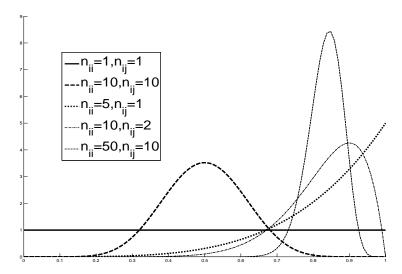
$$f(F_{hh} \mid \Sigma^{0}) = beta(n_{0}^{hh}, n_{0}^{hl}) \propto F_{hh}^{n_{0}^{hh}} (1 - F_{hh})^{n_{0}^{hl}}$$
  
 $f(F_{II} \mid \Sigma^{0}) = beta(n_{0}^{II}, n_{0}^{Ih}) \propto F_{II}^{n_{0}^{II}} (1 - F_{II})^{n_{0}^{Ih}}$ 

Likelihood of observed transitions

$$L(\Sigma^t \mid F_{hh}) \propto F_{hh}^{n_t^{hh}} (1 - F_{hh})^{n_t^{hl}}$$
  
$$L(\Sigma^t \mid F_{ll}) \propto F_{ll}^{n_t^{ll}} (1 - F_{ll})^{n_t^{lh}}$$

• Yields beta posterior with updated "counters"  $\hat{n}_t^{ij} = n_t^{ij} + n_0^{ij}$ .

# pdf of Beta Distribution



$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF$$
 (4)

•  $Prob(\sigma_{t+1}^2=\sigma_i^2|\Sigma_t)=\int~F_{ij}~f(F|\Sigma_t)~dF$ , when  $\sigma_t^2=\sigma_j^2$  so

$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF$$
 (4)

Bayesian Learning:

$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF$$
 (4)

- Bayesian Learning:
  - $f(F|\Sigma_s)$ , s = t, t + 1, ... is not time-invariant

$$p_{t} = \int F E_{\varepsilon|\sigma_{i}^{2},F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_{t}) dF \qquad (4)$$

- Bayesian Learning:
  - $f(F|\Sigma_s), s = t, t + 1, ...$  is not time-invariant
  - $Prob(\sigma_s^2|\Sigma_{s-1})$  is not a Markov Process

$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF$$
 (4)

- Bayesian Learning:
  - $f(F|\Sigma_s), s = t, t + 1, ...$  is not time-invariant
  - $Prob(\sigma_s^2|\Sigma_{s-1})$  is not a Markov Process
  - But  $Prob(\sigma_s^2, n_s^{hh}, n_s^{hl}, n_s^{ll}, n_s^{lh} | \Sigma_s)$  is a (non-homog.) MP

$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF$$
 (4)

- Bayesian Learning:
  - $f(F|\Sigma_s), s = t, t + 1, ...$  is not time-invariant
  - $Prob(\sigma_s^2|\Sigma_{s-1})$  is not a Markov Process
  - But  $Prob(\sigma_s^2, n_s^{hh}, n_s^{hl}, n_s^{ll}, n_s^{lh} | \Sigma_s)$  is a (non-homog.) MP
  - State space increases with s

$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF \qquad (4)$$

- Bayesian Learning:
  - $f(F|\Sigma_s), s = t, t + 1, ...$  is not time-invariant
  - $Prob(\sigma_s^2|\Sigma_{s-1})$  is not a Markov Process
  - But  $Prob(\sigma_s^2, n_s^{hh}, n_s^{hl}, n_s^{ll}, n_s^{lh} | \Sigma_s)$  is a (non-homog.) MP
  - State space increases with s
- Here: "Anticipated Utility" approach (Cogley and Sargent 2008a)

$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF$$
 (4)

- Bayesian Learning:
  - $f(F|\Sigma_s)$ , s = t, t + 1, ... is not time-invariant
  - $Prob(\sigma_s^2|\Sigma_{s-1})$  is not a Markov Process
  - But  $Prob(\sigma_s^2, n_s^{hh}, n_s^{hl}, n_s^{ll}, n_s^{lh} | \Sigma_s)$  is a (non-homog.) MP
  - State space increases with s
- Here: "Anticipated Utility" approach (Cogley and Sargent 2008a)
  - Agents update  $f(F|\Sigma_t)$  in line with history

$$p_t = \int F E_{\varepsilon|\sigma_i^2,F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_t) dF \qquad (4)$$

