Fiscal Policy in an Expectations Driven Liquidity Trap

 ${\rm Karel~Mertens^1~and~Morten~O.~Ravn^{2,3}} \\ {\rm Cornell~University^1,~University~College~London^2,~and~the~CEPR^3} \\$

May 2010

• Some famous economist: "You see computers everywhere except in the productivity statistics"

- Some famous economist: "You see computers everywhere except in the productivity statistics"
- Giuseppe Bertola: "You see multiple equilibria everywhere"

- Some famous economist: "You see computers everywhere except in the productivity statistics"
- Giuseppe Bertola: "You see multiple equilibria everywhere"
- " except at ESSIM"

Much of the world economy has witnessed a sharp recession during 2008-2010:

Relative large output losses and very low inflation

Much of the world economy has witnessed a sharp recession during 2008-2010:

- Relative large output losses and very low inflation
- Short term interest rates at or close to their lower floor i.e. a liquidity trap

Much of the world economy has witnessed a sharp recession during 2008-2010:

- Relative large output losses and very low inflation
- Short term interest rates at or close to their lower floor i.e. a liquidity trap

Policy responses have included

Much of the world economy has witnessed a sharp recession during 2008-2010:

- Relative large output losses and very low inflation
- Short term interest rates at or close to their lower floor i.e. a liquidity trap
 - Policy responses have included
- Unorthodox monetary policy interventions

Much of the world economy has witnessed a sharp recession during 2008-2010:

- Relative large output losses and very low inflation
- Short term interest rates at or close to their lower floor i.e. a liquidity trap

Policy responses have included

- Unorthodox monetary policy interventions
- Expansionary fiscal policies

Much of the world economy has witnessed a sharp recession during 2008-2010:

- Relative large output losses and very low inflation
- Short term interest rates at or close to their lower floor i.e. a liquidity trap

Policy responses have included

- Unorthodox monetary policy interventions
- Expansionary fiscal policies
- Important to understand whether either of these have been / should be effective

Much of the world economy has witnessed a sharp recession during 2008-2010:

- Relative large output losses and very low inflation
- Short term interest rates at or close to their lower floor i.e. a liquidity trap

Policy responses have included

- Unorthodox monetary policy interventions
- Expansionary fiscal policies
- Important to understand whether either of these have been / should be effective

This paper: Fiscal policy

Should we expect fiscal multipliers to be large?

- 1. Normal times (positive short-term interest rates):
 - Multipliers most likely moderate and smaller than one (Hall, 2009, Woodford, 2010) due to crowding-out unless allowance for non-standard features (Ravn, Schmitt-Grohe and Uribe, 2006, 2008, Monacelli and Perotti, 2009)
- 2. In a liquidity trap (constant short term interest rates):
 - Multipliers may be very large (Eggertsson, 2009, Christiano, Eichenbaum and Rebelo, 2009, Woodford, 2010)
- 3. Which instrument?
 - Demand management rather than supply-side policies (Eggertsson, 2009, Woodford, 2010)

_			
Tъ	h	ما	-1

	Labor Tax Multiplier	Government Spending Multiplier
Positive interest rate	0.19	0.3
Zero interest rate	-1.65	2.45

May 2010

- **1. The shock**: A temporary loss of confidence an expectations driven liquidity trap.
- 2. Global approach: We do not rely on local approximations

Main Findings

 Expectations driven liquidity trap associated with large drops in output and welfare

- **1. The shock**: A temporary loss of confidence an expectations driven liquidity trap.
- 2. Global approach: We do not rely on local approximations

Main Findings

- Expectations driven liquidity trap associated with large drops in output and welfare
- Oemand management become less effective than in normal times

- **1. The shock**: A temporary loss of confidence an expectations driven liquidity trap.
- 2. Global approach: We do not rely on local approximations

Main Findings

- Expectations driven liquidity trap associated with large drops in output and welfare
- Demand management become less effective than in normal times
- Supply side policies become more effective

- **1. The shock**: A temporary loss of confidence an expectations driven liquidity trap.
- 2. Global approach: We do not rely on local approximations

