Macroeconomic Volatility and External Imbalances

Alessandra Fogli Fabrizio Perri

University of Minnesota and Minneapolis FED

ESSIM, May 2010
Motivation

The size and durability of the imbalances that characterize the world economy today reflect a myriad of different forces: from differences in actual and potential growth rates, the degree of openness of financial and product markets, the type of exchange rate regime in place, the borrowing requirements of the sovereign, the degree of financial market development, the extent of the official safety nets, to differences in attitudes toward risk and expectations about the future. The interactions of these forces are complex and vary over time. And this limits our capacity to judge the sustainable level of imbalances.
Motivation

The size and durability of the imbalances that characterize the world economy today reflect a myriad of different forces: from differences in actual and potential growth rates, the degree of openness of financial and product markets, the type of exchange rate regime in place, the borrowing requirements of the sovereign, the degree of financial market development, the extent of the official safety nets, to differences in attitudes toward risk and expectations about the future. The interactions of these forces are complex and vary over time. And this limits our capacity to judge the sustainable level of imbalances.

Tim Geithner 2006
Contributions

- Explore new *observable* determinant of evolution of external imbalances: *time varying macro risk* (volatility)
Contributions

• Explore new *observable* determinant of evolution of external imbalances: *time varying macro risk (volatility)*

• **Empirically**
 - Document robust and systematic relation between changes in imbalances and changes in macro risk

• **Theoretically/quantitatively**
 - Develop simple consumption/saving/investment model with time varying macro risk
 - Model quantitatively captures the relationship between risk and imbalances in the data -> risk a major factor in understanding the evolution of imbalances

• Importance of open economy in recent literature on "volatility" shocks
Contributions

• Explore new *observable* determinant of evolution of external imbalances: *time varying macro risk (volatility)*

• Empirically
 • Document robust and systematic relation between changes in imbalances and changes in macro risk

• Theoretically/quantitatively
 • Develop simple consumption/saving/investment model with time varying macro risk
 • Model quantitatively captures the relationship between risk and imbalances in the data -> risk a major factor in understanding the evolution of imbalances
 • Importance of open economy in recent literature on "volatility" shocks
Sample of analysis

- Largest subset of OECD countries for which could find long quarterly macro series consistent across countries and time: 20 countries, 1970.1-2005.4 (2009.4)
Sample of analysis

- Largest subset of OECD countries for which could find long quarterly macro series consistent across countries and time: 20 countries, 1970.1-2005.4 (2009.4)
- Why not larger group? Consistency across time crucial for analyzing time varying volatility and harder to get even in OECD
Ireland and Iceland changes in risk?

Growth rate of real GDP:

Straight from OECD Economic Outlook
Variables of interests

- Macroeconomic volatility (risk): Standard deviation of real GDP growth over a 10 yrs window
- Imbalances: NFA position (include all assets and liabilities) / GDP over the same window
Risk and NFA: the data, 1970-2005

Net Foreign Asset Position

Volatility

% of GDP

Time

Standard deviation of growth (%)

% of GDP

Time
Risk and NFA: the data, 1970-2009
Risk and NFA: empirical issues

- Data suggest that changes in NFA strongly associated with changes in macro risk
- Potential issues
 - Common trend (globalization and great moderation)
 - Third factors driving both independently (i.e. good policies at the same lower risk and NFA)
 - Measurement of Risk
 - Diff in Diff v/s fixed effects
 - Length and structure of windows
Risk and NFA: Long NO windows, DD

The change in volatility and NFA is between the 1990-2005 period and the 1970-1985 period.
Risk and NFA: Various windows, DD

