Discussion of “The Return of the Wage Phillips Curve”

Per Krusell
IIES, Stockholms Universitet

May 2010
The New Zealand version:

$$\pi w = a - bu.$$

Problems: Pretty soon did not match data so well. Hard to come up with theory for it ($$\pi w = a - bu$$ may be rationalizable).

The Catalan version:

$$\pi w_t = \beta E_t (\pi w_t + 1) - \lambda w\varphi (u_t - u_n).$$

or, with an additional term due to indexation,

$$\pi w_t = \alpha + \gamma \bar{\pi} p_t - 1 + \beta E_t (\pi w_t + 1 - \gamma \bar{\pi} p_t) - \lambda w\varphi (u_t - u_n).$$

News:

Greek letters (structural parameters).
Forward-looking.

Per Krusell
IIES, Stockholms Universitet
Discussion of “The Return of the Wage Phillips Curve”
May 2010
The New Zealand version:

\[\pi^w = a - bu \]
The background

The New Zealand version:

\[\pi^w = a - bu \]

Problems:

Pretty soon did not match data so well. Hard to come up with theory for it (\(\pi^w = a - bu \) may be rationalizable).

The Catalan version:

or, with an additional term due to indexation,

\[\pi^w_t = \alpha + \gamma \bar{\pi} p_t - 1 + \beta E_t (\pi^w_t + 1 - \gamma \bar{\pi} p_t) - \lambda w \phi (u_t - u_n) \]

News:

Greek letters (structural parameters).

Forward-looking.

Per Krusell
IIES, Stockholms Universitet

Discussion of “The Return of the Wage Phillips Curve”

May 2010
The New Zealand version:

\[\pi^w = a - bu \]

Problems:
- Pretty soon did not match data so well.
The background

The New Zealand version:

\[\pi^w = a - bu \]

Problems:

- Pretty soon did not match data so well.
- Hard to come up with theory for it (\(w = a - bu \) may be rationalizable).
The background

The New Zealand version:

\[\pi^w = a - bu \]

Problems:
- Pretty soon did not match data so well.
- Hard to come up with theory for it \((w = a - bu\) may be rationalizable).

The Catalan version:

\[\pi^w = a - bu \]

or, with an additional term due to indexation,

\[\pi^w = \alpha + \gamma \bar{\pi} p + \beta E_t \left(\pi^w + 1 - \gamma \bar{\pi} p \right) - \lambda w \phi \left(u_t - u_n \right) \]
The background

The New Zealand version:

\[\pi^w = a - bu \]

. Problems:

- Pretty soon did not match data so well.
- Hard to come up with theory for it (\(w = a - bu \) may be rationalizable).

The Catalan version:

\[\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w \varphi(u_t - u^n). \]
The background

The New Zealand version:

$$\pi^w = a - bu$$

Problems:
- Pretty soon did not match data so well.
- Hard to come up with theory for it ($w = a - bu$ may be rationalizable).

The Catalan version:

$$\pi^w_t = \beta E_t(\pi^w_{t+1}) - \lambda_w \varphi(u_t - u^n).$$

or, with an additional term due to indexation,

$$\pi^w_t = \alpha + \gamma \pi^p_{t-1} + \beta E_t(\pi^w_{t+1} - \gamma \pi^p_t) - \lambda_w \varphi(u_t - u^n).$$
The background

The New Zealand version:

\[\pi^w = a - bu \]

Problems:
- Pretty soon did not match data so well.
- Hard to come up with theory for it \((w = a - bu\) may be rationalizable).

The Catalan version:

\[\pi^w_t = \beta E_t(\pi^w_{t+1}) - \lambda w \varphi(u_t - u^n). \]

or, with an additional term due to indexation,

\[\pi^w_t = \alpha + \gamma \bar{\pi}_{t-1}^p + \beta E_t(\pi^w_{t+1} - \gamma \bar{\pi}_t^p) - \lambda w \varphi(u_t - u^n). \]

News:
The New Zealand version:

\[\pi^w = a - bu \]

Problems:
- Pretty soon did not match data so well.
- Hard to come up with theory for it (\(w = a - bu \) may be rationalizable).

