Industrial Structure and Financial Capital Flows

Keyu Jin

London School of Economics

Presentation for ESSIM 2010

May 25, 2010

Introduction

- "Two Engines of Integration":
- commodity trade
- financial capital flows

This paper: develops a framework that combines factor-proportions trade and financial capital flows

Investigate how their interplay determines:

- Sectoral and Aggregate Asset Prices
- Capital flows

A Multi-country, Multi-sector Setup

- Two Countries: Home and Foreign
- Two Commodities: Cotton and Steel
- Two Factors: Capital (K) and Labor (N)
- Labor: immobile internationally
- Capital: mobile internationally
- Adjustment costs break FPE

What changes with multiple sectors?

Consider a permanent labor force increase in Foreign:

- Two forces at work in determining capital flows:
- Standard: "convergence effect"—(Home to Foreign)
- New: "composition effect"—(Foreign to Home)

If composition effect dominates:

- "Reverse Capital Flows"
- Investment comovement
- Asset Price comovement
- ⇒ With basic ingredients, sharp and surprising results.

In a multi-sector model, 3 cases are encompassed:

- No factor-intensity differences: convergence force
- Multiple sectors: **convergence** + **composition effect**
- Multiple sectors where most labor-intensive sector uses only labor as an input: composition effect

Relationship to the Literature

- Hecksher-Ohlin-Mundell (1965) tradition
- Benchmark model: Two-Country stochastic investment model
- one good: Backus Kehoe and Kydland (1992)
- two goods: Backus Kehoe and Kydland (1994)
 - ⇒ Departure of this paper: factor-proportions trade
- Models with sectors that differ in factor intensities:
- Ventura (1997), Atkeson and Kehoe (2002), Baudry and Collard (2004)...all assume balanced trade
 - ⇒ Departure of this paper: financial capital flows
- Trade and Capital flows: Ju and Wei (2007), Antras and Caballero (2009)

When Do Multi-Sectors Become Essential?

• When shocks alter a country's comparative advantage

- Empirically relevant "shocks":
 - ▶ Globalization
 - ► Labor Force/Productivity
 - ► Demographic heterogeneity

Main Predictions

- Current account
 - ▶ deficit in industrialized core surplus in emerging periphery
- Lucas Puzzle Revisited
 - ► South to North flows *despite* low complementary factors in South
- Demographics and Asset Prices:
 - ► Young and fast growing developing countries can emerge as a solution to the "ave wave crisis"

Roadmap

- Model Setup
- Special case: Composition effect in isolation
- General case: Competing Forces
- An application: Lucas Puzzle
- Suggestive Empirics
- Conclusion and future research

Outline

- 1 A Stochastic Two-Country Multi-Sector Model
- 2 Case I: The Composition Effect
- 3 General Case: Numerical Solutions
- 4 An Application: Lucas Puzzle Revisited
- **5** Conclusion

Model Ingredients

- Symmetric Two-country OLG model with capital accumulation (Abel (Econometrica 2003))
- Free and costless trade in goods and financial assets
- Multiple sectors that differ in factor intensity
- Adjustment costs to pin down capital stock and analyze the price of capital

Production Technologies

Intermediate Goods Production:

$$Y_{it}^{j} = \left(K_{i,t}^{j}\right)^{\alpha_{i}} \left(A_{t}^{j} N_{it}^{j}\right)^{1-\alpha_{i}}$$

$$InA_{t}^{j} = \ln A_{t-1}^{j} + \epsilon_{At}^{j}$$

$$InN_{t}^{j} = \ln N_{t-1}^{j} + \epsilon_{Nt}^{j}$$

$$(1)$$

Investment Good

$$I_{it}^{j} = \left[\sum_{k=1}^{m} \gamma_{i}^{\frac{1}{\theta}} \left(i_{ki,t}^{j}\right)^{\frac{\theta-1}{\theta}}\right]^{\frac{\theta}{\theta-1}}$$

where $i_{ki,t}^{j}$: amount of good k used for investment in the i'th sector of country j.