<table>
<thead>
<tr>
<th>Window</th>
<th>Non Overlapping</th>
<th>R^2</th>
<th>#Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 yrs</td>
<td>36.3***</td>
<td>0.52</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(10.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 yrs</td>
<td>17.9***</td>
<td>0.15</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(5.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 yrs</td>
<td>7.32**</td>
<td>0.06</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(3.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 yrs</td>
<td>2.42</td>
<td>0.02</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>(2.32)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All regressions include controls for average growth and inflation in window. SE are clustered at the country level.
<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(iv)</th>
<th>(iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility of GDP Growth</td>
<td>18.15***</td>
<td>18.49***</td>
<td>19.48***</td>
<td>17.90***</td>
<td>16.90***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.407)</td>
<td>(4.93)</td>
<td>(5.52)</td>
<td>(5.54)</td>
<td>(4.85)</td>
<td></td>
</tr>
<tr>
<td>Average GDP Growth</td>
<td>1.213</td>
<td>3.01</td>
<td>4.86</td>
<td>8.591</td>
<td>-2.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.48)</td>
<td>(6.49)</td>
<td>(8.13)</td>
<td>(6.53)</td>
<td>(6.39)</td>
<td></td>
</tr>
<tr>
<td>Average Inflation</td>
<td>1.25</td>
<td>1.55</td>
<td>0.406</td>
<td>-1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.73)</td>
<td>(1.58)</td>
<td>(1.64)</td>
<td>(1.44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility of Inflation</td>
<td>0.08</td>
<td>0.66</td>
<td>0.845</td>
<td>2.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.21)</td>
<td>(3.26)</td>
<td>(2.63)</td>
<td>(3.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Openess 1</td>
<td></td>
<td>1.611</td>
<td>-0.078</td>
<td>-0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.32)</td>
<td>(2.20)</td>
<td>(2.58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Openess 2</td>
<td></td>
<td></td>
<td>-3.61</td>
<td>-2.49</td>
<td>-2.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.90)</td>
<td>(4.63)</td>
<td>(5.83)</td>
<td></td>
</tr>
<tr>
<td>Trade Openeness</td>
<td></td>
<td></td>
<td></td>
<td>-0.82</td>
<td>-0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.53)</td>
<td>(0.58)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>506</td>
<td>506</td>
<td>506</td>
<td>494</td>
<td>494</td>
<td>494</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.897</td>
<td>0.897</td>
<td>0.898</td>
<td>0.870</td>
<td>0.879</td>
<td>0.861</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses account for clustering at the country level.

All regressions include a constant, country and year fixed effects.
Measuring volatility differently

Use GARCH(1,1) and estimate

\[y_t = \rho y_{t-1} + \varepsilon_t \]

\[\sigma_{\varepsilon,t} = \beta_1 \sigma_{\varepsilon,t-1} + \beta_2 \varepsilon_{t-1}^2 \]

where \(y_t \) is real GDP growth
GARCH volatility

Standard deviation of growth (%)

Time

--- Est. from GARCH --- Rolling window
Risk and NFA, additional cases

<table>
<thead>
<tr>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
<th>(vi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility GDP Growth, 5yrs</td>
<td>10.41***</td>
<td>10.11***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.028)</td>
<td>(2.954)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth, 5yrs</td>
<td>-1.111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.172)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility GDP Growth, (from GARCH)</td>
<td>14.23**</td>
<td>14.41**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.098)</td>
<td>(5.148)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth, 1yr</td>
<td>0.598</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.296)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.628)</td>
<td>(7.217)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average GDP Growth</td>
<td>-2.599</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.103)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>582</td>
<td>582</td>
<td>626</td>
<td>626</td>
<td>320</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.825</td>
<td>0.825</td>
<td>0.763</td>
<td>0.762</td>
<td>0.923</td>
</tr>
</tbody>
</table>

Dependent variable is Net Foreign Assetsa

\(^a\) Net foreign asset position in each specification is computed on the same window used for computing volatility

Robust standard errors in parentheses account for clustering at the country level.

All regressions include a constant, country and year fixed effects.
Quantitative summary

- A 1% increase in macro-risk (in the medium-long run) associated with increase in NFA/Y between 10% and 20%, not driven by difference in average growth
Why should volatility affect imbalances?

• **Consumption**: If international risk-sharing incomplete changing relative volatility affects relative precautionary motive, relative “risk adjusted" rate of time preference", increases scope for international inter-temporal trade, leads to imbalances
Why should volatility affect imbalances?

- **Consumption**: If international risk-sharing incomplete changing relative volatility affects relative precautionary motive, relative “risk adjusted" rate of time preference", increases scope for international inter-temporal trade, leads to imbalances

- **Investment**: Changing relative volatility change international allocation of capital, leads to imbalances
The goal

- Write simple open economy model which allows
The goal

- Write simple open economy model which allows
 - Quantification of these effects
 - Understanding of how these effects depend on structural features of economy
Model overview

- Two countries, one good
- Macro volatility driven by country specific TFP shocks, with time varying volatility
- Competitive factor markets and full risk sharing within a country (repr. agent)
- Potential menu of assets traded internationally
- Agents choose consumption and international assets portfolios
- Firms choose investment
Households

\[
\max_{c_{it}, l_{it}, \lambda_{it}, \lambda_{1t}^F, b_{1t}} \quad E_0 \sum_{t=0}^{\infty} \beta^t U(c_{it}, l_{it})
\]

\[
c_{1t} + b_{1t} + \lambda_{1t} p_{1t} + \lambda_{1t}^F p_{2t}
\leq l_{1t} w_{1t} + \lambda_{1t} (d_{1t} + p_{1t}) + \lambda_{1t-1}^F (d_{2t} + p_{2t}) + b_{1t-1} R_{t-1}
\]

\[
\lambda_{10}, \lambda_{10}^F, b_{10} \text{ given}
\]
Firms

\[
\max_{l_{it}, k_{it}, x_{it}} E_0 \sum_{t=1}^{\infty} d_{it} Q_{it}
\]

s.t.

