# Discussion of "The Return of the Wage Phillips Curve"

#### Per Krusell

IIES, Stockholms Universitet

May 2010

The New Zealand version:

$$\pi^w = a - bu$$

.

The New Zealand version:

$$\pi^w = a - bu$$

. Problems:

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.
  - Hard to come up with theory for it (w = a bu may be rationalizable).

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.
  - Hard to come up with theory for it (w = a bu may be rationalizable).

The Catalan version:

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.
  - Hard to come up with theory for it (w = a bu may be rationalizable).

The Catalan version:

$$\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w \varphi(u_t - u^n).$$

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.
  - Hard to come up with theory for it (w = a bu may be rationalizable).

The Catalan version:

$$\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w \varphi(u_t - u^n).$$

or, with an additional term due to indexation,

$$\pi_t^w = \alpha + \gamma \bar{\pi}_{t-1}^p + \beta E_t(\pi_{t+1}^w - \gamma \bar{\pi}_t^p) - \lambda_w \varphi(u_t - u^n).$$

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.
  - Hard to come up with theory for it (w = a bu may be rationalizable).

The Catalan version:

$$\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w \varphi(u_t - u^n).$$

or, with an additional term due to indexation,

$$\pi_t^w = \alpha + \gamma \bar{\pi}_{t-1}^p + \beta E_t(\pi_{t+1}^w - \gamma \bar{\pi}_t^p) - \lambda_w \varphi(u_t - u^n).$$

News:

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.
  - Hard to come up with theory for it (w = a bu may be rationalizable).

The Catalan version:

$$\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w \varphi(u_t - u^n).$$

or, with an additional term due to indexation,

$$\pi_t^w = \alpha + \gamma \bar{\pi}_{t-1}^p + \beta E_t(\pi_{t+1}^w - \gamma \bar{\pi}_t^p) - \lambda_w \varphi(u_t - u^n).$$

News:

• Greek letters (structural parameters).

The New Zealand version:

$$\pi^w = a - bu$$

- . Problems:
  - Pretty soon did not match data so well.
  - Hard to come up with theory for it (w = a bu may be rationalizable).

The Catalan version:

$$\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w \varphi(u_t - u^n).$$

or, with an additional term due to indexation,

$$\pi_t^w = \alpha + \gamma \bar{\pi}_{t-1}^p + \beta E_t(\pi_{t+1}^w - \gamma \bar{\pi}_t^p) - \lambda_w \varphi(u_t - u^n).$$

News:

- Greek letters (structural parameters).
- Forward-looking.

Monopolistic labor supply (EHL).

Monopolistic labor supply (EHL). Flex-price version is:

$$w_t - p_t - mrs_t \equiv \mu_t^w = \text{markup } = \mu^w > 0.$$

Monopolistic labor supply (EHL). Flex-price version is:

$$w_t - p_t - mrs_t \equiv \mu_t^w = \text{markup } = \mu^w > 0.$$

2 Nominal stickiness:

$$w_t = \theta_w w_{t-1} + (1 - \theta_w) w_t^*,$$

$$w_t^* = \mu_w + (1 - \beta \theta_w) \sum_{k=0}^{\infty} (\beta \theta_w)^k E_t(mrs_{t+k} + p_{t+k}).$$

Monopolistic labor supply (EHL). Flex-price version is:

$$w_t - p_t - mrs_t \equiv \mu_t^w = \text{markup } = \mu^w > 0.$$

Nominal stickiness:

$$w_{t} = \theta_{w} w_{t-1} + (1 - \theta_{w}) w_{t}^{*},$$
  $w_{t}^{*} = \mu_{w} + (1 - \beta \theta_{w}) \sum_{k=0}^{\infty} (\beta \theta_{w})^{k} E_{t}(mrs_{t+k} + p_{t+k}).$ 

This gives the fundamental of wage inflation (EHL)

$$\pi_t^w = -\lambda_w \sum_{k=0}^{\infty} \beta^k E_t(\mu_{t+k}^w - \mu^w),$$

Monopolistic labor supply (EHL). Flex-price version is:

$$w_t - p_t - mrs_t \equiv \mu_t^w = \text{markup } = \mu^w > 0.$$

Nominal stickiness:

$$w_t = \theta_w w_{t-1} + (1 - \theta_w) w_t^*,$$

$$w_t^* = \mu_w + (1 - \beta \theta_w) \sum_{k=0}^{\infty} (\beta \theta_w)^k E_t(mrs_{t+k} + p_{t+k}).$$

