Trade, Firm Selection, and Innovation: the Competition Channel

Giammario Impullitti (IMT Lucca) and Omar Licandro (IAE Barcelona)

CEPR ESSIM 2010
Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity
Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity

Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity

II. Selection and innovation:
Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity

II. Selection and innovation:
 - Bustos (2008), MERCOSUR effect on selection and innovation measures
Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity

II. Selection and innovation:

- Bustos (2008), MERCOSUR effect on selection and innovation measures
- Bloom, Draca, Van Reenen (2008), effects of Chinese import penetration on selection and innovation in Europe
Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity

II. Selection and innovation:
 - Bustos (2008), MERCOSUR effect on selection and innovation measures
 - Bloom, Draca, Van Reenen (2008), effects of Chinese import penetration on selection and innovation in Europe
 - Aw, Roberts, Xu (2010): trade liberalization increases R&D investment in Taiwanese firms
Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity

II. Selection and innovation:
 - Bustos (2008), MERCOSUR effect on selection and innovation measures
 - Bloom, Draca, Van Reenen (2008), effects of Chinese import penetration on selection and innovation in Europe
 - Aw, Roberts, Xu (2010): trade liberalization increases R&D investment in Taiwanese firms
 - LLeiva and Trefler (2008), Canada-US Free Trade Agreement
Motivating evidence

I. Selection effect: trade liberalization cleans the market of inefficient firms, thus raising the level of productivity

II. Selection and innovation:

- Bustos (2008), MERCOSUR effect on selection and innovation measures
- Bloom, Draca, Van Reenen (2008), effects of Chinese import penetration on selection and innovation in Europe
- Aw, Roberts, Xu (2010): trade liberalization increases R&D investment in Taiwanese firms
- LLeiva and Trefler (2008), Canada-US Free Trade Agreement
- Teshima (2009), Mexican data
Motivating evidence ctd.

III. Pro-competitive effects of trade
Motivating evidence ctd.

III. Pro-competitive effects of trade

- Bugamelli, Fabiani, Sette (2008): import competition from China reduces prices and markups in Italian firms

Griffith, Harrison, and Simpson (2008), EU Single Market Program: increase in product market competition (reduction in avg. markups) and higher innovation (R&D)
Motivating evidence ctd.

III. Pro-competitive effects of trade

- Bugamelli, Fabiani, Sette (2008): import competition from China reduces prices and markups in Italian firms
III. Pro-competitive effects of trade

- Bugamelli, Fabiani, Sette (2008): import competition from China reduces prices and markups in Italian firms
- Griffith, Harrison, and Simpson (2008), EU Single Market Program: increase in product market competition (reduction in avg. markups) and higher innovation (R&D)
What we do

- Presents a theoretical model to jointly account for this set of empirical findings and perform quantitative analysis.
Presents a theoretical model to jointly account for this set of empirical findings and perform quantitative analysis

Effects of trade liberalization on **selection** and **innovation** through the **pro-competitive** channel: shut down other channels through which trade affects innovation (*Market-size, Knowledge spillovers, Terms of trade*)
What we do

- Presents a theoretical model to jointly account for this set of empirical findings and perform quantitative analysis
 - Effects of trade liberalization on selection and innovation through the pro-competitive channel: shut down other channels through which trade affects innovation (Market-size, Knowledge spillovers, Terms of trade)
 - Existing empirical and theoretical studies account for at most 2 of the 3 pieces of evidence

Why should we care?

- Micro-level studies cited focus specific channels of productivity improvements: evidence I-III needed a theory of the competition channel
What we do

- Presents a theoretical model to jointly account for this set of empirical findings and perform quantitative analysis
 - Effects of trade liberalization on **selection** and **innovation** through the **pro-competitive** channel: shut down other channels through which trade affects innovation (*Market-size*, *Knowledge spillovers*, *Terms of trade*)
 - Existing empirical and theoretical studies account for at most 2 of the 3 pieces of evidence

- Why should we care?
What we do

- Presents a theoretical model to jointly account for this set of empirical findings and perform quantitative analysis

 - Effects of trade liberalization on **selection** and **innovation** through the **pro-competitive** channel: shut down other channels through which trade affects innovation (*Market-size*, *Knowledge spillovers*, *Terms of trade*)

 - Existing empirical and theoretical studies account for at most 2 of the 3 pieces of evidence

- Why should we care?

 - No consensus evidence on trade and growth with aggregate data (*Frenkel and Romer 1999, Rodriguez and Rodirk, 2000, Alcalà and Ciccone 2004*)
What we do

- Presents a theoretical model to jointly account for this set of empirical findings and perform quantitative analysis
 - Effects of trade liberalization on selection and innovation through the pro-competitive channel: shut down other channels through which trade affects innovation (Market-size, Knowledge spillovers, Terms of trade)
 - Existing empirical and theoretical studies account for at most 2 of the 3 pieces of evidence
- Why should we care?
 - Micro-level studies cited focus specific channels of productivity improvements: evidence I-III ⇒ needed a theory of the competition channel
What we do

- Dynamic industry model with heterogeneous firms into a innovation-driven growth model
What we do

- Dynamic industry model with heterogeneous firms into a innovation-driven growth model
- Incumbent firms invest in cost-reducing innovation
What we do

- Dynamic industry model with heterogeneous firms into a innovation-driven growth model
- Incumbent firms invest in cost-reducing innovation
- Oligopolistic market structure: M goods, each produced by n firms competing Cournot
What we do

- Dynamic industry model with heterogeneous firms into a innovation-driven growth model
- Incumbent firms invest in cost-reducing innovation
- Oligopolistic market structure: M goods, each produced by n firms competing Cournot
- **Endogenous market structure**: trade liberalization \Rightarrow increase number of firms per variety \rightarrow reduces markups \rightarrow study it’s effects on selection and innovation
Related literature

- Trade, selection and **technology adoption**: Yeaple (2005), Costantini and Melitz (2007), Bustos (2007)
Related literature

- Trade, selection and **technology adoption**: Yeaple (2005), Costantini and Melitz (2007), Bustos (2007)
 - Tech. adoption (1-shot), mostly static
Related literature

- Trade, selection and **technology adoption**: Yeaple (2005), Costantini and Melitz (2007), Bustos (2007)
 - Tech. adoption (1-shot), mostly static

Related literature

- **Trade, selection and technology adoption**: Yeaple (2005), Costantini and Melitz (2007), Bustos (2007)
 - Tech. adoption (1-shot), mostly static

 - Monopolistic competitive models (exogenous market structure) \rightarrow no competition effect
Related literature ctd.

- Trade, selection and **pro-competitive** effects
Related literature ctd.