\[
d_{it} = A_{it} l_{it}^{1-\alpha} k_{it}^\alpha - w_{it} l_{it} - x_{it}
\]

\[
k_{it} = (1 - \delta) k_{it-1} + x_{it} - \phi k_{it-1} \left[\frac{x_{it}}{k_{it-1}} - \delta \right]^2
\]

\[
k_{i0} \text{ given}
\]
Shocks

\[
\begin{bmatrix}
A_{1t} \\
A_{2t}
\end{bmatrix} = \begin{bmatrix}
\rho & \psi \\
\psi & \rho
\end{bmatrix} \begin{bmatrix}
A_{1t-1} \\
A_{2t-1}
\end{bmatrix} + \begin{bmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix} \rightarrow N(0, \Sigma_t), \quad \Sigma_t = \begin{bmatrix}
\sigma_{1,t}^2 & \chi \sigma_{1,t} \sigma_{2,t} \\
\chi \sigma_{1,t} \sigma_{2,t} & \sigma_{2,t}^2
\end{bmatrix}
\]

\[
\sigma_{i,t}^2 = \bar{\sigma}(1 - \kappa) + \kappa \sigma_{i,t-1}^2 + \eta_{i,t}
\]

\[
\begin{bmatrix}
\eta_{1t} \\
\eta_{2t}
\end{bmatrix} \rightarrow N(0, \Sigma_\eta), \quad \Sigma_\eta = \begin{bmatrix}
\sigma_\eta^2 & 0 \\
0 & \sigma_\eta^2
\end{bmatrix}
\]
Equilibrium

\[c_{1t} + x_{1t} + c_{2t} + x_{2t} = y_{1t} + y_{2t} \]
\[b_{1t} + b_{2t} = 0 \]
\[\lambda_{1t} + \lambda_{2t}^F = 0, \quad \lambda_{2t} + \lambda_{1t}^F = 0 \]
A special case

If impose

\[\lambda_{10} = \lambda_{1t} = \lambda_{2t} = 1 \quad \text{for every } t \]
\[\lambda_{10}^F = \lambda_{1t}^F = \lambda_{2t}^F = 0 \quad \text{for every } t \]

model is equivalent to Baxter and Crucini (1995) standard incomplete markets
Key parameters

• Preferences

\[U(c, l) = \frac{1}{1 - \sigma} [c^{\mu} (1 - l)^{1-\mu}]^{1-\sigma} \]

\[\sigma = 2 \]
Key parameters

- Preferences

\[U(c, l) = \frac{1}{1 - \sigma} \left[c^\mu (1 - l)^{1-\mu} \right]^{1-\sigma} \]

\[\sigma = 2 \]

- Process for TFP shocks

\[
\begin{bmatrix}
A_{1t} \\
A_{2t}
\end{bmatrix}
= \begin{bmatrix}
\rho & \psi \\
\psi & \rho
\end{bmatrix}
\begin{bmatrix}
A_{1t-1} \\
A_{2t-1}
\end{bmatrix}
+ \begin{bmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix}
\]

\(\rho = 1, \psi = 0, \text{Matches} \quad corr(c, c^*) < corr(y, y^*) \)
Key parameters

- Preferences

\[
U(c, l) = \frac{1}{1 - \sigma} \left[c^\mu (1 - l)^{1-\mu} \right]^{1-\sigma}
\]

\[
\sigma = 2
\]

- Process for TFP shocks

\[
\begin{bmatrix}
A_{1t} \\
A_{2t}
\end{bmatrix} =
\begin{bmatrix}
\rho & \psi \\
\psi & \rho
\end{bmatrix}
\begin{bmatrix}
A_{1t-1} \\
A_{2t-1}
\end{bmatrix} +
\begin{bmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{bmatrix}
\]

\(\rho = 1, \psi = 0\), Matches \(corr(c, c^*) < corr(y, y^*)\)

- Process for volatility shocks

\[
\sigma^2_{i,t} = \bar{\sigma} (1 - \kappa) + \kappa \sigma^2_{i,t-1} + \eta_{i,t}
\]

\[
\kappa = 0.97, \sigma_\eta = 0.03\%
\]

Estimated on our sample
The impact of a volatility shock (Standard preferences)

- **(a) Std. dev. of TFP innovations**
 - Percent deviations from long run avg.
 - Percent of GDP

- **(b) Net foreign asset position**
 - Percent of GDP

- **(c) Labor Supply**
 - Percent deviations from long run avg.