• Capital accumulation equation [Abel (2003)]:

$$K_{i,t+1}^{j} = a \left(I_{it}^{j} \right)^{\phi} \left(K_{it}^{j} \right)^{1-\phi}$$

- $-a=1, \ \phi=1$: neoclassical growth model with complete depreciation.
- $-\phi = 0$: Lucas fruit-tree model.

► Compare with:

$$\mathcal{K}_{i,t+1}^j = (1-\delta)\mathcal{K}_{it}^j + I_{it}^j - \frac{b}{2}\left(rac{I_{it}^j}{\mathcal{K}_{it}^j} - \delta
ight)^2\mathcal{K}_{it}^j$$

– Equivalent up to second-order if $\phi=\delta$, $b=rac{1-\phi}{\phi}$

Price of Capital:

$$q_{it}^{j} = (\frac{dK_{it+1}^{j}}{dl_{it}^{j}})^{-1} = \frac{1}{a\phi}(\frac{I_{it}^{j}}{K_{it}^{j}})^{1-\phi}$$

- Alternatively,

$$q_{it}^j K_{i,t+1}^j = I_{it}^j/\phi$$

Rate of Return:

$$R_{it} = \frac{\alpha_i p_{it} \frac{Y_{it}}{K_{it}} + \frac{1 - \phi}{\phi} \frac{I_{it}}{K_{it}}}{q_{i,t-1}}$$

• Wages:

$$w_t = (1 - \alpha_1)p_{1t} \frac{Y_{1t}}{N_{1t}} = (1 - \alpha_2)p_{2t} \frac{Y_{2t}}{N_{2t}}$$

Determines specialization patterns

Consumers

- Demographics:
- Overlapping generations: N_t young, N_{t-1} old.

$$\mathit{InN}_t^j = \mathit{InN}_{t-1}^j + \epsilon_{N,t}^j$$

Preferences:

$$u(c_t^j) = \frac{\left(c_t^j\right)^{1-
ho}}{1-
ho}$$

Consumption index:

$$C_t^j = \left[\sum_{i=1}^2 \gamma_i^{rac{1}{ heta}} \left(c_{it}^j
ight)^{rac{ heta-1}{ heta}}
ight]^{rac{ heta}{ heta-1}}$$

Objective:

$$\max \ u(c_t^y) + \mathbb{E}_t u(c_{t+1}^o)$$

Constraints: Young:

$$c_t^{y,h} = w_t^h - \sum_{j=h,f} \sum_{i=1}^2 q_{it}^j k_{i,t+1}^{h,j}$$

Old:

$$c_{t+1}^{o,h} = \sum_{i=h} \sum_{i=1}^{2} R_{i,t+1}^{j} q_{it}^{j} k_{i,t+1}^{h,j}$$

Price Index

$$P = [\gamma p_1^{1-\theta} + (1-\gamma)p_2^{1-\theta}]^{\frac{1}{1-\theta}} = 1$$

- Price of Intermediate goods:
- Law of one price : international prices p_1 and p_2

$$\frac{p_1}{p_2} = \left(\frac{\gamma_1 Y_2^g}{\gamma_2 Y_1^g}\right)^{\frac{1}{\theta}}$$

Semi-closed form and closed-form solutions rely on :

Assumptions

- (i) Unitary elasticity of substitution of intermediate goods (heta=1)
- (ii) The capital-adjustment technology is log-linear

(iii)
$$u(c) = log(c)$$

Equilibrium

Home's Investment: $I_t^h \propto \eta_t Y_t^g$

one sector:
$$\eta_t = \lambda \sum_{k=0}^{\infty} (1 - \lambda)^k \mathbb{E}_t \left[\frac{Y_{t+k+1}^h}{Y_{t+k+1}^g} \right]$$

two sectors:
$$\eta_t = \underbrace{\left[\frac{\alpha_1 \gamma}{\alpha_1 \gamma + \alpha_2 (1 - \gamma)} \eta_{1t} + \frac{\alpha_2 (1 - \gamma)}{\alpha_1 \gamma + \alpha_2 (1 - \gamma)} \eta_{2t}\right]}_{\text{weighted-average share of global production}}$$