Main Findings

- Expectations driven liquidity trap associated with large drops in output and welfare
- Demand management become less effective than in normal times
- Supply side policies become more effective
- Higher inflation targets could be a really bad idea

• **Agents**: Households, intermediate goods producers, final goods producers, a government

- Agents: Households, intermediate goods producers, final goods producers, a government
- Intermediate goods producers: Monopolistically competitive, staggered prices a' la Calvo

- Agents: Households, intermediate goods producers, final goods producers, a government
- Intermediate goods producers: Monopolistically competitive, staggered prices a' la Calvo
- Monetary policy: Described by an interest rate rule. We do not allow for non-standard policies neither ex-ante nor ex-post.

- Agents: Households, intermediate goods producers, final goods producers, a government
- Intermediate goods producers: Monopolistically competitive, staggered prices a' la Calvo
- Monetary policy: Described by an interest rate rule. We do not allow for non-standard policies neither ex-ante nor ex-post.
- **Zero lower bound**: Equilibrium short-term interest rates must be non-negative in order to prevent an arbitrage.

- Agents: Households, intermediate goods producers, final goods producers, a government
- Intermediate goods producers: Monopolistically competitive, staggered prices a' la Calvo
- Monetary policy: Described by an interest rate rule. We do not allow for non-standard policies neither ex-ante nor ex-post.
- Zero lower bound: Equilibrium short-term interest rates must be non-negative in order to prevent an arbitrage.
- Fiscal policy: Government has choice of fiscal instruments (spending, labor income taxes, sales taxes). Must observe government budget constraint (Ricardian policies). We do look also at threats of being irresponsible.

The Model: Households

Preferences

$$V_0 = \mathbb{E}_0 \sum_{t=0}^{\infty} \left(\omega_t \beta\right)^t u\left(c_t, I_t, m_t\right)$$

Budget constraints

$$(1 + \tau_{c,t}) P_t c_t + M_t + \frac{B_t}{1 + i_t} \le (1 - \tau_{n,t}) W_t (1 - I_t)$$

$$+ B_{t-1} + M_{t-1} + T_t + \Pi_t$$

Bounded budget sets:

$$i_t \geq 0$$

Final Goods Producers

Technology

$$y_t = \left(\int_0^1 y_{it}^{1-1/\eta} di\right)^{1/(1-1/\eta)}$$

implying demand functions

$$y_{it} = \left(\frac{P_{it}}{P_t}\right)^{-\eta} y_t$$

 P_t is the price of the final good defined as

$$P_t = \left(\int_0^1 P_{it}^{1-\eta} di\right)^{1/(1-\eta)}$$

Intermediate goods producers:

ullet Produce a differentiated good with labor sold at price P_{it}

Intermediate goods producers:

- Produce a differentiated good with labor sold at price P_{it}
- Each period they receive the opportunity to reoptimize prices with probability $(1 \xi) \in (0, 1]$. The arrival of this event is Poisson

Intermediate goods producers:

- Produce a differentiated good with labor sold at price P_{it}
- Each period they receive the opportunity to reoptimize prices with probability $(1 \xi) \in (0, 1]$. The arrival of this event is Poisson
- Government pays intermediate goods producers a labor cost subsidy

Intermediate goods producers:

- Produce a differentiated good with labor sold at price P_{it}
- Each period they receive the opportunity to reoptimize prices with probability $(1 \xi) \in (0, 1]$. The arrival of this event is Poisson
- Government pays intermediate goods producers a labor cost subsidy
- Technology

$$y_{it} = n_{it}$$

Intermediate goods producers:

- ullet Produce a differentiated good with labor sold at price P_{it}
- Each period they receive the opportunity to reoptimize prices with probability $(1 \xi) \in (0, 1]$. The arrival of this event is Poisson
- Government pays intermediate goods producers a labor cost subsidy
- Technology

$$y_{it} = n_{it}$$

Profit maximization

$$\max \mathbb{E}_{t} \sum_{s=t}^{\infty} \xi^{s-t} Q_{t,s} \left(P_{it}^{*} - \left(1 - \tau_{r} \right) \mathit{W}_{s} \right) \left(\frac{P_{it}^{*}}{P_{s}} \right)^{-\eta} \mathit{y}_{s}$$