- Trade, selection and **pro-competitive** effects
 - Melitz-Ottaviano (2008): endogenous markups from special preferences, no innovation
Related literature ctd.

- Trade, selection and **pro-competitive** effects
 - Melitz-Ottaviano (2008): endogenous markups from special preferences, no innovation
Trade liberalization → reduces markups ⇒ increases innovation via 2 effects:

- **Direct effect:** trade leads to a larger number of firms, which results in lower markups due to increased competition and lower incentive for cost-reducing innovation (no role for heterogeneity).

- **Dynamic selection effect:** lower markups lead to less productive firms exiting, resources reallocated to surviving firms, which increase their market share and incentives to innovate (heterogeneity matters!).

Quantitative analysis: calibrate to US data, growth decomposition of effect of 10
drop in variable trade costs. Overall growth effect sizable: More than 90%
attributable to dynamic selection (heterogeneity matters big time!!).
Preview of the results

- Trade liberalization → reduces markups ⇒ increases innovation via 2 effects:
 - **Direct effect**: trade → larger number of firms → lower markups → higher quantity produced → higher incentive for cost-reducing innovation (no role for heterogeneity)
 - Dynamic selection effect: lower markups → less productive firms exit → resources reallocated to surviving firms → increase their market share and incentives to innovate (heterogeneity matters!)
Trade liberalization → reduces markups ⇒ increases innovation via 2 effects:

- **Direct effect**: trade → larger number of firms → lower markups → higher quantity produced → higher incentive for cost-reducing innovation (no role for heterogeneity)
- **Dynamic selection effect**: lower markups → less productive firms exit → resources reallocated to surviving firms → increase their market share and incentives to innovate (**heterogeneity matters!**)
Preview of the results

- Trade liberalization → reduces markups ⇒ increases innovation via 2 effects:
 - **Direct effect**: trade → larger number of firms → lower markups → higher quantity produced → higher incentive for cost-reducing innovation (no role for heterogeneity)
 - **Dynamic selection effect**: lower markups → less productive firms exit → resources reallocated to surviving firms → increase their market share and incentives to innovate (**heterogeneity matters!**)

- Quantitative analysis: calibrate to US data, **growth decomposition** of effect of 10 drop in variable trade costs
Preview of the results

- Trade liberalization \rightarrow reduces markups \Rightarrow increases innovation via 2 effects:
 - **Direct effect**: trade \rightarrow larger number of firms \rightarrow lower markups \rightarrow higher quantity produced \rightarrow higher incentive for cost-reducing innovation (no role for heterogeneity)
 - **Dynamic selection effect**: lower markups \rightarrow less productive firms exit \rightarrow resources reallocated to surviving firms \rightarrow increase their market share and incentives to innovate (**heterogeneity matters!**)

- Quantitative analysis: calibrate to US data, **growth decomposition** of effect of 10 drop in variable trade costs
 - Overall growth effect sizable
Preview of the results

- Trade liberalization → reduces markups ⇒ increases innovation via 2 effects:
 - **Direct effect**: trade → larger number of firms → lower markups → higher quantity produced → higher incentive for cost-reducing innovation (no role for heterogeneity)
 - **Dynamic selection effect**: lower markups → less productive firms exit → resources reallocated to surviving firms → increase their market share and incentives to innovate (**heterogeneity matters!**)

- Quantitative analysis: calibrate to US data, **growth decomposition** of effect of 10 drop in variable trade costs
 - Overall growth effect sizable
 - More than 90% attributable to dynamic selection (**heterogeneity matters big time!!**)
Preferences

- Intertemporal utility

\[
\int_{0}^{\infty} (\ln X_t + \beta \ln Y_t) e^{-\rho t} dt
\]
Preferences

- Intertemporal utility

\[\int_{0}^{\infty} (\ln X_t + \beta \ln Y_t) e^{-\rho t} dt \]

- \(Y_t \), homogeneous good, \(X_t \) composite good

\[X_t = \left(\int_{0}^{M_t} x_{jt} \alpha dj \right)^{\frac{1}{\alpha}} \]
Preferences

- Intertemporal utility
 \[\int_0^\infty (\ln X_t + \beta \ln Y_t) e^{-\rho t} dt \]

- \(Y_t \), homogeneous good, \(X_t \) composite good
 \[X_t = \left(\int_0^{M_t} x^\alpha_{jt} dj \right)^{\frac{1}{\alpha}} \]

- \(M_t \) mass of goods at time \(t \)
Preferences

- Intertemporal utility

\[\int_0^\infty (\ln X_t + \beta \ln Y_t) e^{-\rho t} dt \]

- \(Y_t \), homogeneous good, \(X_t \) composite good

\[X_t = \left(\int_0^{M_t} x_{jt}^\alpha dj \right)^{\frac{1}{\alpha}} \]

- \(M_t \) mass of goods at time \(t \)

- Numeraire: \(Y_t \)
Preferences

- Intertemporal utility

 \[\int_0^{\infty} (\ln X_t + \beta \ln Y_t) e^{-\rho t} dt \]

- \(Y_t \), homogeneous good, \(X_t \) composite good

 \[X_t = \left(\int_0^{M_t} x_{jt}^\alpha dj \right)^{\frac{1}{\alpha}} \]

- \(M_t \) mass of goods at time \(t \)
- Numeraire: \(Y_t \)
- Household endowment: 1 unit of \(Y_t \)
Each variety is produced by \(n \) identical oligopolistic firms (\(n \) exogenous)
Technology

- Each variety is produced by n identical oligopolistic firms (n exogenous)
- Heterogeneity: each variety produced with different productivity parameter \tilde{z}
Technology

- Each variety is produced by n identical oligopolistic firms (n exogenous)
- Heterogeneity: each variety produced with different productivity parameter \tilde{z}
- A firm with productivity \tilde{z} operates technology

$$c(\tilde{z}_t)q_t + \lambda = y_t$$
Each variety is produced by \(n \) identical oligopolistic firms (\(n \) exogenous)

Heterogeneity: each variety produced with different productivity parameter \(\tilde{z} \)

A firm with productivity \(\tilde{z} \) operates technology

\[
c(\tilde{z}_t)q_t + \lambda = y_t
\]

\(q \) units of variety \(\tilde{z} \) produced with \(y \)-units of homogeneous good

\(c(\tilde{z}_t) = \tilde{z}_t^{-\eta}, \eta > 0 \)
Technology

- Each variety is produced by n identical oligopolistic firms (n exogenous).
- Heterogeneity: each variety produced with different productivity parameter \tilde{z}.
- A firm with productivity \tilde{z} operates technology

$$c(\tilde{z}_t)q_t + \lambda = y_t$$

- q units of variety \tilde{z} produced with y-units of homogeneous good ($c(\tilde{z}_t) = \tilde{z}_t^{-\eta}, \eta > 0$).
- Fixed cost λ.