This gives the fundamental of wage inflation (EHL)

$$\pi_t^w = -\lambda_w \sum_{k=0}^{\infty} \beta^k E_t(\mu_{t+k}^w - \mu^w),$$

or

$$\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w(\mu_t^w - \mu^w).$$

Monopolistic labor supply (EHL). Flex-price version is:

$$w_t - p_t - mrs_t \equiv \mu_t^w = \text{markup } = \mu^w > 0.$$

Nominal stickiness:

$$w_t = \theta_w w_{t-1} + (1 - \theta_w) w_t^*,$$

$$\infty$$

$$w_t^* = \mu_w + (1 - \beta \theta_w) \sum_{k=0}^{\infty} (\beta \theta_w)^k E_t(mrs_{t+k} + p_{t+k}).$$

This gives the fundamental of wage inflation (EHL)

$$\pi_t^w = -\lambda_w \sum_{k=0}^{\infty} \beta^k E_t(\mu_{t+k}^w - \mu^w),$$

or

$$\pi_t^w = \beta E_t(\pi_{t+1}^w) - \lambda_w(\mu_t^w - \mu^w).$$

Now we are "almost" there.

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+arphi}}{1+arphi} di;$$

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+arphi}}{1+arphi} di;$$

Mr *i* is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.)

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr *i* is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

indivisible labor

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort
- cost of effort  $j^{\varphi}$ , assignment efficient =>  $\int_0^{N_t(i)} j^{\varphi} = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$ .

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort
- cost of effort  $j^{\varphi}$ , assignment efficient =>  $\int_0^{N_t(i)} j^{\varphi} = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$ .

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort
- cost of effort  $j^{\varphi}$ , assignment efficient =>  $\int_0^{N_t(i)} j^{\varphi} = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$ .

As in EHL, perfect consumption insurance.

① But now we can define unemployment of individuals j (due to high monopoly wage): those between  $N_t(i)$  and  $L_t(i)$ , where  $w_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t$ .

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort
- cost of effort  $j^{\varphi}$ , assignment efficient =>  $\int_0^{N_t(i)} j^{\varphi} = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$ .

As in EHL, perfect consumption insurance.

① But now we can define unemployment of individuals j (due to high monopoly wage): those between  $N_t(i)$  and  $L_t(i)$ , where  $w_t - p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t$ . Define  $u_t \equiv l_t - n_t$ .

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort
- cost of effort  $j^{\varphi}$ , assignment efficient =>  $\int_0^{N_t(i)} j^{\varphi} = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$ .

- ① But now we can define unemployment of individuals j (due to high monopoly wage): those between  $N_t(i)$  and  $L_t(i)$ , where  $w_t p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t$ . Define  $u_t \equiv l_t n_t$ .
- **5** This delivers  $\mu_t^w = w_t p_t mrs(n_t) = \varphi u_t$ , and  $\mu^w \equiv \varphi u^n$ .

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort
- cost of effort  $j^{\varphi}$ , assignment efficient =>  $\int_0^{N_t(i)} j^{\varphi} = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$ .

- ① But now we can define unemployment of individuals j (due to high monopoly wage): those between  $N_t(i)$  and  $L_t(i)$ , where  $w_t p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t$ . Define  $u_t \equiv l_t n_t$ .
- **1** This delivers  $\mu_t^w = w_t p_t mrs(n_t) = \varphi u_t$ , and  $\mu^w \equiv \varphi u^n$ . Done.

EHL get mrs from representative household with

$$\log C - \chi_t \int_0^1 \frac{N_t(i)^{1+\varphi}}{1+\varphi} di;$$

Mr i is a "specialized yeoman farmer" with monopoly power. (Commits to a wage, firm then determines labor supply.) Here, in contrast:

- indivisible labor
- i stands for "sector"; within each sector a continuum of workers j who differ in cost of effort
- cost of effort  $j^{\varphi}$ , assignment efficient =>  $\int_0^{N_t(i)} j^{\varphi} = \frac{N_t(i)^{1+\varphi}}{1+\varphi}$ .

- ① But now we can define unemployment of individuals j (due to high monopoly wage): those between  $N_t(i)$  and  $L_t(i)$ , where  $w_t p_t \equiv mrs_t(l_t) = c_t + \varphi l_t + \xi_t$ . Define  $u_t \equiv l_t n_t$ .
- This delivers  $\mu_t^w = w_t p_t mrs(n_t) = \varphi u_t$ , and  $\mu^w \equiv \varphi u^n$ . Done. High current markup (when u is high)=> adjust wages up.

• Nifty construction of labor supply. Background:

- Nifty construction of labor supply. Background:
  - **Q** Rogerson/Hansen's indivisible labor.  $\varphi = 0$ , gives linear in N. (For  $\varphi = 0$ , u would drop out of NKWPC.)