Government Policies and Constraints

Monetary policy

$$1+i_t=\phi\left(rac{\pi_t}{ ilde{\pi}}
ight)$$

- \bullet $ilde{\pi} \geq 1$ is the inflation target
- ullet $\phi\left(1
 ight)=eta^{-1} ilde{\pi},\,\phi\left(\cdot
 ight)\geq1$ for all π_{t} ,
- $\phi'\left(\cdot\right)$ is sufficiently large when $i_{t}>0$

Fiscal policy

$$\frac{B_t}{1+i_t} = B_{t-1} - M_t + M_{t-1} + D_t
D_t = P_t g_t + T_t + \frac{1}{\eta} W_t n_t - (\tau_{c,t} P_t c_t + \tau_{n,t} W_t (1-I_t))$$

Fiscal policies are Ricardian

Price Dispersion

• In equilibrium, aggregation implies that:

$$y_t = rac{1}{v_t} n_t = c_t + g_t$$
 $v_t = \int_0^1 \left(rac{P_{it}}{P_t}
ight)^{-\eta} di \geq 1$

- $oldsymbol{v}_t$ is a price dispersion term: An **inefficiency wedge** that arises due to sticky prices
- it follows a law of motion:

$$v_t = \xi \pi_t^{\eta} v_{t-1} + (1 - \xi) p_t^{*-\eta}$$

Equilibrium

 Putting all together, the equilibrium allocation and relevant prices are the solutions to the following set of stochastic difference equations:

$$\begin{array}{lcl} 1 & = & \beta\phi\left(\frac{\pi_{t}}{\tilde{\pi}}\right)\mathbb{E}_{t}\left[\frac{\frac{\omega_{t+1}}{(1+\tau_{c,t+1})\pi_{t+1}}}{\frac{\omega_{t}}{(1+\tau_{c,t})}}\frac{U_{c}\left(y_{t+1}-g_{t+1},1-v_{t+1}y_{t+1}\right)}{U_{c}\left(y_{t}-g_{t},1-v_{t}y_{t}\right)}\right] \\ p_{t}^{*}\pi_{t} & = & \frac{\mathbb{E}_{t}\sum_{s=t}^{\infty}\left(\beta\xi\right)^{s-t}\omega_{s}\frac{U_{l}\left(y_{s}-g_{s},1-v_{s}y_{s}\right)}{1-\tau_{n,s}}\left(\prod_{j=0}^{s-t}\pi_{t+j}\right)^{\eta}y_{s}}{\mathbb{E}_{t}\sum_{s=t}^{\infty}\left(\beta\xi\right)^{s-t}\omega_{s}\frac{U_{c}\left(y_{s}-g_{s},1-v_{s}y_{s}\right)}{1+\tau_{c,s}}\left(\prod_{j=0}^{s-t}\pi_{t+j}\right)^{\eta-1}y_{s}} \\ v_{t} & = & \xi\pi_{t}^{\eta}v_{t-1}+\left(1-\xi\right)p_{t}^{*-\eta} \\ 1 & = & \xi\pi_{t}^{\eta-1}+\left(1-\xi\right)p_{t}^{*1-\eta} \end{array}$$

ullet for a given initial condition v_{-1} and (Ricardian) fiscal policies and law of motion for the preference shock ω_t

Markovian Equilibria and Computation

We focus on Markov equilibria that can be generated from

$$egin{array}{lll} u_t & = & f\left(s_t
ight) \ s_{t+1} & = & h\left(s_t
ight) + arepsilon_t, \; s_0 \; {
m given} \end{array}$$

 s_t vector of state variables, u_t inflation/output vector, random innovation ε_t

 Equilibrium allocations and prices are then computed by using a polynomial approximation and time iteration

Multiple Equilibria

- Sargent and Wallace, 1975: Interest rate rules can lead to multiple equilibria
- Local indeterminacy and Taylor rules: Local determinacy of the intended equilibrium usually obtained by imposing the Taylor principle on the policy rule
- Global indeterminacy: With a lower bound on the interest rate, Taylor type rules leads to global indeterminacy (Benhabib, Schmitt-Grohe and Uribe, 2001 AER & JET, 2002, JPE)
- The global indeterminacy opens the door for sunspots (Shell, 1977, Cass and Shell, 1983) and this will be our focus