- Bayesian Learning:
  - $f(F|\Sigma_s)$ , s=t, t+1,... is not time-invariant
  - $Prob(\sigma_s^2|\Sigma_{s-1})$  is not a Markov Process
  - But  $Prob(\sigma_s^2, n_s^{hh}, n_s^{hl}, n_s^{ll}, n_s^{lh} | \Sigma_s)$  is a (non-homog.) MP
  - State space increases with s
- Here: "Anticipated Utility" approach (Cogley and Sargent 2008a)
  - Agents update  $f(F|\Sigma_t)$  in line with history
  - Take  $f(F|\Sigma_s) = f(F|\Sigma_t), s = t + 1, t + 2, ...$

$$p_{t} = \int F E_{\varepsilon|\sigma_{i}^{2},F} \varphi(p_{t+1},\varepsilon') f(F|\Sigma_{t}) dF \qquad (4)$$

- Bayesian Learning:
  - $f(F|\Sigma_s), s = t, t + 1, ...$  is not time-invariant
  - $Prob(\sigma_s^2|\Sigma_{s-1})$  is not a Markov Process
  - But  $Prob(\sigma_s^2, n_s^{hh}, n_s^{hl}, n_s^{ll}, n_s^{lh} | \Sigma_s)$  is a (non-homog.) MP
  - State space increases with s
- Here: "Anticipated Utility" approach (Cogley and Sargent 2008a)
  - Agents update  $f(F|\Sigma_t)$  in line with history
  - Take  $f(F|\Sigma_s) = f(F|\Sigma_t), s = t + 1, t + 2, ...$
  - Can calculate  $p_l$ ,  $p_h$  as fixed point to (4)

1. Learning about Transition Probabilities - Discussion

### 1. Learning about Transition Probabilities - Discussion

- Posterior can be summarised by
  - 1. Mean persistence:  $\widehat{F}_{II} = n_t^{II}/(n_t^{II} + n_t^{hI})$
  - 2. Amount of information:  $\hat{n} = (n_t^{ll} + n_t^{hl})$

### 1. Learning about Transition Probabilities - Discussion

- Posterior can be summarised by
  - 1. Mean persistence:  $\widehat{F}_{II} = n_t^{II}/(n_t^{II} + n_t^{hI})$
  - 2. Amount of information:  $\hat{n} = (n_t^{ll} + n_t^{hl})$
- True transition probabilities play no role

## 1. Learning about Transition Probabilities - Discussion

- Posterior can be summarised by
  - 1. Mean persistence:  $\widehat{F}_{II} = n_t^{II}/(n_t^{II} + n_t^{hI})$
  - 2. Amount of information:  $\hat{n} = (n_t^{ll} + n_t^{hl})$
- True transition probabilities play no role
- Expectations over beta distribution give role to non-linearity of full-info asset prices in F<sub>II</sub>, F<sub>hh</sub>

• Agents know "normal" transition probabilities  $\widehat{F_{II}}, \widehat{F_{hh}}$ 

- Agents know "normal" transition probabilities  $\widehat{F_{II}}, \widehat{F_{hh}}$
- When  $\sigma_h^2 \longrightarrow \sigma_I^2$ , prior probability of permanent low volatility  $P(F_{II}=1|\Sigma_0)=\widehat{p}$

- Agents know "normal" transition probabilities  $\widehat{F_{II}}, \widehat{F_{hh}}$
- When  $\sigma_h^2 \longrightarrow \sigma_l^2$ , prior probability of permanent low volatility  $P(F_{II}=1|\Sigma_0)=\widehat{p}$
- · Likelihood of low-volatility sequence in "normal" times

$$L(\{\sigma_s^2 = \sigma_l^2, s = t, t+1, ..., t+N | \sigma_t^2 = \sigma_l^2, F_{ll} = \widehat{F}_{ll}\}) = \widehat{F}_{ll}^N$$