The Catalan version:

\[\pi^w_t = \beta E_t(\pi^w_{t+1}) - \lambda w \varphi(u_t - u^n). \]

or, with an additional term due to indexation,

\[\pi^w_t = \alpha + \gamma \pi^p_{t-1} + \beta E_t(\pi^w_{t+1} - \gamma \pi^p_t) - \lambda w \varphi(u_t - u^n). \]

News:
- Greek letters (structural parameters).
The New Zealand version:

\[\pi^w = a - bu \]

Problems:
- Pretty soon did not match data so well.
- Hard to come up with theory for it (\(w = a - bu \) may be rationalizable).

The Catalan version:

\[\pi^w_t = \beta E_t(\pi^w_{t+1}) - \lambda w \varphi(u_t - u^n). \]

or, with an additional term due to indexation,

\[\pi^w_t = \alpha + \gamma \bar{\pi}^p_{t-1} + \beta E_t(\pi^w_{t+1} - \gamma \bar{\pi}^p_t) - \lambda w \varphi(u_t - u^n). \]

News:
- Greek letters (structural parameters).
- Forward-looking.
The theory behind it

Monopolistic labor supply (EHL).

The flex-price version is:

\[w_t - p_t - mrs_t \equiv \mu \]

\[w_t = \theta w_t - 1 + (1 - \theta) w^* t, \]

\[w^* t = \mu w_t + (1 - \beta \theta) \sum_{k=0}^{\infty} (\beta \theta)^k E_t (mrs_t + k + p_t + k) \].

This gives the fundamental of wage inflation (EHL)

\[\pi_w t = -\lambda w_t \sum_{k=0}^{\infty} \beta^k E_t (\mu w_t + k - \mu w_t) \],

or

\[\pi_w t = \beta E_t (\pi_w t + 1) - \lambda w_t (\mu w_t - \mu w_t) \].

Now we are "almost" there.

Per Krusell

IIES, Stockholm University

Discussion of “The Return of the Wage Phillips Curve”

May 2010
Monopolistic labor supply (EHL).
Monopolistic labor supply (EHL). Flex-price version is:

\[w_t - p_t - mrs_t \equiv \mu_t^w = \text{markup} = \mu^w > 0. \]
1 Monopolistic labor supply (EHL). Flex-price version is:

\[w_t - p_t - mrs_t \equiv \mu^w_t = \text{markup} = \mu^w > 0. \]

2 Nominal stickiness:

\[w_t = \theta w w_{t-1} + (1 - \theta w)w^*_t, \]

\[w^*_t = \mu_w + (1 - \beta \theta w) \sum_{k=0}^{\infty} (\beta \theta w)^k E_t(mrs_{t+k} + p_{t+k}). \]
The theory behind it

1. Monopolistic labor supply (EHL). Flex-price version is:

\[w_t - p_t - mrs_t \equiv \mu^w_t = \text{markup} = \mu^w > 0. \]

2. Nominal stickiness:

\[w_t = \theta_w w_{t-1} + (1 - \theta_w) w^*_t, \]

\[w^*_t = \mu_w + (1 - \beta \theta_w) \sum_{k=0}^{\infty} (\beta \theta_w)^k E_t (mrs_{t+k} + p_{t+k}). \]

This gives the fundamental of wage inflation (EHL)

\[\pi^w_t = -\lambda w \sum_{k=0}^{\infty} \beta^k E_t (\mu^w_{t+k} - \mu^w), \]
1 Monopolistic labor supply (EHL). Flex-price version is:
\[w_t - p_t - mrs_t \equiv \mu_t^w = \text{markup} = \mu^w > 0. \]

2 Nominal stickiness:
\[w_t = \theta_w w_{t-1} + (1 - \theta_w) w^*_t, \]
\[w^*_t = \mu_w + (1 - \beta \theta_w) \sum_{k=0}^{\infty} (\beta \theta_w)^k E_t(\text{mrs}_{t+k} + p_{t+k}). \]