⇒ Investment depends on the composition of production

Outline

- 1 A Stochastic Two-Country Multi-Sector Model
- 2 Case I: The Composition Effect
- 3 General Case: Numerical Solutions
- 4 An Application: Lucas Puzzle Revisited
- 6 Conclusion

Special Case: the Composition Effect

Assumption (iv): $\alpha_1 = 0$

• Commodity trade \Rightarrow

$$w_t = w_t^* = p_{1t}$$

$$\Rightarrow k_{2t} = k_{2t}^* \qquad \forall t$$

▶ achieved through labor reallocation across sectors

Special Case: the Composition Effect

Assumption (iv): $\alpha_1 = 0$

• Commodity trade \Rightarrow

$$w_t = w_t^* = p_{1t}$$

$$\Rightarrow k_{2t} = k_{2t}^* \qquad \forall t$$

- ▶ achieved through labor reallocation across sectors
- The "convergence effect" is effectively shut down

How is a marginal unit of savings allocated?

- Rental earned from production, $\alpha_2 p_{2t} k_{2t}^{\alpha_2 1}$, is equalized across countries
 - \Rightarrow Allocate savings such that marginal **adjustment costs**, $(\propto \frac{l_i}{K_i})$, are **equalized** across countries

Proposition

Home's investment share of world GDP in any period t is determined by its initial capital intensity.

$$\eta_t = \frac{K_{init}}{K_{init}^g}$$

Results (1)

Investment comovement:

$$I_t \propto \eta_{init} Y_t^g$$

Current account falls:

$$extit{NFA}_t \equiv q_t^f k_{t+1}^{h,f} \cdot N_t^h - q_t^h k_{t+1}^{f,h} \cdot N_t^f$$
 $extit{CA}_t \equiv \Delta extit{NFA}_t = S_t^y - q_t^h K_{t+1}^h - (S_{t-1}^y - q_{t-1}^h K_t^h)$

• Evolution of Capital Stock: (labor share: $s_l = 1 - \alpha \gamma$)

$$In(\tilde{k}_{t+1}^{j}) = In\Theta + (1 - \phi s_{l})In(\tilde{k}_{t}^{j}) + \phi s_{l}In\left(\sum_{i} \mu_{i} \eta_{i0}^{j}\right) + \phi s_{l}\left(In\tilde{N}_{t}^{g} - In\tilde{N}_{t}^{j}\right) - (\epsilon_{N,t+1}^{j} + \epsilon_{A,t+1}^{j})$$

A Graphical Exposition

Figure: Impact effect of a change in $\frac{k^j}{k^w}$

Long-Run Behavior

Sector-level effective-capital-labor ratio:

$$ilde{k_i^j} \propto \left[\left(rac{1}{eta} + 1
ight) \left(rac{1}{s_l} - 1
ight)
ight]^{-1/s_l}$$

Country level:

$$ilde{k} \propto \eta_{ extit{init}} igg[1 + \left(rac{ ilde{ extit{N}}^*}{ ilde{ extit{N}}}
ight) igg]$$

- FPE attained after one period
- Speed of mean reversion depends on ϕ and labor share, s_l

Outline

- 1 A Stochastic Two-Country Multi-Sector Model
- 2 Case I: The Composition Effect
- 3 General Case: Numerical Solutions
- 4 An Application: Lucas Puzzle Revisited
- **5** Conclusion

The General Case

- Special Case $(\alpha_1 = 0)$:
- FPE occurs after one period (through labor reallocation)
- Investment and Asset Prices always comove
- General Case:
- $-k_{it} \neq k_{it}^*$
- composition effect and "convergence" effect are competing
- Quantitative exercise: composition effect dominates
- Show conditions under which one dominates the other

Quantitative Analysis

Benchmark Parameter Values		
Preferences	$\beta = 0.45$	$\gamma = 0.61$
	ho=1	heta=1
Technology	$\alpha_1 = 0.52$	$\alpha_2 = 0.11$
	b = 0.2	

Table: Parameters for Simulation

- α_i from OECD Annual National Accounts (Cunat and Maffezzoli (2004))
- γ_i : the share of each sector in total OECD value added
- From Data, $s_k = 0.36$, weighted variance=0.04
- b to match output adjustment costs paid over a 20 year period
- Assume initally that capital-labor ratio in North is six times that of South
- Initial technology level chosen to normalize North's income per capital to 1, South's to one-seventh of that of North: Aⁿ = 2.48, A^s = 1.2.