Steady-States

- ullet The steady-states are the fixed points of the system of equations above assuming $\omega_t=1$ and all policy instruments time-invariant
- Assume that $\widetilde{\pi}=1$ so that the inflation target is price stability and for simplicity set $\tau_c= au_l=g=0$
- ullet Constancy of consumption in the steady state requires that real interest rate equals 1/eta
- But this can hold when either
 - ullet $\pi=\widetilde{\pi}$ and $i=\phi\left(1
 ight)-1$
 - or $\pi = \beta$ and i = 0

The Intended and the Unintended Steady-States

The intended steady-state: Inflation is on target and output is efficient:

$$\begin{array}{rcl} \pi^I & = & \widetilde{\pi}, \text{ and } \phi\left(1\right) = 1/\beta \\ y^I & = & n^I = y^E \\ v^I & = & 1 \\ U_I\left(y^E, 1 - y^E\right) & = & U_c\left(y^E, 1 - y^E\right) \end{array}$$

The unintended steady-state: Interest rate at lower bound and inefficiently low output:

$$\begin{array}{rcl} \pi^U & = & \beta \text{ and } \phi \left(1/\beta \right) = 1 \\ y^U & < & y^E \\ v^U & > & 1 \text{ and } p^* < 1 \\ U_l \left(y^U, 1 - y^U v^U \right) & > & U_c \left(y^U, 1 - y^U v^U \right) \end{array}$$

Price dispersion gives rise to inefficiently low output

Stochastic Sunspot Equilibria

• We look at **temporary liquidity traps** modelled as sunspot equilibria: Sunspot variable, ψ_t follows discrete Markov chain $\psi_t \in [\psi_1, ..., \psi_n]$ with transition matrix R.

Definition

A Markov sunspot equilibrium is defined by a pair of functions $f(s_t)$ and $h(s_t)$ for which $f([v_{t-1}, \omega_t, \psi_t = \psi_i]) \neq f([v_{t-1}, \omega_t, \psi_t = \psi_j])$ and $h([v_{t-1}, \omega_t, \psi_t = \psi_i]) \neq h([v_{t-1}, \omega_t, \psi_t = \psi_j])$ for $i \neq j, i, j = 1, ..., n$.

Two state exaple: ψ_t follows a Markov process with transition matrix R

$$\psi_t \in \left[\psi_O, \psi_P
ight]$$
 , $R = \left[egin{array}{cc} 1 & 0 \ 1-q & q \end{array}
ight]$, $0 < q < 1$

Existence of an Expectations Driven Liquidity Trap

• In the left picture: Kink is moderate because of too low persistence of low confidence state - only the intended steady-state prevails

Existence of an Expectations Driven Liquidity Trap

- In the left picture: Kink is moderate because of too low persistence of low confidence state only the intended steady-state prevails
- In the right picture: More persistent low confidence state we can end up in unintended equilibria

Existence of a "Fundamental" Liquidity Trap

• In the left picture: A not too persistent shock to the discount rate leads the economy into a liquidity trap

Existence of a "Fundamental" Liquidity Trap

- In the left picture: A not too persistent shock to the discount rate leads the economy into a liquidity trap
- In the right picture: No equilibrium when the shock is too persistent

Numerical Evaluation

• Functional forms:

$$\begin{array}{lcl} U\left(c_{t},\mathit{I}_{t}\right) & = & \frac{c_{t}^{1-\sigma}-1}{1-\sigma}-\frac{\theta}{1+\kappa}\left(1-\mathit{I}_{t}\right)^{1+\kappa},\;\sigma,\theta,\kappa>0\\ \phi\left(\frac{\pi_{t}}{\tilde{\pi}}\right) & = & \max\left(\frac{\pi_{t}^{\phi_{\pi}}}{\beta},1\right),\;\phi_{\pi}>1 \end{array}$$