- Agents know "normal" transition probabilities  $\widehat{F_{II}}, \widehat{F_{hh}}$
- When  $\sigma_h^2 \longrightarrow \sigma_l^2$ , prior probability of permanent low volatility  $P(F_{II}=1|\Sigma_0)=\widehat{p}$
- Likelihood of low-volatility sequence in "normal" times

$$L(\{\sigma_s^2 = \sigma_I^2, s = t, t+1, ..., t+N | \sigma_t^2 = \sigma_I^2, F_{II} = \widehat{F}_{II}\}) = \widehat{F}_{II}^{N}$$

Posterior

$$P(F_{II} = 1 | \sigma_{I}^{N}) = \frac{P(F_{II} = 1 \wedge \sigma_{I}^{N})}{P(F_{II} = 1 \wedge \sigma_{I}^{N}) + P(F_{II} = \widehat{F}_{II} \wedge \sigma_{I}^{N})}$$
$$= \frac{\widehat{p}}{\widehat{p} + \widehat{F}_{II}^{N}(1 - \widehat{p})}$$
(5)

- Agents know "normal" transition probabilities  $\widehat{F_{II}}, \widehat{F_{hh}}$
- When  $\sigma_h^2 \longrightarrow \sigma_I^2$ , prior probability of permanent low volatility  $P(F_{||}=1|\Sigma_0)=\widehat{p}$
- Likelihood of low-volatility sequence in "normal" times

$$L(\{\sigma_s^2 = \sigma_I^2, s = t, t+1, ..., t+N | \sigma_t^2 = \sigma_I^2, F_{II} = \widehat{F}_{II}\}) = \widehat{F}_{II}^{N}$$

Posterior

$$P(F_{II} = 1 | \sigma_{I}^{N}) = \frac{P(F_{II} = 1 \wedge \sigma_{I}^{N})}{P(F_{II} = 1 \wedge \sigma_{I}^{N}) + P(F_{II} = \widehat{F_{II}} \wedge \sigma_{I}^{N})}$$

$$= \frac{\widehat{p}}{\widehat{p} + \widehat{F_{II}}^{N} (1 - \widehat{p})}$$
(5)

• Bayesian Approach:  $p_t$  function of  $\{p_{ls}, p_{hs}, P(F_{ll} = 1 | \Sigma_s)\}_{s=t}^{\infty}$ .



2. Learning about a structural break to permanent GM - Discussion

# 2. Learning about a structural break to permanent GM - Discussion

• Likelihood  $\widehat{F_{II}}^t$  falls geometrically

# 2. Learning about a structural break to permanent GM Discussion

- Likelihood  $\widehat{F_{II}}^t$  falls geometrically
- True transition probability  $\widehat{F}_{II}$  is important

# 2. Learning about a structural break to permanent GM Discussion

- Likelihood  $\widehat{F_{II}}^t$  falls geometrically
- True transition probability  $\widehat{F_{II}}$  is important
- First switch to high volatility reveals "no structural break"

# $Quantitative\ results$

 Analyse scenario of volatility regimes similar to post-WW II US experience

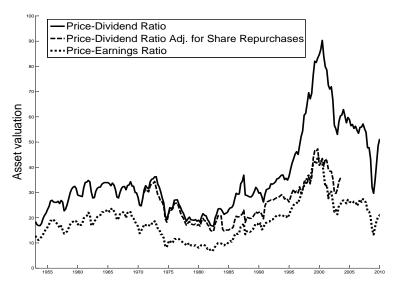
- Analyse scenario of volatility regimes similar to post-WW II US experience
  - 1. High volatility regime 1952Q2 1984Q4

- Analyse scenario of volatility regimes similar to post-WW II US experience
  - 1. High volatility regime 1952Q2 1984Q4
  - 2. Great Moderation 1985Q1 2006Q4

- Analyse scenario of volatility regimes similar to post-WW II US experience
  - 1. High volatility regime 1952Q2 1984Q4
  - 2. Great Moderation 1985Q1 2006Q4
  - 3. Assume: Crisis marks return to high volatility regime

- Analyse scenario of volatility regimes similar to post-WW II US experience
  - 1. High volatility regime 1952Q2 1984Q4
  - 2. Great Moderation 1985Q1 2006Q4
  - 3. Assume: Crisis marks return to high volatility regime
- Compare price-dividend ratios across
  - Data
  - 2 learning schemes
  - Full information price based on ex-post estimate of F