Comparison: One sector and Two Sector model

Figure: A Foreign Labor Force Boom in the one and two sector case.

When is the Composition Effect Strong Enough?

Relevant Statistic:

weighted variance=
$$\sum_{i=1}^{m} (\alpha_i - s_k)^2 \gamma_i$$

From the data

$$s_k = \sum_{i=1}^m \alpha_i \gamma_i = 0.36$$

weighted variance = 0.04

• Experiment: hold constant s_k , vary the weighted variance.

Outline

- 1 A Stochastic Two-Country Multi-Sector Model
- 2 Case I: The Composition Effect
- **3** General Case: Numerical Solutions
- 4 An Application: Lucas Puzzle Revisited
- **5** Conclusion

Application: The Lucas Puzzle Revisited

- A main explanation to the "Lucas Puzzle": complementary factors are low in poor countries
- In a multi-sector framework, equalization of returns does not imply little capital flows once countries integrate
- Trade induces capital flows

A Globalization Experiment

Suppose countries North and South are initially in autarky:

$$\frac{p_{\rm s}^{aut,n}}{p_{\rm c}^{aut,n}} < \frac{p_{\rm s}^{aut,s}}{p_{\rm c}^{aut,s}}$$

- Trade and financial liberalization:
- p_{steel} ↑ for North , p_{cotton} ↑ for South \Rightarrow specialization
- Composition effect causes investment demand ↑ in North

Outline

- 1 A Stochastic Two-Country Multi-Sector Model
- 2 Case I: The Composition Effect
- General Case: Numerical Solutions
- 4 An Application: Lucas Puzzle Revisited
- **5** Conclusion

Concluding Remarks

- Trade + Capital Flows should be jointly analyzed
- Is the canonical international-macro workhorse model missing an important dimension?
- Potential link between global imbalances and specialization

Back to original Question:

- Younger and fast-growing developing countries may help sustain asset prices in an aging North
- All of this depends on how integrated the world is

An Empirical Exercise

- Is there a link between specialization and the current account?
- Do changes in demographics affect specialization patterns?

A Measure of Specialization, α_c , for each country c:

$$x_{cz} = \beta_c + \alpha_c \cdot k_z + \alpha_{c,2} \cdot s_z + \epsilon_{cz}$$

where x_{cz} is the country c's market share of U.S. imports of good z, k and s are the capital and skill intensity of industry z.

- α_c is a measure of country c's "revealed comparative advantage" in capital-intensive sectors.
- Data:
- Factor intensity data: NBER manufacturing productivity database.
- U.S. imports: Feenstra (4-digit SIC).

Table: South's "RCA" in Capital Intensity over Time

	1989	1993	1998
α_c	-0.38***	-0.65***	-0.60***
	(800.0)	(800.0)	(0.007)
	2002	2006	
	-0.66***	-0.77 ***	•
	(0.006)	(0.006)	
R^2	0.32	0.32	0.29
	0.25	0.27	

Aggregate South is defined to be countries with per capita GDP less than 50% of that of U.S. at PPP.

An Example				
	α_c	CA	Predicted ΔCA	
India	-0.7	1.38		
U.K.	2.9	-1.56	0.72	
China	-2.19	2.4		
Australia	1.1	-3.7	1.22	

- In 2002, If India had U.K's degree of specialization, the predicted difference in CA amounts to $\frac{0.72}{2.94} = 25\%$ of the difference in actual *CA*.
- If China had Australia's degree of specialization, the predicted difference in CA amounts to $\frac{1.22}{6.1} = 20\%$ of the difference in actual *CA*.