Numerical Evaluation

• Functional forms:

$$U\left(c_{t}, I_{t}\right) = \frac{c_{t}^{1-\sigma} - 1}{1-\sigma} - \frac{\theta}{1+\kappa} \left(1 - I_{t}\right)^{1+\kappa}, \ \sigma, \theta, \kappa > 0$$

$$\phi\left(\frac{\pi_{t}}{\tilde{\pi}}\right) = \max\left(\frac{\pi_{t}^{\phi_{\pi}}}{\beta}, 1\right), \ \phi_{\pi} > 1$$

Calibration

Numerical Evaluation

• Functional forms:

$$\begin{array}{lcl} U\left(c_{t},\mathit{I}_{t}\right) & = & \frac{c_{t}^{1-\sigma}-1}{1-\sigma}-\frac{\theta}{1+\kappa}\left(1-\mathit{I}_{t}\right)^{1+\kappa},\;\sigma,\theta,\kappa>0\\ \phi\left(\frac{\pi_{t}}{\tilde{\pi}}\right) & = & \max\left(\frac{\pi_{t}^{\phi_{\pi}}}{\beta},1\right),\;\phi_{\pi}>1 \end{array}$$

Calibration

parameter	Mertens-Ravn	CER
β	0.99	0.99
Frisch Elasticity	2/3	1.4
σ	1	2
ξ	0.6	0.85
ϕ_{π}	1.5	1.5
$egin{array}{c} \phi_\pi \ q^\psi \ & a^\omega \end{array}$	0.8	-
q^ω	-	8.0

Liquidity Traps and Parameters

Liquidity Traps and Parameters

Dynamics of a Liquidity Trap

We assume that the economy starts in a low confidence state and then makes a permanent transition to the optimistic state in period T

The Dynamic Experiment

Dynamics of a Liquidity Trap

Dynamics of a Liquidity Trap:

$$\xi = 0.8, \ \sigma = 0.7$$

Policy

Ex-Ante: Prevention

- Benhabib, Schmitt-Grohe and Uribe: Promise to be fiscally irresponsible in case agents coordinate on deflationary expectations agents realize that transversality condition does not hold so this cannot be an equilibrium
- Benhabib, Schmitt-Grohe and Uribe: Switch to money growth target if agents coordinate on deflationary expectations
- Atkeson, Chari and Kehoe (QJE, 2010): Sophisticated equilibrium stochastic switches to money growth rule
- BUT: We ARE in a LT

Ex-Post: What to do in case a LT occurs

- Eggertsson and Woodford: Commit to a higher inflation target for an extended period (also after LT ends) - but serious credibility problems
- Eggertsson, 2009, Christiano, Eichenbaum and Rebelo, 2009, Woodford, 2010: Fiscal policy expansion

Graphically

Fiscal Instruments:

• Government Spending: Marginal increase from 20% of GDP

Fiscal Instruments:

- Government Spending: Marginal increase from 20% of GDP
- Consumption Tax: Marginal decrease from 10%

Fiscal Instruments:

- Government Spending: Marginal increase from 20% of GDP
- Consumption Tax: Marginal decrease from 10%
- Labor Income Tax Rate: Marginal decrease from 20%

Fiscal Instruments:

- Government Spending: Marginal increase from 20% of GDP
- Consumption Tax: Marginal decrease from 10%
- Labor Income Tax Rate: Marginal decrease from 20%
- In all cases: Fiscal instrument perfectly coordinated with the sunspot

Spending Multipliers

Sales Tax Multipliers

Labor Income Tax Rate Multipliers

Can fiscal policy be applied to eliminate expectations driven liquidity traps ex-ante?

• Benhabib, Schmitt-Grohe and Uribe (2002, JPE): Commit to being irresponsible if agents coordinate on pessimism

Can fiscal policy be applied to eliminate expectations driven liquidity traps ex-ante?

- Benhabib, Schmitt-Grohe and Uribe (2002, JPE): Commit to being irresponsible if agents coordinate on pessimism
- The appropriate transversality condition is:

$$\lim_{s \to \infty} \mathbb{E}_t \left[a_{t+s} \frac{\pi_t}{1 + i_t} ... \frac{\pi_{t+s}}{1 + i_{t+s}} \right] = 0$$

$$a_t = (B_t + M_t) / P_t$$

Can fiscal policy be applied to eliminate expectations driven liquidity traps ex-ante?