### Different Valuation Measures



# Calibration of preferences

| $\beta$  | 0.9935 | Discount Factor | R=1.95% pre-GM                      |
|----------|--------|-----------------|-------------------------------------|
| $\gamma$ | 30     | Risk Aversion   | pprox PD-ratio pre-GM               |
| $\psi$   | 1.5    | IES             | $>1$ to get $rac{dp}{d\sigma^2}<0$ |

# Calibration of consumption and dividend process

| Ē                | 0.0059           | Mean △ <i>C</i> | US data 1952 - 2010             |  |  |  |  |
|------------------|------------------|-----------------|---------------------------------|--|--|--|--|
| $\sigma_{l}$     | 0.0037           | Low Vol         | US data 1985 - 2006             |  |  |  |  |
| $\sigma_h$       | 0.0082           | High Vol        | US data 1952 - 1984             |  |  |  |  |
| λ                | 4.5              | Leverage        | LLW                             |  |  |  |  |
| <b>.</b>         | 0.989  1 - 0.989 | Trans Prob      | $E[T_{\sigma_b}] = 1984 - 1952$ |  |  |  |  |
| Ex-post <b>F</b> | 1 - 0.992 0.992  |                 | $E[T_{\sigma_l}] = 2006 - 1985$ |  |  |  |  |
| Comparison       |                  |                 |                                 |  |  |  |  |
| <b>E</b> LLW     | 0.991  1-0.991   | LLW (2008)      | Est Reg Switch model            |  |  |  |  |
| r                | 1-0.994 0.994    |                 |                                 |  |  |  |  |

# $Results \ I$ Learning about Transition Probabilities

1. Benchmark: Uninformative uniform prior  $n_0^{ij} = 1, i, j \in \{h, l\}$ 

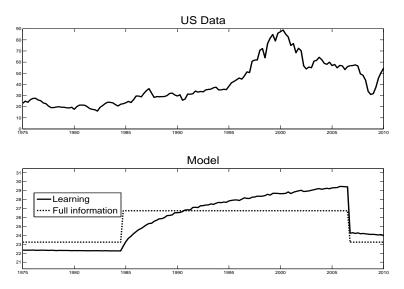
- 1. Benchmark: Uninformative uniform prior  $n_0^{ij} = 1, i, j \in \{h, l\}$
- Alternative Assumption: Observed persistence of high-volatility regime increases prior persistence of low volatility

- 1. Benchmark: Uninformative uniform prior  $n_0^{ij} = 1, i, j \in \{h, l\}$
- Alternative Assumption: Observed persistence of high-volatility regime increases prior persistence of low volatility
  - Uninformative prior after WWII:  $n_0^{hh} = n_0^{hl} = 1$

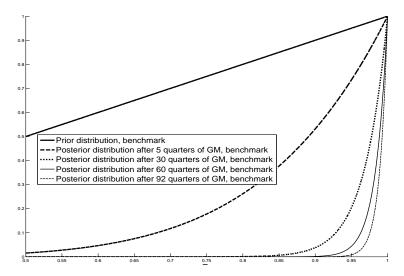
- 1. Benchmark: Uninformative uniform prior  $n_0^{ij} = 1, i, j \in \{h, l\}$
- Alternative Assumption: Observed persistence of high-volatility regime increases prior persistence of low volatility
  - Uninformative prior after WWII:  $n_0^{hh} = n_0^{hl} = 1$
  - But persistent prior for GM with mean  $n_0''/(n_0''+n_0'')=0.9$