Technology

- Each variety is produced by n identical oligopolistic firms (n exogenous)
- Heterogeneity: each variety produced with different productivity parameter \tilde{z}
- A firm with productivity \tilde{z} operates technology

$$c(\tilde{z}_t)q_t + \lambda = y_t$$

- q units of variety \tilde{z} produced with y-units of homogeneous good ($c(\tilde{z}_t) = \tilde{z}_t^{-\eta}$, $\eta > 0$)
- fixed cost λ
- R&D technology

$$\tilde{z}_t = A \tilde{z}_t h_t$$
Technology

- Each variety is produced by \(n \) identical oligopolistic firms (\(n \) exogenous)
- Heterogeneity: each variety produced with different productivity parameter \(\tilde{z} \)
- A firm with productivity \(\tilde{z} \) operates technology

\[
c(\tilde{z}_t)q_t + \lambda = y_t
\]

- \(q \) units of variety \(\tilde{z} \) produced with \(y \)-units of homogeneous good
 \((c(\tilde{z}_t) = \tilde{z}_t^{-\eta}, \eta > 0) \)
- fixed cost \(\lambda \)
- R&D technology

\[
\dot{\tilde{z}}_t = A \tilde{z}_t h_t
\]

- \(\tilde{z} \) is an externality defined later (needed to get sustained growth)
Firms compete Cournot, solving

\[
V_s = \max_{(q_t, h_t)_{s}} \int_{s}^{\infty} \left[\left(p_t - c(z_t) \right) q_t - h_t - \lambda \right] e^{-(\rho+\delta)(t-s)} \, dt, \quad \text{st.}
\]

\[
p_t = \frac{E_t}{X_t^\alpha} x_t^{\alpha-1}
\]

\[
x_t = \hat{x}_t + q_t
\]

\[
\hat{z}_t = A \hat{z}_t h_t
\]

\[
\tilde{z}_s > 0,
\]
Production and Innovation: solving the game

- Firms compete Cournot, solving

\[
V_s = \max_{(q_t, h_t)_s} \int_s^\infty \left[(p_t - c(z_t)) q_t - h_t - \lambda \right] e^{-(\rho+\delta)(t-s)} \, dt,
\]

where

\[
p_t = \frac{E_t}{X_t^\alpha} x_t^{\alpha-1},
\]

\[
x_t = \hat{x}_t + q_t
\]

\[
\tilde{z}_t = A \hat{z}_t h_t
\]

\[
\tilde{z}_s > 0,
\]

- taking as given production and average productivity of competitors \((\hat{x}_t, \hat{z}_t)\) and the aggregates \(E_t\) and \(X_t\), \(\delta\) exogenous exit rate
Symmetric equilibrium yields

\[c(\tilde{z}_t) = \theta \frac{E_t L}{X_t^\alpha} x_t^{\alpha-1}, \]

where \(\theta = n_1 + \alpha n \) is the inverse of the markup, equal for all firms and industries.

Notice: the markup is determined by CES parameter \(\alpha \) and number of firms.

Impullitti-Licandro (IMT-IAE)
Symmetric equilibrium yields

\[c(\tilde{z}_t) = \theta \frac{E_t L}{X_t^{\alpha}} x_t^{\alpha-1}, \]

where

\[\theta = \frac{n - 1 + \alpha}{n} \]

is the inverse of the markup, equal for all firms and industries.
Symmetric equilibrium yields

\[c(\tilde{z}_t) = \theta \frac{E_t L}{X_t^{\alpha} x_t^{\alpha-1}} p_t, \]

where

\[\theta = \frac{n - 1 + \alpha}{n} \]

is the inverse of the markup, equal for all firms and industries

Notice: the markup is determined by CES parameter \(\alpha \) and number of firms \(n \)
Equilibrium innovation

- Innovation investment

\[h_t = \eta c(\tilde{z}_t)q_t - \frac{(\rho + \delta)}{A} \]

\[c(\tilde{z}_t)q_t = \theta e z / \tilde{z} \]
Equilibrium innovation

- Innovation investment

\[h_t = \eta c(\tilde{z}_t)q_t - \frac{(\rho + \delta)}{A}, \]

\[c(\tilde{z}_t)q_t = \theta e z / \bar{z} \]

- where \(e \equiv E / nM \), is expenditure per firm,
Equilibrium innovation

- Innovation investment

\[h_t = \eta c(\tilde{z}_t)q_t - \frac{(\rho + \delta)}{A}, \]

\[c(\tilde{z}_t)q_t = \theta e z / \bar{z} \]

- where \(e \equiv E / nM \), is expenditure per firm,
- \(z \) is a measure of detrended productivity, \(z e^{gt} = \tilde{z}_t^{\eta} \), with \(g \) the growth rate of productivity (defined below)
Equilibrium innovation

- Innovation investment

\[h_t = \eta c(\tilde{z}_t)q_t - \frac{(\rho + \delta)}{A}, \]
\[c(\tilde{z}_t)q_t = \theta e \frac{z}{\bar{z}} \]

where \(e \equiv \frac{E}{nM} \), is expenditure per firm,
\(z \) is a measure of detrended productivity, \(ze^{gt} = \tilde{z}_t^\hat{\eta} \), with \(g \) the growth rate of productivity (defined below)
\(\tilde{z}_t^\hat{\eta} = \frac{1}{M} \int_0^M z_j dj \) is the average productivity in the economy
Equilibrium innovation

- Innovation investment

\[h_t = \eta c(\tilde{z}_t)q_t - \frac{(\rho + \delta)}{A}, \]

\[c(\tilde{z}_t)q_t = \theta e z / \tilde{z} \]

where \(e \equiv E / nM \), is expenditure per firm,

- \(z \) is a measure of detrended productivity, \(z e^{gt} = \tilde{z}_{t}^{\hat{\eta}} \), with \(g \) the growth rate of productivity (defined below)

\[\tilde{z}_{t}^{\hat{\eta}} = \frac{1}{M} \int_{0}^{M} z_{j}dj \] is the average productivity in the economy

- Cost-reducing innovation \(\Rightarrow \) return to innovation proportional to **quantity** and depends on

Relative productivity: distance to the mean

More productive firms innovate more (Lentz and Mortensen, 2008, Aw, Roberts, Xu, 2008)

On competition: negatively on the markup \((1 / \theta) \), positively on \(e \) Impullitti-Licandro (IMT-IAE)

Trade, firm selection, and innovation
Equilibrium innovation

- Innovation investment

\[h_t = \eta c(\tilde{z}_t)q_t - \frac{(\rho + \delta)}{A}, \]

\[c(\tilde{z}_t)q_t = \theta e z / \bar{z} \]