- Benhabib, Schmitt-Grohe and Uribe (2002, JPE): Commit to being irresponsible if agents coordinate on pessimism
- The appropriate transversality condition is:

$$\lim_{s \to \infty} \mathbb{E}_t \left[a_{t+s} \frac{\pi_t}{1 + i_t} ... \frac{\pi_{t+s}}{1 + i_{t+s}} \right] = 0$$

$$a_t = \left(B_t + M_t \right) / P_t$$

Outcomes that violate this condition cannot be equilibria

Can fiscal policy be applied to eliminate expectations driven liquidity traps ex-ante?

- Benhabib, Schmitt-Grohe and Uribe (2002, JPE): Commit to being irresponsible if agents coordinate on pessimism
- The appropriate transversality condition is:

$$\lim_{s \to \infty} \mathbb{E}_t \left[a_{t+s} \frac{\pi_t}{1 + i_t} ... \frac{\pi_{t+s}}{1 + i_{t+s}} \right] = 0$$

$$a_t = \left(B_t + M_t \right) / P_t$$

- Outcomes that violate this condition cannot be equilibria
- They propose fiscal rules of the type:

$$\tilde{d}_t = \varkappa(\pi_t) \, \mathsf{a}_{t-1} \tag{1}$$

$$x(\beta) > 1/\beta \tag{2}$$

$$x(\widetilde{\pi}) < 1/\beta$$
 (3)

In a sunspot, the equivalent rule for the LT will require that:

$$arkappa\left(\pi_L
ight)>rac{1}{q\pi_L}>1/eta$$

 Thus, the government must threaten to be potentially extremely irresponsible in a LT

$$arkappa\left(\pi_L
ight)>rac{1}{q\pi_L}>1/eta$$

- Thus, the government must threaten to be potentially extremely irresponsible in a LT
- Problem:

$$\varkappa(\pi_L) > \frac{1}{q\pi_L} > 1/\beta$$

- Thus, the government must threaten to be potentially extremely irresponsible in a LT
- Problem:
- If LT can occur for both fundamental and expectational reasons, then the rule has to be such that:

$$arkappa\left(\pi_L
ight)>rac{1}{q\pi_L}>1/eta$$

- Thus, the government must threaten to be potentially extremely irresponsible in a LT
- Problem:
- If LT can occur for both fundamental and expectational reasons, then the rule has to be such that:
 - Transversality condition violated for expectational LT

$$arkappa\left(\pi_L
ight)>rac{1}{q\pi_L}>1/eta$$

- Thus, the government must threaten to be potentially extremely irresponsible in a LT
- Problem:
- If LT can occur for both fundamental and expectational reasons, then the rule has to be such that:
 - Transversality condition violated for expectational LT
 - Transversality condition holds for fundamentals driven LT

$$arkappa\left(\pi_L
ight)>rac{1}{q\pi_L}>1/eta$$

- Thus, the government must threaten to be potentially extremely irresponsible in a LT
- Problem:
- If LT can occur for both fundamental and expectational reasons, then the rule has to be such that:
 - Transversality condition violated for expectational LT
 - Transversality condition holds for fundamentals driven LT
- This might not always be possible

 An expectations driven LT can be associated with large output and welfare losses

- An expectations driven LT can be associated with large output and welfare losses
- In contrast to fundamentals driven LT, increases in government spending lose potency in an expectations driven LT

- An expectations driven LT can be associated with large output and welfare losses
- In contrast to fundamentals driven LT, increases in government spending lose potency in an expectations driven LT
- Supply side policies effective when expectations drive the economy into a LT (consistent with Akerlof and Shiller but for different reasons)

- An expectations driven LT can be associated with large output and welfare losses
- In contrast to fundamentals driven LT, increases in government spending lose potency in an expectations driven LT
- Supply side policies effective when expectations drive the economy into a LT (consistent with Akerlof and Shiller but for different reasons)
- Multipliers quite similar in LT and in normal times for standard parameter values

