Stationary equilibrium distributions in economies with limited commitment

Tobias Broer
Institute for International Economic Studies,
Stockholm University

ESSIM 2010

$US\ consumption\ and\ income\ heterogeneity$ - Stylised Facts

US consumption and income heterogeneity - Stylised Facts

 Strong increase in income inequality since 1980 partly due to increased variance of near-permanent shocks; much smaller rise in consumption inequality (Krueger and Perri 2006, on CEX data)

US consumption and income heterogeneity - Stylised Facts

- Strong increase in income inequality since 1980 partly due to increased variance of near-permanent shocks; much smaller rise in consumption inequality (Krueger and Perri 2006, on CEX data)
- Effect of transitory income shocks on current consumption is 0; that of permanent shocks about 2/3, falling slightly over time (Blundell et al. 2008, on new PSID dataset)

US consumption and income heterogeneity - Stylised Facts

- Strong increase in income inequality since 1980 partly due to increased variance of near-permanent shocks; much smaller rise in consumption inequality (Krueger and Perri 2006, on CEX data)
- Effect of transitory income shocks on current consumption is 0; that of permanent shocks about 2/3, falling slightly over time (Blundell et al. 2008, on new PSID dataset)
- A calibrated life-cyle version of Aiyagari (1993) has too large consumption effects of permanent income shocks (Kaplan et al 2010)

$US\ consumption\ and\ income\ heterogeneity$ - Stylised Facts

- Strong increase in income inequality since 1980 partly due to increased variance of near-permanent shocks; much smaller rise in consumption inequality (Krueger and Perri 2006, on CEX data)
- Effect of transitory income shocks on current consumption is 0; that of permanent shocks about 2/3, falling slightly over time (Blundell et al 2008 on new PSID dataset)
- 3. A calibrated life-cyle version of Aiyagari (1993) has too large effects of permanent shocks (Violante and Kaplan 2010)
- ⇒ Need models of partial insurance, over and above self-insurance

 Allow <u>some</u> but not full insurance by adding frictions to complete markets environment

- Allow <u>some</u> but not full insurance by adding frictions to complete markets environment
 - 1. Asymmetric information: Income shocks unobserved.

- Allow <u>some</u> but not full insurance by adding frictions to complete markets environment
 - 1. Asymmetric information: Income shocks unobserved.
 - 2. Limited commitment to contracts

- Allow <u>some</u> but not full insurance by adding frictions to complete markets environment
 - 1. Asymmetric information: Income shocks unobserved.
 - 2. Limited commitment to contracts
 - Individuals can choose to default on claims, at price of exclusion from financial markets

- Allow <u>some</u> but not full insurance by adding frictions to complete markets environment
 - 1. Asymmetric information: Income shocks unobserved.
 - 2. Limited commitment to contracts
 - Individuals can choose to default on claims, at price of exclusion from financial markets
 - This limits borrowing against future high income states and thus risk-sharing

- Allow <u>some</u> but not full insurance by adding frictions to complete markets environment
 - 1. Asymmetric information: Income shocks unobserved.
 - 2. Limited commitment to contracts
 - Individuals can choose to default on claims, at price of exclusion from financial markets
 - This limits borrowing against future high income states and thus risk-sharing
 - Positive income shocks lead to jump in consumption, negative income shocks are smoothed

1. Theory

 Welfare theorems and asset prices (Kehoe et al 1993, Alvarez et al 2000).

1. Theory

- Welfare theorems and asset prices (Kehoe et al 1993, Alvarez et al 2000).
- Continuum economy with 2 i.i.d. income states: stationary
 c, y distribution in Krueger and Perri 2005, Krueger and Uhlig
 2006.

1. Theory

- Welfare theorems and asset prices (Kehoe et al 1993, Alvarez et al 2000).
- Continuum economy with 2 i.i.d. income states: stationary
 c, y distribution in Krueger and Perri 2005, Krueger and Uhlig
 2006.
- Existence, uniqueness & convergence unclear in continuum economies (but example in Thomas and Warroll 2007).