- where \(e \equiv E / nM \), is expenditure per firm,
- \(z \) is a measure of detrended productivity, \(z e^{gt} = \tilde{z}_t^\gamma \), with \(g \) the growth rate of productivity (defined below)
- \(\tilde{z}_t^\gamma = \frac{1}{M} \int_0^M z_j dj \) is the average productivity in the economy

- Cost-reducing innovation \(\Rightarrow \) return to innovation proportional to **quantity** and depends on
 - Relative productivity: distance to the mean \(\tilde{z} \) \(\Rightarrow \) more productive firm innovate more (Lentz and Mortensen, 2008, Aw, Roberts, Xu, 2008)
Equilibrium innovation

- Innovation investment

\[h_t = \eta c(\tilde{z}_t)q_t - \frac{(\rho + \delta)}{A}, \]

\[c(\tilde{z}_t)q_t = \theta e z / \bar{z} \]

- where \(e \equiv E / nM \), is expenditure per firm,
- \(z \) is a measure of detrended productivity, \(z e^{gt} = \tilde{z}_t \), with \(g \) the growth rate of productivity (defined below)
- \(\tilde{z}_t = \frac{1}{M} \int_0^M z_j dj \) is the average productivity in the economy

- Cost-reducing innovation \(\Rightarrow \) return to innovation proportional to quantity and depends on

 - Relative productivity: distance to the mean \(\bar{z} \) \(\Rightarrow \) more productive firm innovate more (Lentz and Mortensen, 2008, Aw, Roberts, Xu, 2008)
 - On competition: negatively on the markup \((1/\theta)\), positively on \(e \)
Define externality as

\[\hat{z} = \frac{\bar{z}}{z} \tilde{z} \]
Stationary productivity growth

- Define externality as
 \[\hat{z} = \frac{\bar{z}}{z} \]

- Positive spillover from more productive firms, \(\bar{z}/z \) (distance from the mean and innovation difficulty)
Stationary productivity growth

- Define externality as
 \[\hat{z} = \frac{\bar{\hat{z}}}{\bar{z}} \]

- Positive spillover from more productive firms, \(\bar{z}/z \) (distance from the mean and innovation difficulty)

- This yields stationary symmetric growth rate
 \[g = \frac{\dot{\bar{z}}}{\bar{z}} = \eta \theta e - \rho - \delta \]

 which allows a stationary distribution on productivity (in line with evidence)
Exit

- Exogenous exit: δ
Exit

- Exogenous exit: δ
- Endogenous exit: at entry firms draw productivity z from initial distribution $F(z)$ making profits

$$\pi(z/\bar{z}) = (1 - \theta) ez/\bar{z} - \left(\eta \theta e - \frac{\rho + \delta}{A} \right) z/\bar{z} - \lambda.$$

with

$$\bar{z}(z^*) = \frac{1}{1 - F(z^*)} \int_{z^*}^{\infty} zf(z) \, dz$$
- Exogenous exit: δ
- Endogenous exit: at entry firms draw productivity z from initial distribution $F(z)$ making profits

$$
\pi(z/\bar{z}) = (1 - \theta) ez/\bar{z} - \left(\eta \theta e - \frac{\rho + \delta}{A} \right) z/\bar{z} - \lambda.
$$

with

$$
\bar{z}(z^*) = \frac{1}{1 - F(z^*)} \int_{z^*}^{\infty} zf(z) dz
$$

- The zero-profit condition defines the cutoff

$$
e = \frac{\lambda}{z^*/\bar{z}(z^*)} - \frac{\rho + \delta}{A} \frac{1}{1 - (1 + \eta)\theta}
$$

[downward sloping function in $(e, z^*)]$ \rightarrow intuition

Impullitti-Licandro (IMT-IAE) Trade, firm selection, and innovation CEPR ESSIM 2010 15 / 37
Stationary equilibrium: entry

- There is a unit mass of goods, $1 - M$ are potential entrants (n firms enter altogether)
Stationary equilibrium: entry

- There is a unit mass of goods, $1 - M$ are potential entrants (n firms enter altogether)
- The entry cost is zero
Stationary equilibrium: entry

- There is a unit mass of goods, $1 - M$ are potential entrants (n firms enter altogether)
- The entry cost is zero
- New entrants draw an initial productivity from $F(z)$
Stationary equilibrium: entry

- There is a unit mass of goods, $1 - M$ are potential entrants (n firms enter altogether)
- The entry cost is zero
- New entrants draw an initial productivity from $F(z)$
- Stationary allocation implies

$$
(1 - M)(1 - F(z^*)) = \delta M
$$

[negative relation btw. z^* and M]
Stationary equilibrium: entry

- There is a unit mass of goods, \(1 - M\) are potential entrants (\(n\) firms enter altogether).
- The entry cost is zero.
- New entrants draw an initial productivity from \(F(z)\).
- Stationary allocation implies

\[
(1 - M)(1 - F(z^*)) = \delta M
\]

[negative relation btw. \(z^*\) and \(M\)]

- The equilibrium distribution is

\[
\mu(z) = \frac{f(z)}{(1 - F(z^*))}
\]

for \(z \geq z^*\)
Stationary equilibrium: market clearing

- Using $\mu(z)$ the mkt. clearing can be written as

$$\int_{z^*}^{\infty} \left((1 + \eta) \theta e \frac{z}{\bar{z}} - \frac{\delta + \rho}{A} z/\bar{z} + \lambda \right) \mu(z) \, dz + \beta e = \frac{1}{nM}$$

\hspace{1cm} differentiated

\hspace{1cm} homogeneous
Stationary equilibrium: market clearing

- Using $\mu(z)$ the mkt. clearing can be written as

$$\int_{z^*}^{\infty} \left(\left(1 + \eta \right) \theta e \frac{z}{\bar{z}} - \frac{\delta + \rho}{A} \frac{z}{\bar{z}} + \lambda \right) \mu(z) \, dz + \text{differentiated} \right) \mu(z) \, dz + \beta e \text{ homogeneous} = \frac{1}{nM}$$

- Our normalization allows nice aggregation [positive in ($e, \bar{z^*}$)]→ higher M lower expenditure per variety

$$e = \frac{L}{nM(\bar{z^*})} + \frac{\rho + \delta}{A} - \lambda$$

(MC)
Stationary equilibrium: market clearing

- Using $\mu(z)$ the mkt. clearing can be written as

$$\int_{z^*}^{\infty} \left((1 + \eta) \theta e z/\tilde{z} - \frac{\delta + \rho}{A} z/\tilde{z} + \lambda \right) \mu(z) \, dz + \underbrace{\beta e}_{\text{homogeneous}} = \frac{1}{nM}$$