Conclusions

- An expectations driven LT can be associated with large output and welfare losses
- In contrast to fundamentals driven LT, increases in government spending lose potency in an expectations driven LT
- Supply side policies effective when expectations drive the economy into a LT (consistent with Akerlof and Shiller but for different reasons)
- Multipliers quite similar in LT and in normal times for standard parameter values
- Increases in inflation target to prevent expectations driven LT could be very counterproductive

Conclusions

- An expectations driven LT can be associated with large output and welfare losses
- In contrast to fundamentals driven LT, increases in government spending lose potency in an expectations driven LT
- Supply side policies effective when expectations drive the economy into a LT (consistent with Akerlof and Shiller but for different reasons)
- Multipliers quite similar in LT and in normal times for standard parameter values
- Increases in inflation target to prevent expectations driven LT could be very counterproductive
- O Policy recommendations consistent with Bils and Klenow (2008), Hall and Woodward (2008) and Feldstein (2009) but differ from Christiano et al (2009) and Woodford (2010)

Introduction

United States Primary Deficit to GDP Ratio

Introduction

Fiscal Policies in a Liquidity Trap

Eggertsson, 2009, Christiano, Eichenbaum and Rebelo, 2009, Woodford, 2010:

- New Keynesian sticky price models
- Monetary policy described by an interest rate rule
- Large shock leads the economy to a liquidity trap where the short-term interest rate is at its lower floor
 - Christiano, Eichenbaum and Rebelo: Huge temporary positive productivity shock or a very large decrease in the rate of time discount
 - Woodford: Very large temporary increase in spread (Eggertsson: Equivalent to large decrease in the rate of time discount)

Table 1

	Labor Tax Multiplier	Government Spending Multiplier
Positive interest rate	0.19	0.3
Zero interest rate	-1.65	2.45

Households: Assumptions

We impose the following restrictions:

$$u\left(c_{t},\mathit{I}_{t},\mathit{m}_{t}\right) = U\left(c_{t},\mathit{I}_{t}\right) + V\left(\mathit{m}_{t}\right) \text{ (superneutrality)}$$
 $U_{c,\mathit{I}} \geq 0 \text{ (complementarity)}$

• and to guarantee an interior solution for consumption and output:

$$\lim_{c \to 0+} U_c = \infty, \lim_{c \to \infty} U_c = 0$$

$$\lim_{l \to 0+} U_l = \infty, \lim_{l \to \infty} U_l = \infty$$

Households: Assumptions

We impose the following restrictions:

$$u\left(c_{t},\mathit{I}_{t},\mathit{m}_{t}\right) = U\left(c_{t},\mathit{I}_{t}\right) + V\left(\mathit{m}_{t}\right) \text{ (superneutrality)}$$
 $U_{c,\mathit{I}} \geq 0 \text{ (complementarity)}$

• and to guarantee an interior solution for consumption and output:

$$\lim_{c \to 0+} U_c = \infty, \lim_{c \to \infty} U_c = 0$$

$$\lim_{l \to 0+} U_l = \infty, \lim_{l \to \infty} U_l = \infty$$

• and to have finite real money demand:

$$\lim_{m\to\infty}V_m<0$$

Households: Assumptions

We impose the following restrictions:

$$u\left(c_{t},\mathit{I}_{t},\mathit{m}_{t}\right) = U\left(c_{t},\mathit{I}_{t}\right) + V\left(\mathit{m}_{t}\right) \text{ (superneutrality)}$$
 $U_{c,\mathit{I}} \geq 0 \text{ (complementarity)}$

and to guarantee an interior solution for consumption and output:

$$\lim_{c \to 0+} U_c = \infty, \lim_{c \to \infty} U_c = 0$$

$$\lim_{l \to 0+} U_l = \infty, \lim_{l \to \infty} U_l = \infty$$

and to have finite real money demand:

$$\lim_{m\to\infty}V_m<0$$

which can be replaced by allowance for a satiation point

Households: First-Order Conditions

The households' problem implies that:

$$\begin{split} &\frac{U_{l}\left(c_{t}, I_{t}\right)}{U_{c}\left(c_{t}, I_{t}\right)} &= \frac{\left(1 - \tau_{n, t}\right) W_{t}}{\left(1 + \tau_{c, t}\right) P_{t}} \\ &U_{c}\left(c_{t}, I_{t}\right) &= \beta(1 + i_{t}) \mathbb{E}_{t} \left[\frac{\omega_{t+1}}{\omega_{t}} \frac{\left(1 + \tau_{c, t}\right) P_{t}}{\left(1 + \tau_{c, t+1}\right) P_{t+1}} U_{c}\left(c_{t+1}, I_{t+1}\right) \right] \\ &\frac{V_{m}\left(m_{t}\right)}{U_{c}\left(c_{t}, I_{t}\right)} &= \frac{i_{t}}{1 + i_{t}} \frac{1}{\left(1 + \tau_{c, t}\right)} \\ &0 &= \lim_{s \to \infty} \mathbb{E}_{t} \left[\frac{B_{t+s} + M_{t+s}}{\left(1 + i_{t}\right) \cdots \left(1 + i_{t+s}\right)} \right] \end{split}$$

Definition

A competitive rational expectations equilibrium is a sequence of allocations $(c_t, n_t, l_t, y_t)_{t=0}^{\infty}$, a price system $(\pi_t, w_t, p_t^*, v_t)_{t=0}^{\infty}$, monetary policies $(i_t, m_t)_{t=0}^{\infty}$, and fiscal policies $(b_t, d_t, g_t, \tau_{c,t}, \tau_{n,t}, t_t)_{t=0}^{\infty}$ such that

Households maximize utility subject to all constraints

Definition

- Households maximize utility subject to all constraints
- Intermediate and final goods producers maximize profits

Definition

- Households maximize utility subject to all constraints
- Intermediate and final goods producers maximize profits
- Monetary policy is determined by the interest rate rule and fiscal policies are consistent with the government budget constraint

Definition

- Households maximize utility subject to all constraints
- Intermediate and final goods producers maximize profits
- Monetary policy is determined by the interest rate rule and fiscal policies are consistent with the government budget constraint
- Goods and asset markets clear

Definition

- Households maximize utility subject to all constraints
- Intermediate and final goods producers maximize profits
- Monetary policy is determined by the interest rate rule and fiscal policies are consistent with the government budget constraint
- Goods and asset markets clear given initial conditions b_{-1} , $m_{-1} \ge 0$, $v_{-1} \ge 0$, a law of motion for ω_t and a specification of monetary and fiscal policies

Two State Sunspot Example

ullet Suppose $\psi_{ au}$ follows a Markov process with transition matrix R

$$\psi_t \in \left[\psi_O, \psi_P
ight]$$
 , $R = \left[egin{array}{cc} 1 & 0 \ 1-q & q \end{array}
ight]$, $0 < q < 1$

• Let π_P , y_P and v_P denote the fixed points of the system:

$$U_{c}(y_{P}, 1 - v_{P}y_{P}) = \beta \phi \left(\frac{\pi_{P}}{\tilde{\pi}}\right) \left[\frac{q}{\pi_{P}} U_{c}(y_{P}, 1 - v_{P}y_{P}) + \frac{1 - q}{\pi'_{O}} U_{c}(y'_{O}, 1 - v'_{O}y'_{O})\right]$$

$$p_{P}^{*} = \frac{(1 - \beta \xi q \pi_{P}^{\eta - 1})}{(1 - \beta \xi q \pi_{P}^{\eta})} \left(\Lambda_{P} \frac{U_{l}(y_{P}, 1 - v_{P}y_{P})}{U_{c}(y_{P}, 1 - v_{P}y_{P})} + (1 - \Lambda_{P}) p_{P}^{*} \pi'_{O}\right)$$
(SS)

• where $0<\Lambda_P<1$ and π'_O , y'_O and v'_O are obtained from $f([v_P,\psi_O])$ and $h([v_P,\psi_O])$

Higher Inflation Target

• contrary to e.g. Blanchard's recommendations, higher inflation target makes a LT even worse