1. Theory

- Welfare theorems and asset prices (Kehoe et al 1993, Alvarez et al 2000).
- Continuum economy with 2 i.i.d. income states: stationary
 c, y distribution in Krueger and Perri 2005, Krueger and Uhlig
 2006.
- Existence, uniqueness & convergence unclear in continuum economies (but example in Thomas and Warroll 2007).
- 2. Confrontation with data

1. Theory

- Welfare theorems and asset prices (Kehoe et al 1993, Alvarez et al 2000).
- Continuum economy with 2 i.i.d. income states: stationary
 c, y distribution in Krueger and Perri 2005, Krueger and Uhlig
 2006.
- Existence, uniqueness & convergence unclear in continuum economies (but example in Thomas and Warroll 2007).

2. Confrontation with data

 Krueger and Perri (2006): Limited commitment to contracts can explain small increase in US consumption inequality 1980-2003.

1. Theory

- Welfare theorems and asset prices (Kehoe et al 1993, Alvarez et al 2000).
- Continuum economy with 2 i.i.d. income states: stationary
 c, y distribution in Krueger and Perri 2005, Krueger and Uhlig
 2006.
- Existence, uniqueness & convergence unclear in continuum economies (but example in Thomas and Warroll 2007).

2. Confrontation with data

- Krueger and Perri (2006): Limited commitment to contracts can explain small increase in US consumption inequality 1980-2003.
- Cordoba (2008): Too little concentration of wealth at the top.

1. Theory

- Welfare theorems and asset prices (Kehoe et al 1993, Alvarez et al 2000).
- Continuum economy with 2 i.i.d. income states: stationary
 c, y distribution in Krueger and Perri 2005, Krueger and Uhlig
 2006.
- Existence, uniqueness & convergence unclear in continuum economies (but example in Thomas and Warroll 2007).

2. Confrontation with data

- Krueger and Perri (2006): Limited commitment to contracts can explain small increase in US consumption inequality 1980-2003.
- Cordoba (2008): Too little concentration of wealth at the top.
- Both focus on marginal cross-sectional distributions.

• Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...

- Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...
 - 1. Prove existence and uniqueness of equilibrium

- Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...
 - 1. Prove existence and uniqueness of equilibrium
 - Demonstrate the particular, non-linear structure of joint distributions: strong skew of marginal distributions, non-linearity and heteroscedasticity of conditional distributions

- Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...
 - 1. Prove existence and uniqueness of equilibrium
 - Demonstrate the particular, non-linear structure of joint distributions: strong skew of marginal distributions, non-linearity and heteroscedasticity of conditional distributions
 - 3. Design simple computational algorithm to efficiently solve for stationary process

- Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...
 - 1. Prove existence and uniqueness of equilibrium
 - Demonstrate the particular, non-linear structure of joint distributions: strong skew of marginal distributions, non-linearity and heteroscedasticity of conditional distributions
 - Design simple computational algorithm to efficiently solve for stationary process
- Quantitatively shows that the simple limited commitment has difficulty to account for structure of joint distributions

- Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...
 - 1. Prove existence and uniqueness of equilibrium
 - Demonstrate the particular, non-linear structure of joint distributions: strong skew of marginal distributions, non-linearity and heteroscedasticity of conditional distributions
 - Design simple computational algorithm to efficiently solve for stationary process
- Quantitatively shows that the simple limited commitment has difficulty to account for structure of joint distributions
 - Low consumption growth volatility

- Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...
 - 1. Prove existence and uniqueness of equilibrium
 - Demonstrate the particular, non-linear structure of joint distributions: strong skew of marginal distributions, non-linearity and heteroscedasticity of conditional distributions
 - Design simple computational algorithm to efficiently solve for stationary process
- Quantitatively shows that the simple limited commitment has difficulty to account for structure of joint distributions
 - Low consumption growth volatility
 - Strong skew in consumption growth