- Our normalization allows nice aggregation [positive in $(e, \tilde{z}^*)]$ → higher M lower expenditure per variety

$$e = \frac{L}{nM(\tilde{z}^*)} + \frac{\rho + \delta}{A} - \lambda$$

- **Proposition 1.** Under some parameter restrictions there exists a unique interior solution (e, z^*) of (MC) and (EC)
Stationary equilibrium

\[\lambda \left(\frac{z^e}{z_{\min}} - \frac{\rho + \delta}{A} \right) \frac{1}{1 - (1 + \eta)\theta} \]

\[\frac{(1+\delta)L + \rho + \delta}{n} - \frac{\lambda}{\beta + (1+\eta)\theta} \]

\[\lambda \left(\frac{z^e}{z_{\min}} - \frac{\rho + \delta}{A} \right) \frac{1}{1 - (1 + \eta)\theta} \]
Proposition 2: An increase in θ raises the productivity cutoff z^* reduces M and increases the growth rate g
Competition effect in closed economy

- **Proposition 2**: An increase in θ raises the productivity cutoff z^* reduces M and increases the growth rate g

- Aggregate growth

\[
g = \eta A \theta \left(\frac{E(z^*)}{M(z^*) n} \right) - \rho - \delta
\]

The two innovation effects:

- **Direct effect**: higher θ) lower markup leads to higher efficiency
- **Selection effect**: higher θ) higher $\tilde{z} = z^*$) resources reallocated from exiting to surviving firms (heterogeneity matters!!)

Impullitti-Licandro (IMT-IAE)
Proposition 2: An increase in θ raises the productivity cutoff z^* reduces M and increases the growth rate g

Aggregate growth

$$g = \eta A \theta \frac{E(z^*)}{M(z^*) n} - \rho - \delta$$

The two innovation effects:

- Direct effect: higher θ leads to higher efficiency, higher quantity produced (no role for heterogeneity)
- Selection effect: higher θ means higher $\tilde{z} = \mu(z^*)$, resources reallocated from exiting to surviving firms (heterogeneity matters!!)
Proposition 2: An increase in θ raises the productivity cutoff z^* reduces M and increases the growth rate g

Aggregate growth

$$g = \eta A \left(\theta \frac{E(z^*)}{M(z^*) n} - \rho - \delta \right)$$

The two innovation effects:

Direct effect: higher $\theta \Rightarrow$ lower markup leads to higher efficiency \Rightarrow higher quantity produced (no role for heterogeneity)
Proposition 2: An increase in θ raises the productivity cutoff z^* reduces M and increases the growth rate g

- **Aggregate growth**

$$g = \eta A \theta \left(\frac{E(z^*)}{M(z^*) n} \right) - \rho - \delta$$

- **The two innovation effects**:
 - **Direct effect**: higher $\theta \Rightarrow$ lower markup leads to higher efficiency \rightarrow higher quantity produced (no role for heterogeneity)
 - **Selection effect**: higher $\theta \Rightarrow$ higher \bar{z}^* \Rightarrow resources reallocated from exiting to surviving firms (**heterogeneity matters!!**)
Trade equilibrium

- Two symmetric countries: same tech, preferences and products (complete overlap)
Trade equilibrium

- Two symmetric countries: same tech, preferences and products (complete overlap)
- Iceberg trade cost $\tau > 1$
Trade equilibrium

- Two symmetric countries: same tech, preferences and products (complete overlap)
- Iceberg trade cost $\tau > 1$
- Equilibrium: same (MC) and (EC) but with different markup

$$\theta^T = \frac{2n - 1 + \alpha}{n (1 + \tau)^2 (1 - \alpha)} \left[\tau^2 (1 - n - \alpha) + n (2\tau - 1) + (1 - \alpha) \right]$$

$$\theta^T_{\text{max}} \equiv \frac{2n - 1 + \alpha}{2n} \quad \text{when } \tau = 1$$
Trade equilibrium

- Two symmetric countries: same tech, preferences and products (complete overlap)
- Iceberg trade cost $\tau > 1$
- Equilibrium: same (MC) and (EC) but with different markup

$$\theta^T = \frac{2n - 1 + \alpha}{n (1 + \tau)^2 (1 - \alpha)} \left[\tau^2 (1 - n - \alpha) + n (2\tau - 1) + (1 - \alpha) \right]$$

$$\theta^T_{\text{max}} \equiv \frac{2n - 1 + \alpha}{2n} \quad \text{when } \tau = 1$$

- Trade markup lower than closed economy

$$\theta^T - \theta = \frac{\tau (1 - \alpha)^2 - n (\tau - 1)^2 (n + \alpha - 1)}{n (1 + \tau)^2 (1 - \alpha)} > 0$$
Trade equilibrium

- Two symmetric countries: same tech, preferences and products (complete overlap)
- Iceberg trade cost $\tau > 1$
- Equilibrium: same (MC) and (EC) but with different markup

$$
\theta^T = \frac{2n - 1 + \alpha}{n (1 + \tau)^2 (1 - \alpha)} \left[\tau^2 (1 - n - \alpha) + n (2\tau - 1) + (1 - \alpha) \right]
$$

$$
\theta_{\text{max}}^T \equiv \frac{2n - 1 + \alpha}{2n} \quad \text{when } \tau = 1
$$

- Trade markup lower than closed economy

$$
\theta^T - \theta = \frac{\tau (1 - \alpha)^2 - n (\tau - 1)^2 (n + \alpha - 1)}{n (1 + \tau)^2 (1 - \alpha)} > 0
$$

- Distance decreasing in τ
Trade liberalization

- No ‘pure’ market-size effect: double number of firms, double market size - double number of firms (complete overlap)
Trade liberalization

- No ‘pure’ market-size effect: double number of firms, double market size - double number of firms (complete overlap)
- Only competition effect: decreases markup ($\uparrow \theta \implies \uparrow \tilde{z}^*$)
Trade liberalization

- No ‘pure’ market-size effect: double number of firms, double market size - double number of firms (complete overlap)
- Only competition effect: decreases markup ($\theta \rightarrow \hat{z}^*$)
 - **Selection effect**: $\theta \rightarrow \hat{z}^*$ mkt. shares redistribute to more productive (innovative) firms
No ‘pure’ market-size effect: double number of firms, double market size - double number of firms (complete overlap)

Only competition effect: decreases markup ($\theta \rightarrow \tilde{z}^\ast$)

- **Selection effect**: $\theta \rightarrow \tilde{z}^\ast$ mkt. shares redistribute to more productive (innovative) firms
- **Direct competition effect**: $\theta \rightarrow$ surviving firms produce higher quantity
Quantitative analysis: calibration external

- Calibrate the model to match US aggregate and firm-level statistics: assume $z \sim P(z_{\text{min}}, \kappa)$