### Results

### Dividend Ratios: Benchmark Model

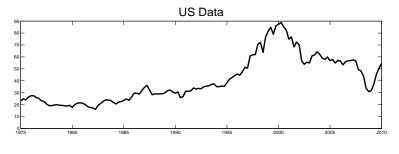


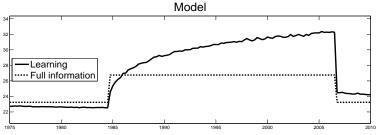
### Posterior CDFs: Benchmark Model





### Dividend Ratios: Persistent prior for GM







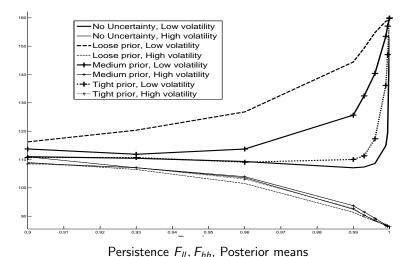
### Results

#### **Asset Prices - Learning about Transition Probabilities**

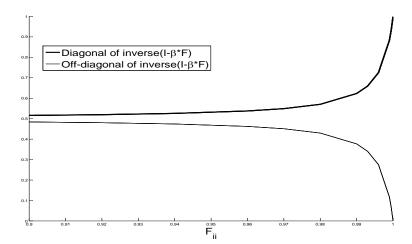
|                  | Boom | Overvaluation | Bust |
|------------------|------|---------------|------|
| Full Info        | 15%  | 0             | 15%  |
| Uninformed prior | 32%  | 11%           | 22%  |
| Moderately       |      |               |      |
| persistent prior | 42%  | 20%           | 32%  |

# Discussion: Mean and Variance Effects of Learning about Transition Probabilities

# Dividend Ratios as a Function of (symmetric) mean Persistence and Prior Tightness



# Entries of $(I - \beta \mathbb{F})^{-1}$ for symmetric $\mathbb{F}$



### Results II

# Learning about a structural break to permanent GM

# Calibration of learning parameters

- Need:
  - 1. Prior probability of structural break  $\hat{p}$
  - 2. Trans probabilities  $\widehat{F}_{II}$ ,  $\widehat{F}_{hh}$  in "normal times"

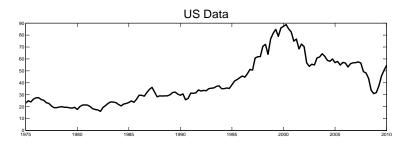
## Calibration of learning parameters

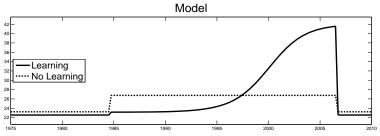
- Conditional prior probability of structural break: 1 percent
- Transition probablities in "normal" times:
  - 1. Take ex-post estimate of  $F_{hh}$ .
  - 2. Choose  $\widehat{F}_{II}$  to imply "suspicion" about structural break in mid-1990s:

$$Prob(\sigma_t^2 = \sigma_I^2, t = 1, ..., 48 | \widehat{F_{II}}) = 0.1$$

3. Yields  $\widehat{F}_{II} = 0.87$ 

#### Dividend Ratios





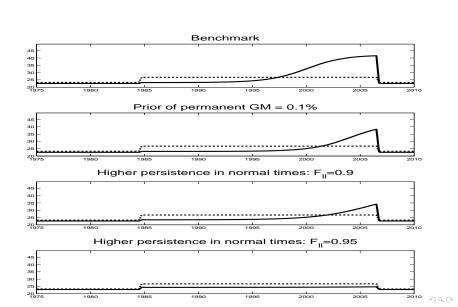


#### Results

#### Asset prices - learning about structural break

|              | Boom | Overvaluation | Bust |
|--------------|------|---------------|------|
| Full Info    | 3%   | 0             | 3%   |
| Struct Break | 77%  | 79%           | 84%  |

#### Struct-break learning: Alternative priors



 $Sensitivity\ Analysis$ 

# Sensitivity Analysis

1. Non-Bayesian, ad-hoc Learning

### Sensitivity Analysis

- 1. Non-Bayesian, ad-hoc Learning
- 2. Risk Aversion and Dividend Volatility

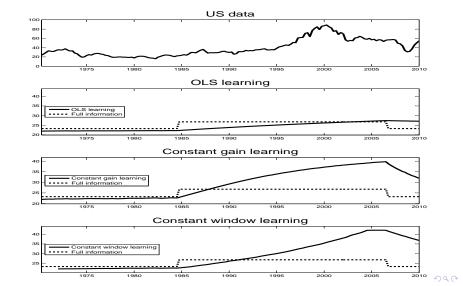
 Agents ignore 2-regime nature of dividend process, use simple rules to infer "average" volatility of dividends

- Agents ignore 2-regime nature of dividend process, use simple rules to infer "average" volatility of dividends
  - 1. OLS estimate on full sample

- Agents ignore 2-regime nature of dividend process, use simple rules to infer "average" volatility of dividends
  - 1. OLS estimate on full sample
  - 2. OLS estimate on history of constant length