This gives the fundamental of wage inflation (EHL)
\[\pi_t^w = -\lambda_w \sum_{k=0}^{\infty} \beta^k E_t(\mu^w_{t+k} - \mu^w), \]
or
\[\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w(\mu_t^w - \mu^w). \]
Monopolistic labor supply (EHL). Flex-price version is:

\[w_t - p_t - mrs_t \equiv \mu^w_t = \text{markup} = \mu^w > 0. \]

Nominal stickiness:

\[w_t = \theta_w w_{t-1} + (1 - \theta_w) w^*_t, \]

\[w^*_t = \mu_w + (1 - \beta \theta_w) \sum_{k=0}^{\infty} (\beta \theta_w)^k E_t(mrs_{t+k} + p_{t+k}). \]

This gives the fundamental of wage inflation (EHL)

\[\pi^w_t = -\lambda_w \sum_{k=0}^{\infty} \beta^k E_t(\mu^w_{t+k} - \mu^w), \]

or

\[\pi^w_t = \beta E_t(\pi^w_{t+1}) - \lambda_w(\mu^w_t - \mu^w). \]

Now we are “almost” there.
The theory behind it, cont’d

EHL get mrs from representative household with log

\[C - \chi t \int_0^1 N_t(i)1 + \phi_1 + \phi_i \phi \]

Mr_i is a “specialized yeoman farmer” with monopoly power.

Here, in contrast: indivisible labor i stands for “sector”; within each sector a continuum of workers j who differ in cost of effort ϕ_j, assignment efficient =>

\[\int N_t(i)j \phi = N_t(i)1 + \phi_1 + \phi_i . \]

As in EHL, perfect consumption insurance.

But now we can define unemployment of individuals j (due to high monopoly wage): those between \(N_t(i) \) and \(L_t(i) \), where

\[w_t - p_t \equiv mrs_t(l_t) = c_t + \phi_l + \xi_t . \]

Define \(u_t \equiv l_t - n_t \).

This delivers \(\mu w_t = w_t - p_t - mrs(n_t) = \phi u_t \), and \(\mu w_t \equiv \phi u_t n_t \).

Done.

High current markup (when \(u \) is high) => adjust wages up.
EHL get \textit{mrs} from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;$$
EHL get *mrs* from representative household with

\[\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} di; \]

Mr \(i \) is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)
EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;$$

Mr i is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:

But now we can define unemployment of individuals j (due to high monopoly wage): those between $N_t(i)$ and $L_t(i)$, where $w_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t$.

Define $u_t \equiv l_t - n_t$.

This delivers $\mu w_t = w_t - p_t - mrs(n_t) = \varphi u_t$, and $\mu w \equiv \varphi u_n$.

Done.

High current markup (when u is high) \Rightarrow adjust wages up.
EHL get \(mrs \) from representative household with

\[
\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;
\]

Mr \(i \) is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:
- indivisible labor
The theory behind it, cont’d

EHL get \(mrs \) from representative household with

\[
\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;
\]

Mr \(i \) is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:

- indivisible labor
- \(i \) stands for “sector”; within each sector a continuum of workers \(j \) who differ in cost of effort

Per Krusell
IIES, Stockholms Universitet ()
Discussion of “The Return of the Wage Phillips Curve”
May 2010
EHL get *mrs* from representative household with

\[\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di; \]

Mr \(i \) is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:

- indivisible labor
- \(i \) stands for “sector”; within each sector a continuum of workers \(j \) who differ in cost of effort
- cost of effort \(j^\varphi \), assignment efficient \(\Rightarrow \int_0^{N_t(i)} j^\varphi = \frac{N_t(i)^{1+\varphi}}{1+\varphi} \).
The theory behind it, cont’d

EHL get \(mrs \) from representative household with

\[
\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;
\]

Mr \(i \) is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:

- indivisible labor
- \(i \) stands for “sector”; within each sector a continuum of workers \(j \) who differ in cost of effort
- cost of effort \(j^\varphi \), assignment efficient => \(\int_0^{N_t(i)} j^\varphi = \frac{N_t(i)^{1+\varphi}}{1+\varphi} \).