Summary of Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Moment Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.309</td>
<td>Elasticity of sub/markup</td>
<td>Ruhl (2008)</td>
</tr>
<tr>
<td>δ</td>
<td>0.09</td>
<td>Enterprise death rate</td>
<td>US Census (2004)</td>
</tr>
<tr>
<td>β</td>
<td>0.34</td>
<td>Share non differentiated</td>
<td>Rauch (1999)</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>Elasticity of sub/markup</td>
<td>Basu (1994)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.05</td>
<td>interest rate</td>
<td>Mehra-Prescott (2005)</td>
</tr>
<tr>
<td>η</td>
<td>0.0119</td>
<td>R&D/GDP + Growth</td>
<td>CHS (2006)</td>
</tr>
<tr>
<td>λ</td>
<td>1.507</td>
<td>avg. firm size</td>
<td>Axtell (2001)</td>
</tr>
<tr>
<td>κ</td>
<td>2.621</td>
<td>std. firm productivity</td>
<td>BJEK (2003)</td>
</tr>
</tbody>
</table>
Trade liberalization

- Reduce trade cost τ by 10 percent:
Trade liberalization

- Reduce trade cost τ by 10 percent:
- Growth decomposition (direct and selection effect):

$$g_\tau = \frac{d g}{d \tau} = g^d_\tau + g^*_\tau$$

Direct effect Selection effect

where

$$g^d_\tau = \frac{\partial g}{\partial \tau} \bigg|_{z^* = z^*} = \frac{\beta (1 - \beta) \eta A e}{\beta + (1 + \eta) \theta_\tau} \frac{d \theta_\tau}{d \tau}.$$ \hspace{1cm} (1)

and

$$g^*_\tau = g_\tau - g^d_\tau$$
Simulation results: 10% drop in trade costs

Sensitivity Analysis: Double the Benchmark

<table>
<thead>
<tr>
<th></th>
<th>bench</th>
<th>$n = 12$</th>
<th>$\kappa = 5.24$</th>
<th>$\beta = 0.68$</th>
<th>$\delta = 0.18$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/\theta_\tau$</td>
<td>-0.0115</td>
<td>-0.0252</td>
<td>-0.0115</td>
<td>-0.0115</td>
<td>-0.0115</td>
</tr>
<tr>
<td>z^*</td>
<td>0.0421</td>
<td>0.0702</td>
<td>0.0206</td>
<td>0.0418</td>
<td>0.0421</td>
</tr>
<tr>
<td>$1 - F(z^*)$</td>
<td>-0.1026</td>
<td>-0.1630</td>
<td>-0.1013</td>
<td>-0.1019</td>
<td>-0.1026</td>
</tr>
<tr>
<td>\bar{y}</td>
<td>0.1148</td>
<td>0.1965</td>
<td>0.1124</td>
<td>0.1148</td>
<td>0.1147</td>
</tr>
<tr>
<td>$</td>
<td>g_\tau</td>
<td>$</td>
<td>0.1298</td>
<td>0.2334</td>
<td>0.1320</td>
</tr>
<tr>
<td>g_τ^d</td>
<td>4.2%</td>
<td>5.1</td>
<td>4.1</td>
<td>3.1</td>
<td>4</td>
</tr>
<tr>
<td>g_τ^*</td>
<td>95.8%</td>
<td>94.9</td>
<td>95.9</td>
<td>96.9</td>
<td>96</td>
</tr>
</tbody>
</table>

Benchmark: $n = 6$, $\kappa = 2.62$, $\lambda = 1.5017$, $\beta = 0.34$, $\delta = 0.09$,
Comparison with existing empirical works

Table 3

<table>
<thead>
<tr>
<th>Comparison with empirical evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moments model</td>
</tr>
<tr>
<td>$1/\theta_\tau$</td>
</tr>
<tr>
<td>$1 - F(z^*)$</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$</td>
</tr>
</tbody>
</table>

All effects are quantitatively close to those in empirical works:

- Elasticity of the markup to a reduction in τ is the interval between 0.1 and 0.4.
- Elasticity of innovation to a reduction in τ roughly falls in the interval between 1 and 2.4.

Existing works study only parts of our predictions. We provide a complete picture (all effects) and a specific economic mechanism (source of selection) as a guideline for future empirical work.
Comparison ctd.

- All effects are quantitatively close to those in empirical works:
 - Elasticity of the markup to a reduction in τ is the interval between 0.1 and 0.4
 - Elasticity of innovation to a reduction in τ roughly falls in the interval between 1 and 2.4.

Existing works study only parts of our predictions; we provide a complete picture (all effects) and a specific economic mechanism (source of selection) as a guideline for future empirical work.
Comparison ctd.

- All effects are quantitatively close to those in empirical works:
 - Elasticity of the markup to a reduction in τ is the interval between 0.1 and 0.4
 - Elasticity of innovation to a reduction in τ roughly falls in the interval between 1 and 2.4.
Comparison ctd.

- All effects are quantitatively close to those in empirical works:
 - Elasticity of the markup to a reduction in τ is the interval between 0.1 and 0.4.
 - Elasticity of innovation to a reduction in τ roughly falls in the interval between 1 and 2.4.

- Existing works study only parts of our predictions \Rightarrow we provide a complete picture (all effects) and a specific economic mechanism (source of selection) \rightarrow guideline for future empirical work.
Extension: fixed export and entry cost

- Each firm pays a fixed cost ϕ to enter and get the productivity draw
 \rightarrow endogenize n
Extension: fixed export and entry cost

- Each firm pay a fixed cost ϕ to enter and get the productivity draw → endogenize n
- In order to export firms pay an additional fixed cost λ_x
Extension: fixed export and entry cost

- Each firm pay a fixed cost ϕ to enter and get the productivity draw
 \rightarrow endogenize n
- In order to export firms pay an additional fixed cost λ_x
- To simplify matters we remove innovation and look at effect of trade on markups and cutoffs
Extension: fixed export and entry cost

- Each firm pay a fixed cost ϕ to enter and get the productivity draw \rightarrow endogenize n
- In order to export firms pay an additional fixed cost λ_x
- To simplify matters we remove innovation and look at effect of trade on markups and cutoffs
- Reintroducing innovation in progress
Extension: fixed entry and export costs

- Fixed export cost $\lambda_x \rightarrow$ new cutoff z^*_x

$$\left(1 - \theta_\tau\right)e = \frac{\lambda + \lambda_x}{z^*_x} \left(\frac{1}{\bar{p} \theta_\tau}\right)^{\frac{\alpha}{1-\alpha}}, \tag{XC}$$

where the \bar{p} is a weighted average of productivities

$$\bar{p} = \left(\theta^{\frac{\alpha}{1-\alpha}} \int_{z^*_x}^{\infty} z \mu(z) \, dz + \theta_\tau^{\frac{\alpha}{1-\alpha}} \int_{z^*_x}^{\infty} z \mu(z) \, dz\right)^{\frac{\alpha-1}{\alpha}},$$
Extension: fixed entry and export costs