- Nifty construction of labor supply. Background:
  - **Q** Rogerson/Hansen's indivisible labor.  $\varphi=0$ , gives linear in N. (For  $\varphi=0$ , u would drop out of NKWPC.)
  - ② Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.

- Nifty construction of labor supply. Background:
  - **①** Rogerson/Hansen's indivisible labor.  $\varphi = 0$ , gives linear in N. (For  $\varphi = 0$ , u would drop out of NKWPC.)
  - Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.
  - **③** Is *j* permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.

- Nifty construction of labor supply. Background:
  - **①** Rogerson/Hansen's indivisible labor.  $\varphi = 0$ , gives linear in N. (For  $\varphi = 0$ , u would drop out of NKWPC.)
  - Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.
  - 3 Is *j* permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.
  - Perhaps i is stochastic? Then it is more like "lottery model"; can use buffer saving as motivation.

- Nifty construction of labor supply. Background:
  - **Q** Rogerson/Hansen's indivisible labor.  $\varphi=0$ , gives linear in N. (For  $\varphi=0$ , u would drop out of NKWPC.)
  - Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.
  - Is *j* permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.
  - Perhaps i is stochastic? Then it is more like "lottery model"; can use buffer saving as motivation.
- Should the union interpretation be taken seriously? If so, look at cross-sectoral data.

- Nifty construction of labor supply. Background:
  - **Q** Rogerson/Hansen's indivisible labor.  $\varphi=0$ , gives linear in N. (For  $\varphi=0$ , u would drop out of NKWPC.)
  - Cho, Mulligan, Chang and Kim also consider distribution of effort costs but less nifty.
  - 3 Is *j* permanent? Then transfers across workers really a necessary story, and hard to believe. Also, unions would split up.
  - Perhaps i is stochastic? Then it is more like "lottery model"; can use buffer saving as motivation.
- Should the union interpretation be taken seriously? If so, look at cross-sectoral data.
- Empirical section: remarkably good results.

• Found a way to get back home to equations we like.

• Found a way to get back home to equations we like. Less important for me.

- Found a way to get back home to equations we like. Less important for me.
- ② The empirical specification seems to work pretty well, has structural interpretation.

- Found a way to get back home to equations we like. Less important for me.
- 2 The empirical specification seems to work pretty well, has structural interpretation.
- Labor-market theory.

- Found a way to get back home to equations we like. Less important for me.
- The empirical specification seems to work pretty well, has structural interpretation.

- Found a way to get back home to equations we like. Less important for me.
- The empirical specification seems to work pretty well, has structural interpretation.
- - Calvo fairy.

- Found a way to get back home to equations we like. Less important for me.
- The empirical specification seems to work pretty well, has structural interpretation.
- Labor-market theory. Here I am not convinced of the micro story.
  - Calvo fairy. Bewley?

- Found a way to get back home to equations we like. Less important for me.
- The empirical specification seems to work pretty well, has structural interpretation.
- Labor-market theory. Here I am not convinced of the micro story.
  - Calvo fairy. Bewley?
  - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).

- Found a way to get back home to equations we like. Less important for me.
- The empirical specification seems to work pretty well, has structural interpretation.
- Labor-market theory. Here I am not convinced of the micro story.
  - Calvo fairy. Bewley?
  - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).
  - Active labor-market (search) policy not needed. I think search is important.

- Found a way to get back home to equations we like. Less important for me.
- The empirical specification seems to work pretty well, has structural interpretation.
- Labor-market theory. Here I am not convinced of the micro story.
  - Calvo fairy. Bewley?
  - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).
  - Active labor-market (search) policy not needed. I think search is important.
- But overall this is a really special (=good) paper.

- Found a way to get back home to equations we like. Less important for me.
- The empirical specification seems to work pretty well, has structural interpretation.
- Labor-market theory. Here I am not convinced of the micro story.
  - Calvo fairy. Bewley?
  - May need inefficient unemployment but for U.S. hard to swallow union story (for Europe it works perhaps for countries with very decentralized unions).
  - Active labor-market (search) policy not needed. I think search is important.
- But overall this is a really special (=good) paper. However...

# ... THIS is the special one



El fichaje de Mourinho por el Real Madrid, «practicamente

arreglado»

#### Mourinho podría entrenar al Real Madrid

El fichaje de Mourinho por el Real Madrid, «practicamente arreglado»

diariovasco.com / AGENCIAS | 24/05/2010

Mourinho considera "un desafío, un aliciente" entrenar al Real Madrid y aseguró: "pienso que se va a consumar"