	Pooled	Pooled	Between	Within	F-E
	(1)	(2)	(3)	(4)	(5)
α_c	-0.193***	-0.19***	-0.30**	-0.17^{*}	-0.23***
	(0.07)	(0.074)	(0.127)	(0.09)	(0.07)
Openness		1.98***	1.54	-0.42	1.25
		(0.69)	(1.03)	(0.28)	(1.09)
Annual GDP growth		-0.03	2.8	-0.1***	-0.15
		(0.074)	(12.7)	(0.01)	(0.07)
Population growth		-0.67**	-1.3	-0.22	-0.08
		(0.27)	(13.5)	(0.35)	(0.38)
Country Fixed Effect	No	No		Yes	Yes
Year Fixed Effect	No	No	-	No	Yes
R^2	0.01	0.05	0.07	0.55	0.20
Number of Observations	450	450	86	450	450

- $CA_{ct} = \alpha + \beta_1 \cdot \alpha_{ct} + \gamma' Z_{ct} + u_{ct}$
- Period: 1989, 1993, 1998, 2002, 2006 for all countries
- Additional Controls: GDP, population growth, GDP per capita
- Pooled (2) uses the average current account over a period as a dependent variable, CA_t .

Figure: An anticipated Foreign labor force boom that occurs at t = 4.

	Pooled	Pooled	Within	F-E
	(1)	(2)	(3)	(4)
Share	-0.03***	-0.03***	-0.25***	-0.27***
	(0.005)	(0.02)	(0.01)	(0.02)
Annual GDP growth		-0.05***	0.04***	0.03***
		(.0045)	(0.005)	(0.005)
Initial Openness		0.62***	1.61***	1.85***
		(0.07)	(0.17)	(0.18)
Initial Capital Stock		0	0	0
Country Fixed Effect	No	No	Yes	Yes
Year Fixed Effect	No	No	No	Yes
R^2	0.02	0.04	0.62	0.64
Number of Observations	350	350	350	350

- $\alpha_{ct} = \beta_c + Share_{ct} + \gamma' Z_{ct} + \epsilon_{ct}$
- Share of working age population in total population

Sensitivity to the Adjustment Cost Parameter and Factor Intensities						
Two-Sector	CA:	T=1	q:	T=1	T=5	
(1) Varying Adjustment Costs	(1) Varying Adjustment Costs					
b=0.05		-8.37%		2.96%	0	
b= 0.1		-8%		5.04%	0	
b= 0.3		-7.04%		9.41%	0.31%	
b= 0.5		-6.43%		11.27%	1.12%	
(2) Varying Factor Intensity						
$\alpha_2/\alpha_1 = 1$		0.1%		-0.1%	0	
$\alpha_2/\alpha_1=3$		-4.84%		5.88%	0.1%	
$\alpha_2/\alpha_1=9$		-5.06%		6.08%	0.47%	
(3) Interaction						
High b and high α_2/α_1		-7.57%		16.75%	4.04%	
low b and high α_2/α_1		-9.10%		5.45%	0	
high b and low $lpha_2/lpha_1$		-2.95%		5.97%	2.85%	
(4) Elasticity of Substitution						
$\theta = 0.8$		-5.77%		6.29%	0.1%	
$\theta = 4$		-6.31%		6.41%	0.08%	
(5) Risk Aversion						
$\rho = 0.8$		-6.33%		6.71%	0.17%	
$\rho=2$		-4.56%		4.4%	0.44%	
One-Sector						
b=0.1		0.01%		-0.3%	0	
b= 0.3		0.02%		-1%	0	
b= 0.5		1.22%		-4%	0	

An Illustration of Composition Effects

•
$$\hat{l}_t = \hat{\eta_t} + \hat{Y_t^g}$$

Investment in Home			
	$\alpha = 0.3$	$\alpha_1 = 0.1, \ \alpha_2 = 0.5$	
$\hat{\eta_i}$	-11.13%	-12.46%, -1.4%	
w.a. $\hat{\eta}$		-3.24%	
Υ̂g	+10%	+6.86%	
Ĵ	-1.13%	+3.62%	

Table: Impact Effect of an unexpected 20% labor force boom in Foreign, $\gamma_i = 0.5$.

The Future: Demographic heterogeneity