- Fixed export cost $\lambda_x \rightarrow$ new cutoff z_x^*

\[
(1 - \theta \tau) e = \frac{\lambda + \lambda_x}{z_x^*} \left(\frac{1}{\bar{p} \theta \tau} \right)^{\frac{\alpha}{1-\alpha}},
\]

(XC)

where the \bar{p} is a weighted average of productivities

\[
\bar{p} = \left(\theta \frac{\alpha}{1-\alpha} \int_{z_x^*}^{\infty} z \mu(z) dz + \theta \tau \frac{\alpha}{1-\alpha} \int_{z_x^*}^{\infty} z \mu(z) dz \right)^{\frac{\alpha-1}{\alpha}},
\]

- Domestic cutoff z^*

\[
(1 - \theta) e = \frac{\lambda}{z^*} \left(\frac{1}{\bar{p} \theta} \right)^{\frac{\alpha}{1-\alpha}},
\]

(EC2)
Combining (EC) and (XC), we get a linear relation between z^* and z_x^*

$$\frac{z_x^*}{z^*} = \frac{1 - \theta}{1 - \theta^*_x} \left(\frac{\theta}{\theta^*_x} \right)^{\frac{\alpha}{1 - \alpha}} \frac{\lambda + \lambda_x}{\lambda}$$
Combining (EC) and (XC), we get a linear relation between z^* and z_x^*

$$\frac{z_x^*}{z^*} = \frac{1 - \theta}{1 - \theta_\tau} \left(\frac{\theta}{\theta_\tau} \right)^{\frac{x}{1-x}} \frac{\lambda + \lambda_x}{\lambda}$$

with $z^* < z_x^*$ \rightarrow only the most productive firms export
Extension: fixed entry and export costs

- Combining (EC) and (XC), we get a linear relation between z^* and z_x^*

$$\frac{z_x^*}{z^*} = \frac{1 - \theta}{1 - \theta_\tau} \left(\frac{\theta}{\theta_\tau} \right)^{\frac{\alpha}{1-\alpha}} \frac{\lambda + \lambda_x}{\lambda}$$

- with $z^* < z_x^*$ \rightarrow only the most productive firms export
- $d(z_x^*/z^*)/d\theta_\tau > 0$
Free entry implies that the expected value of the firm must be equal to the entry cost

$$(1 - F(z^*)) \frac{\bar{\pi}}{\rho + \delta} = \phi,$$

where the average profit is given by

$$\bar{\pi} = \int_{z^*}^{Z_x} \left[(1 - \theta) e^{\theta \frac{\alpha}{1 - \alpha}} z \bar{p}^{\frac{\alpha}{1 - \alpha}} - \lambda \right] \mu(z) dz + \int_{z^*}^{\infty} \left[(1 - \theta_\tau) e^{\theta_\tau \frac{\alpha}{1 - \alpha}} z \bar{p}^{\frac{\alpha}{1 - \alpha}} \right].$$
extension: fixed entry and export costs

- Free entry implies that the expected value of the firm must be equal to the entry cost
 \[
 (1 - F(z^*)) \frac{\bar{\pi}}{(\rho + \delta)} = \phi,
 \]
 where the average profit is given by
 \[
 \bar{\pi} = \int_{z^*}^{Z_x} \left[(1 - \theta) e^{\theta \frac{1}{1-\alpha}} z \bar{p}^{\frac{1}{1-\alpha}} \lambda \right] \mu(z) dz + \int_{z^*}^{\infty} \left[(1 - \theta_T) e^{\theta_T \frac{1}{1-\alpha}} z \bar{p}^{\frac{1}{1-\alpha}} \right] \mu(z) dz
 \]

- Calibrate and solve it numerically
Trade liberalization

Domestic Markup

- 1.1298
- 1.1296
- 1.1294
- 1.1292
- 1.1290

Export markup

- 1.14
- 1.13
- 1.12

Domestic Cutoff

- 44.35
- 44.33
- 44.31
- 44.29
- 44.27

Export Cutoff

- 195
- 190
- 185
- 180
- 175
Trade Liberalization

Average sales of exporters

Average profits

Total number of firms, $n^3 M$

Impullitti-Licandro (IMT-IAE)
Trade, firm selection, and innovation
CEPR ESSIM 2010
Extension: results

- There are three effects of trade liberalization.

Basic economic mechanisms behind the direct and selection effects of trade liberalization on innovation are still operative and even stronger. The key intuitions:

- Reduction in τ reduces the markup of exporters, forcing the less productive among them to exit the market and the productivity cutoff z_x to increase.
- Entry depends on average profits $\bar{\pi}$, and trade liberalization increases $\bar{\pi}$, which reduces domestic markup and increases domestic cutoff z_x.
Extension: results

- There are three effects of trade liberalization:
 - Positive effect on number of firms n per good and a negative effect on the total number of firms nM.
 - Both domestic and foreign markups are reduced (reinforced by increase in n), increasing both the domestic and the exporting cut-off, z and z'.
 - Basic economic mechanism behind the direct and selection effects of trade liberalization on innovation are still operative and even stronger.
 - Reduction in τ reduces the markup of exporters, forcing the less productive among them to exit the market and the productivity cut-off z to increase.
 - Entry depends on average profits $\bar{\pi}$ and trade liberalization increases $\bar{\pi}$ = n reduces domestic markup and increases domestic cut-off z.

Impullitti-Licandro (IMT-IAE)
Trade, firm selection, and innovation
CEPR ESSIM 2010 33 / 37
Extension: results

- There are three effects of trade liberalization
 - Positive effect on number of firms \(n \) per good and a negative effect on the total number of firms \(nM \)
 - Both domestic and foreign markups are reduced (reinforced by increase in \(n \))
There are three effects of trade liberalization:

- Positive effect on number of firms n per good and a negative effect on the total number of firms nM.
- Both domestic and foreign markups are reduced (reinforced by increase in n).
- Increasing both the domestic and the exporting cutoff, z^* and z_x^*.

Basic economic mechanism behind the direct and selection effect of trade liberalization on innovation are still operative and even stronger.

The key intuitions:
- Reduction in τ reduces the markup of exporters, forcing the less productive among them to exit the market and the productivity cutoff z to increase.
- Entry depends on average profits $\bar{\pi}$ and trade liberalization increases $\bar{\pi} = \frac{1}{n}$ reduces domestic markup and increases domestic cutoff z.