- **(d) Consumption**
 - Percentage deviation from long run avg.

- **(e) Capital**
 - Percentage deviation from long run avg.

- **(f) Investment**
 - Percentage deviation from long run avg.

- **(g) Current account**
 - Percent of GDP

- **(h) Interest rate**
 - Percent

Legend:
- **Blue** Domestic
- **Green** Foreign
The impact of a volatility shock (GHH preferences)
Result 1. Impact of risk on NFA: model and data

<table>
<thead>
<tr>
<th>Window</th>
<th>Data R²</th>
<th>Model R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 yrs</td>
<td>36.3***</td>
<td>9.8***</td>
</tr>
<tr>
<td></td>
<td>(10.3)</td>
<td>(3.0)</td>
</tr>
<tr>
<td>12 yrs</td>
<td>17.9***</td>
<td>9.7***</td>
</tr>
<tr>
<td></td>
<td>(5.3)</td>
<td>(1.3)</td>
</tr>
<tr>
<td>8 yrs</td>
<td>7.32**</td>
<td>7.4***</td>
</tr>
<tr>
<td></td>
<td>(3.18)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>5 yrs</td>
<td>2.42</td>
<td>5.0***</td>
</tr>
<tr>
<td></td>
<td>(2.32)</td>
<td>(0.4)</td>
</tr>
</tbody>
</table>

All regressions (in model and data) include controls for average growth in window.
Result 1. Impact of risk on NFA: model and data

<table>
<thead>
<tr>
<th>Window</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R²</td>
<td>R²</td>
</tr>
<tr>
<td>18 yrs</td>
<td>36.3***</td>
<td>9.8***</td>
</tr>
<tr>
<td></td>
<td>(10.3)</td>
<td>(3.0)</td>
</tr>
<tr>
<td>12 yrs</td>
<td>17.9***</td>
<td>9.7***</td>
</tr>
<tr>
<td></td>
<td>(5.3)</td>
<td>(1.3)</td>
</tr>
<tr>
<td>8 yrs</td>
<td>7.32**</td>
<td>7.4***</td>
</tr>
<tr>
<td></td>
<td>(3.18)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>5 yrs</td>
<td>2.42</td>
<td>5.0***</td>
</tr>
<tr>
<td></td>
<td>(2.32)</td>
<td>(0.4)</td>
</tr>
</tbody>
</table>

All regressions (in model and data) include controls for average growth in window.

- Model captures a substantial part of the medium run co-movement between volatility and NFA.
Result 2. How much volatility shocks contribute to imbalances?

Cross sectional (residual) dispersion of NFA GDP ratio (measure of imbalances)

- Data (2005) 30%
- Model (with TFP shocks and volatility shocks) 30%
- Model (with only TFP shocks) 22%
- Fraction of dispersion explained by risk 25%
Sensitivity to structural parameters

- High risk aversion -> stronger response of imbalances
Sensitivity to structural parameters

- High risk aversion -> stronger response of imbalances
- More risk sharing (through stock holdings) -> weaker response of imbalances
Additional test of the mechanism

Model suggests risk effect on imbalances strongest for small economies

<table>
<thead>
<tr>
<th></th>
<th>(i) All countries</th>
<th>(ii) Small countries</th>
<th>(iii) <=Sweden</th>
<th>(iv) <=Mexico</th>
<th>(v) <=Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean growth</td>
<td>1.213</td>
<td>6.643</td>
<td>7.034</td>
<td>4.129</td>
<td>-11.88</td>
</tr>
<tr>
<td></td>
<td>(6.476)</td>
<td>(4.373)</td>
<td>(5.303)</td>
<td>(5.249)</td>
<td>(11.65)</td>
</tr>
<tr>
<td>N</td>
<td>506</td>
<td>197</td>
<td>298</td>
<td>350</td>
<td>156</td>
</tr>
<tr>
<td>adj. R^2</td>
<td>0.897</td>
<td>0.912</td>
<td>0.900</td>
<td>0.896</td>
<td>0.693</td>
</tr>
</tbody>
</table>

Standard errors in parentheses account for clustering at the country level
All regressions include country and year fixed effects
* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$
Conclusions

- Data and theory suggest time-varying country-specific macroeconomic volatility is an important factor to understand evolution of external imbalances.
Conclusions

- Data and theory suggest time-varying country-specific macroeconomic volatility is an important factor to understand evolution of external imbalances.
- Imbalances not good or bad per se, reflect underlying macroeconomic conditions/policies.
- Imposing capital controls to avoid imbalances not necessarily desirable.