As in EHL, perfect consumption insurance.
EHL get \(mrs \) from representative household with

\[
\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;
\]

Mr \(i \) is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:

- indivisible labor
- \(i \) stands for “sector”; within each sector a continuum of workers \(j \) who differ in cost of effort
- cost of effort \(j^\varphi \), assignment efficient \(\Rightarrow \int_0^{N_t(i)} j^\varphi = \frac{N_t(i)^{1+\varphi}}{1+\varphi} \).

As in EHL, perfect consumption insurance.

But now we can define unemployment of individuals \(j \) (due to high monopoly wage): those between \(N_t(i) \) and \(L_t(i) \), where \(\omega_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t \).
EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} di;$$

Mr i is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:

- indivisible labor
- i stands for “sector”; within each sector a continuum of workers j who differ in cost of effort
- cost of effort j^φ, assignment efficient $\Rightarrow \int_0^{N_t(i)} j^\varphi = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$.

As in EHL, perfect consumption insurance.

But now we can define unemployment of individuals j (due to high monopoly wage): those between $N_t(i)$ and $L_t(i)$, where $w_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t$. Define $u_t \equiv l_t - n_t$.
EHL get \textit{mrs} from representative household with

\[
\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} \, di;
\]

Mr \, i \text{ is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)}

Here, in contrast:

- indivisible labor
- \(i \) stands for “sector”; within each sector a continuum of workers \(j \) who differ in cost of effort
- cost of effort \(j^\varphi \), assignment efficient \(\Rightarrow \int_0^{N_t(i)} j^\varphi = \frac{N_t(i)^{1+\varphi}}{1+\varphi} \).

As in EHL, perfect consumption insurance.

But now we can define unemployment of individuals \(j \) (due to high monopoly wage): those between \(N_t(i) \) and \(L_t(i) \), where \(\omega_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t \). Define \(u_t \equiv l_t - n_t \).

This delivers \(\mu_t^w = \omega_t - p_t - mrs(n_t) = \varphi u_t \), and \(\mu^w \equiv \varphi u^n \).
EHL get \(mrs \) from representative household with

\[
\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;
\]

Mr \(i \) is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.)

Here, in contrast:
- indivisible labor
- \(i \) stands for “sector”; within each sector a continuum of workers \(j \) who differ in cost of effort
- cost of effort \(j^\varphi \), assignment efficient => \(\int_0^{N_t(i)} j^\varphi = \frac{N_t(i)^{1+\varphi}}{1+\varphi} \).

As in EHL, perfect consumption insurance.

But now we can define unemployment of individuals \(j \) (due to high monopoly wage): those between \(N_t(i) \) and \(L_t(i) \), where \(w_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t \). Define \(u_t \equiv l_t - n_t \).

This delivers \(\mu_t^w = w_t - p_t - mrs(n_t) = \varphi u_t \), and \(\mu^w \equiv \varphi u^n \).

Done.
EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1 + \varphi} \, di;$$

Mr i is a “specialized yeoman farmer” with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for “sector”; within each sector a continuum of workers j who differ in cost of effort
- cost of effort j^φ, assignment efficient $\Rightarrow \int_0^{N_t(i)} j^\varphi = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$.

As in EHL, perfect consumption insurance.

But now we can define unemployment of individuals j (due to high monopoly wage): those between $N_t(i)$ and $L_t(i)$, where

$$w_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t.\ \text{Define}\ u_t \equiv l_t - n_t.$$

This delivers $\mu_t^w = w_t - p_t - mrs(n_t) = \varphi u_t$, and $\mu^w \equiv \varphi u^n$. Done. High current markup (when u is high)\Rightarrow adjust wages up.
Comments

Rogerson/Hansen’s indivisible labor. If $\phi = 0$, gives linear in N. (For $\phi = 0$, u would drop out of NKWPC.)

Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.

Is j permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.

Perhaps i is stochastic? Then it is more like “lottery model”; can use buffer saving as motivation.

Should the union interpretation be taken seriously? If so, look at cross-sectoral data.

Empirical section: remarkably good results.
Nifty construction of labor supply. Background:
Nifty construction of labor supply. Background:

- Rogerson/Hansen’s indivisible labor. \(\varphi = 0 \), gives linear in \(N \). (For \(\varphi = 0 \), \(u \) would drop out of NKWPC.)
Nifty construction of labor supply. Background:

1. Rogerson/Hansen’s indivisible labor. $\varphi = 0$, gives linear in N. (For $\varphi = 0$, u would drop out of NKWPC.)

2. Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.
Nifty construction of labor supply. Background:

1. Rogerson/Hansen’s indivisible labor. $\phi = 0$, gives linear in N. (For $\phi = 0$, u would drop out of NKWPC.)
2. Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.
3. Is j permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.
Nifty construction of labor supply. Background:

1. Rogerson/Hansen’s indivisible labor. \(\varphi = 0 \), gives linear in \(N \). (For \(\varphi = 0 \), \(u \) would drop out of NKWPC.)
2. Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.
3. Is \(j \) permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.
4. Perhaps \(i \) is stochastic? Then it is more like “lottery model”; can use buffer saving as motivation.
Nifty construction of labor supply. Background:

1. Rogerson/Hansen's indivisible labor. $\varphi = 0$, gives linear in N. (For $\varphi = 0$, u would drop out of NKWPC.)

2. Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.

3. Is j permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.

4. Perhaps i is stochastic? Then it is more like “lottery model”; can use buffer saving as motivation.

Should the union interpretation be taken seriously? If so, look at cross-sectoral data.
Nifty construction of labor supply. Background:

1. Rogerson/Hansen’s indivisible labor. $\varphi = 0$, gives linear in N. (For $\varphi = 0$, u would drop out of NKWPC.)

2. Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.

3. Is j permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.

4. Perhaps i is stochastic? Then it is more like “lottery model”; can use buffer saving as motivation.

Should the union interpretation be taken seriously? If so, look at cross-sectoral data.

Empirical section: remarkably good results.
Main accomplishments of the paper:
Main accomplishments of the paper:

1. Found a way to get back home to equations we like.

Less important for me.

The empirical specification seems to work pretty well, has structural interpretation.

Labor-market theory. Here I am not convinced of the micro story.

Calvo fairy. Bewley? May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).

Active labor-market (search) policy not needed. I think search is important.

But overall this is a really special (=good) paper. However . . .

Per Krusell
IIES, Stockholms Universitet

Discussion of “The Return of the Wage Phillips Curve”
May 2010
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.

3. Labor-market theory.

4. But overall this is a really special (=good) paper. However . . .

Per Krusell IIES, Stockholms Universitet () Discussion of “The Return of the Wage Phillips Curve” May 2010 6 / 6
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.
2. The empirical specification seems to work pretty well, has structural interpretation.
3. Labor-market theory. Here I am not convinced of the micro story.
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.

3. Labor-market theory. Here I am not convinced of the micro story.
 - Calvo fairy.
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.

3. Labor-market theory. Here I am not convinced of the micro story.
 - Calvo fairy. Bewley?
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.

3. Labor-market theory. Here I am not convinced of the micro story.
 - Calvo fairy. Bewley?
 - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.

3. Labor-market theory. Here I am not convinced of the micro story.
 - Calvo fairy. Bewley?
 - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).
 - Active labor-market (search) policy not needed. I think search is important.
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.

3. Labor-market theory. Here I am not convinced of the micro story.
 - Calvo fairy. Bewley?
 - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).
 - Active labor-market (search) policy not needed. I think search is important.

4. But overall this is a really special (=good) paper.
Main accomplishments of the paper:

1. Found a way to get back home to equations we like. Less important for me.

2. The empirical specification seems to work pretty well, has structural interpretation.

3. Labor-market theory. Here I am not convinced of the micro story.
 - Calvo fairy. Bewley?
 - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).
 - Active labor-market (search) policy not needed. I think search is important.

4. But overall this is a really special (=good) paper. However …
...THIS is the special one

Mourinho podría entrenar al Real Madrid

El fichaje de Mourinho por el Real Madrid, «prácticamente arreglado»

Mourinho considera “un desafío, un aliciente” entrenar al Real Madrid y aseguró: “pienso que se va a consumar”

Per Krusell
IIES, Stockholms Universitet

Discussion of “The Return of the Wage Phillips Curve”
May 2010