- Agents ignore 2-regime nature of dividend process, use simple rules to infer "average" volatility of dividends
  - 1. OLS estimate on full sample
  - 2. OLS estimate on history of constant length
  - 3. Constant gain learning: higher weight on recent observations

#### Ad-Hoc Learning: Results



Sensitivity: lower leverage and risk aversion

### Sensitivity: lower leverage and risk aversion

#### Asset prices - Lower Risk Aversion and Dividend Volatility

|                                       | Boom | Overvaluation | Bust |
|---------------------------------------|------|---------------|------|
| Full Info (benchmark)                 | 15%  | 0             | 15%  |
| Full Info ( $\gamma=20$ )             | 12%  | 0             | 12%  |
| Full Info $(\lambda=2.5)$             | 8%   | 0             | 7%   |
| Trans Probabilities (benchmark)       | 32%  | 11%           | 22%  |
| Trans Probabilities $(\gamma=20)$     | 30%  | 9%            | 18%  |
| Trans Probabilities ( $\lambda=2.5$ ) | 17%  | 6%            | 11%  |
| Perm vs Trans (benchmark)             | 77%  | 79%           | 84%  |
| Perm vs Trans ( $\gamma=20$ )         | 59%  | 56%           | 59%  |
| Perm vs Trans $(\lambda=2.5)$         | 45%  | 43%           | 45%  |

#### Conclusion

- Standard asset pricing model with Bayesian learning responds with strong boom and bust to GM
- Much of this is due to overconfidence, as effect of GM on full information prices is small
- Non-linearity of prices in regime-persistence gives special role to uncertainty about transition probabilities
- Bayesian assumption crucial for strong bust

Great Moderation or Great Mistake: Can overconfidence in low macro-risk explain the boom in asset prices?

Tobias Broer, IIES Stockholm University and CEPR Afroditi Kero, University of Cyprus

**ESSIM 2012** 

### Moments of Consumption Growth

| Date                              | Mean   | StDev |
|-----------------------------------|--------|-------|
| 1952 <i>Q</i> 2 : 1991 <i>Q</i> 4 | 0.57%  | 0.82% |
| 1992 <i>Q</i> 1 : 2006 <i>Q</i> 4 | 0.61%  | 0.36% |
| 2007 <i>Q</i> 1 : 2010 <i>Q</i> 2 | -0.19% | 0.50% |

# Moments of GDP growth

| Date                              | Mean   | StDev |
|-----------------------------------|--------|-------|
| 1952 <i>Q</i> 2 : 1983 <i>Q</i> 4 | 0.53%  | 1.1%  |
| 1984 <i>Q</i> 1 : 2006 <i>Q</i> 4 | 0.51%  | 0.51% |
| 2007 <i>Q</i> 1 : 2010 <i>Q</i> 2 | -0.16% | 0.90% |

#### Full information asset prices

$$\begin{split} & p_{\sigma_{t}^{2}=\sigma_{i}^{2}}=\rho_{i}^{1-a}\beta^{a}e^{\left(-\frac{a}{\psi}+a\right)\bar{g}} \\ & \{F_{ii}e^{\frac{\left(-\frac{a}{\psi}+a-1+\lambda\right)^{2}}{2}\sigma_{i}^{2}}(1+\rho_{i})^{a-1}(1+\rho_{i}) \\ & +F_{ij}e^{\frac{\left(-\frac{a}{\psi}+a-1+\lambda\right)^{2}}{2}\sigma_{j}^{2}}(1+\rho_{j})^{a-1}(1+\rho_{j})\} \end{split}$$

with

$$\begin{split} \rho_{\sigma_t^2 = \sigma_i^2}^{a} &= \left(\frac{P_{it}^{C}}{C_{it}}\right)^{a} = \rho_i^{1-a} \beta^{a} e^{\left(-\frac{a}{\psi} + a\right)\bar{g}} \\ &\left(F_{ii} e^{\frac{\left(-\frac{a}{\psi} + a\right)^2}{2} \sigma_i^2} (1 + \rho_i)^{a} + F_{ij} e^{\frac{\left(-\frac{a}{\psi} + a\right)^2}{2} \sigma_j^2} (1 + \rho_j)^{a}\right) \end{split}$$

## Ad-hoc learning: Lower gain and longer windows