Impullitti-Licandro (IMT-IAE)
Extension: results

- There are three effects of trade liberalization:
 - Positive effect on number of firms n per good and a negative effect on the total number of firms nM.
 - Both domestic and foreign markups are reduced (reinforced by increase in n).
 - Increasing both the domestic and the exporting cutoff, z^* and z_x^*.

- Basic economic mechanism behind the direct and selection effect of trade liberalization on innovation are still operative and even stronger.
There are three effects of trade liberalization:

- Positive effect on number of firms n per good and a negative effect on the total number of firms nM.
- Both domestic and foreign markups are reduced (reinforced by increase in n).
- Increasing both the domestic and the exporting cutoff, z^* and z^*_x.

Basic economic mechanism behind the direct and selection effect of trade liberalization on innovation are still operative and even stronger.

The key intuitions:
There are three effects of trade liberalization:

- Positive effect on number of firms \(n \) per good and a negative effect on the total number of firms \(nM \).
- Both domestic and foreign markups are reduced (reinforced by increase in \(n \)).
- Increasing both the domestic and the exporting cutoff, \(z^* \) and \(z_x^* \).

Basic economic mechanism behind the direct and selection effect of trade liberalization on innovation are still operative and even stronger.

The key intuitions:

- Reduction in \(\tau \) reduces the markup of exporters, forcing the less productive among them to exit the market and the productivity cutoff \(z_x^* \) to increase.
Extension: results

- There are three effects of trade liberalization
 - Positive effect on number of firms n per good and a negative effect on the total number of firms nM
 - Both domestic and foreign markups are reduced (reinforced by increase in n)
 - Increasing both the domestic and the exporting cutoff, z^* and $zُ_x^*$

- Basic economic mechanism behind the direct and selection effect of trade liberalization on innovation are still operative and even stronger

- The key intuitions:
 - Reduction in τ reduces the markup of exporters, forcing the less productive among them to exit the market and the productivity cutoff $zُ_x^*$ to increase
 - Entry depends on avg. profits $\bar{\pi}$ and trade liberalization increases $\bar{\pi} \uparrow n \Rightarrow$ reduces domestic markup and increases domestic cutoff z^*
Policy implication: in rigid economies ϕ is high \Rightarrow trade liberalization can be a substitute to competition policy in generating more competition (higher n)
Conclusion

- **Pro-competitive** effects of trade on selection and innovation from endogenous market structure, as in evidence i)-iii)

Quantitative analysis: reduction of trade costs has substantial effects on innovation through both the intensive and extensive margin (selection).

A new channel of welfare gains from trade: the competition channel produces static (not new) and dynamic (new) welfare gains (limited to steady-state).

Needed transitional dynamics

Many extensions: asymmetric countries and asymmetric liberalizations
Conclusion

- **Pro-competitive** effects of trade on selection and innovation from endogenous market structure, as in evidence i)-iii)
- Pro-competitive effects obtained through **oligopolistic competition**, no special assumption on preferences
Conclusion

- **Pro-competitive** effects of trade on selection and innovation from endogenous market structure, as in evidence i)-iii)
- Pro-competitive effects obtained through oligopolistic competition, no special assumption on preferences
- **Quantitative analysis**: reduction of trade costs has substantial effects on innovation through both the intensive and extensive margin (selection)
Conclusion

- **Pro-competitive** effects of trade on selection and innovation from endogenous market structure, as in evidence i)-iii)

- Pro-competitive effects obtained through *oligopolistic competition*, no special assumption on preferences

- **Quantitative analysis**: reduction of trade costs has substantial effects on innovation through both the intensive and extensive margin (selection)

- A new channel of welfare gains from trade: the competition channel produces static (not new) and **dynamic** (new) welfare gains (limited to steady-state) → needed transitional dynamics
Conclusion

- **Pro-competitive** effects of trade on selection and innovation from endogenous market structure, as in evidence i)-iii)
- Pro-competitive effects obtained through *oligopolistic competition*, no special assumption on preferences
- **Quantitative analysis**: reduction of trade costs has substantial effects on innovation through both the intensive and extensive margin (selection)
- A new channel of welfare gains from trade: the competition channel produces static (not new) and *dynamic* (new) welfare gains (limited to steady-state) → needed transitional dynamics
- Many extensions: asymmetric countries and asymmetric liberalizations
Heterogeneity across firms or industries?

- Meltiz (2003): monopolistic competition → 1 firm produces 1 variety → heterogeneity across varieties/firms

\[H_{\text{industries}, M_{\text{varieties in each industries}}, n_{\text{firms in each varieties}}} \]
Heterogeneity across firms or industries?

- Meltiz (2003): monopolistic competition → 1 firm produces 1 variety → heterogeneity across varieties/firms
- This paper: \(n \) firms produce perfectly substitutable goods with same productivity → heterogeneity takes places across varieties

\[
\prod_{h=1}^{H} \prod_{t=1}^{M} x_{\alpha hjt} d_{jt}^{\alpha}
\]

Impullitti-Licandro (IMT-IAE)

Trade, firm selection, and innovation
Heterogeneity across firms or industries?

- Meltiz (2003): monopolistic competition → 1 firm produces 1 variety → heterogeneity across varieties/firms
- This paper: n firms produce perfectly substitutable goods with same productivity → heterogeneity takes places across varieties
- Empirical issue 1:
Heterogeneity across firms or industries?

- Meltiz (2003): monopolistic competition → 1 firm produces 1 variety → heterogeneity across varieties/firms
- This paper: n firms produce perfectly substitutable goods with same productivity → heterogeneity takes places across varieties
- Empirical issue 1:
 - If a variety is a an industrial sector → only diff. btw. the two papers is market structure
Heterogeneity across firms or industries?

- Meltiz (2003): monopolistic competition → 1 firm produces 1 variety → heterogeneity across varieties/firms
- This paper: \(n \) firms produce perfectly substitutable goods with same productivity → heterogeneity takes places across varieties
- Empirical issue 1:
 - If a variety is a an industrial sector → only diff. btw. the two papers is market structure
 - If a Dixit-Stiglitz aggregate of varieties is an industrial sector → both models are models of industry and the economy would be represented by many of these industries

\[
\prod_{h=1}^{H} X_t = \prod_{h=1}^{H} \left(\int_0^{M_t} x_{jht}^\alpha dj \right)^{\frac{1}{\alpha}}
\]

\(H \) industries, \(M \) varieties in each industries, \(n \) firms in each varieties
Heterogeneity across firms or industries?

- Trade liberalization leads to exit of *varieties* in Melitz
Heterogeneity across firms or industries?

- Trade liberalization leads to exit of *varieties* in Melitz
- Trade liberalization leads to exit of *firms* (when n is endogenous) and *varieties* in our model