- Solves analytically for joint stationary distribution of c,y,w in limited commitment continuum economy. Uses this to ...
 - 1. Prove existence and uniqueness of equilibrium
 - Demonstrate the particular, non-linear structure of joint distributions: strong skew of marginal distributions, non-linearity and heteroscedasticity of conditional distributions
 - Design simple computational algorithm to efficiently solve for stationary process
- Quantitatively shows that the simple limited commitment has difficulty to account for structure of joint distributions
 - Low consumption growth volatility
 - Strong skew in consumption growth
 - Strong heteroskedasticity of joint distributions

Outline

- 1. Environment
- 2. Planner's Problem
- 3. Analytical Results
 - 3.1 Characterisation of c, y distribution
 - 3.2 Existence and uniqueness
- 4. Quantitative model
 - Non-parametric comparison with CEX data
 - GMM estimation
 - Model comparison
 - Sensitivity

• Time is discrete $t \in \{0, 1, 2, ..., \infty\}$

- Time is discrete $t \in \{0, 1, 2, ..., \infty\}$
- One perishable endowment good is used for consumption

- Time is discrete $t \in \{0, 1, 2, ..., \infty\}$
- One perishable endowment good is used for consumption
- Large number of agents $i \in \mathbb{I}$ of mass 1

Individual endowments and preferences

• Agents receive endowments $z_{i,t} \in Z = [z_1, z_2,, z_N]$

- Agents receive endowments $z_{i,t} \in Z = [z_1, z_2,, z_N]$
- $z_{i,t} \in Z$ follows Markov transition given by transition matrix F

- Agents receive endowments $z_{i,t} \in Z = [z_1, z_2,, z_N]$
- $z_{i,t} \in Z$ follows Markov transition given by transition matrix F
- Law of large numbers holds

- Agents receive endowments $z_{i,t} \in Z = [z_1, z_2,, z_N]$
- $z_{i,t} \in Z$ follows Markov transition given by transition matrix F
- Law of large numbers holds
- Special Case with 2 income values:

- Agents receive endowments $z_{i,t} \in Z = [z_1, z_2,, z_N]$
- $z_{i,t} \in Z$ follows Markov transition given by transition matrix F
- Law of large numbers holds
- Special Case with 2 income values:

•
$$Z = \{y_0 + \epsilon, y_0 - \epsilon\}, \ \epsilon \ge 0$$

- Agents receive endowments $z_{i,t} \in Z = [z_1, z_2,, z_N]$
- $z_{i,t} \in Z$ follows Markov transition given by transition matrix F
- Law of large numbers holds
- Special Case with 2 income values:

•
$$Z = \{y_0 + \epsilon, y_0 - \epsilon\}, \ \epsilon \ge 0$$

•
$$F = [p, 1-p; 1-q, q]$$

- Agents receive endowments $z_{i,t} \in Z = [z_1, z_2,, z_N]$
- $z_{i,t} \in Z$ follows Markov transition given by transition matrix F
- Law of large numbers holds
- Special Case with 2 income values:

•
$$Z = \{y_0 + \epsilon, y_0 - \epsilon\}, \ \epsilon \ge 0$$

•
$$F = [p, 1-p; 1-q, q]$$

Preferences

$$U = E_0 \sum_{i=0}^{\infty} \beta^t u(c_{i,t})$$

• Agents trade full set of AD securities $\{a(s')\}\$ at prices q(s')

- Agents trade full set of AD securities $\{a(s')\}\$ at prices q(s')
- But: agents can default, at price of eternal financial autarky

- Agents trade full set of AD securities $\{a(s')\}\$ at prices q(s')
- But: agents can default, at price of eternal financial autarky
- Creditors impose debt constraint $a(s') \ge A(s') = min\{\alpha(s') : V(z(s'), \alpha(s')) \ge W(z(s'))\}$

- Agents trade full set of AD securities $\{a(s')\}$ at prices q(s')
- But: agents can default, at price of eternal financial autarky
- Creditors impose debt constraint $a(s') \ge A(s') = min\{\alpha(s') : V(z(s'), \alpha(s')) \ge W(z(s'))\}$
- NB: A(s') restricts borrowing against future high income

Partial insurance

• Assumption 1: Perfect insurance infeasible

$$W(z^1) > \sum_{0}^{\infty} \beta^t u(Y) \tag{1}$$

Assumption 2: Autarky not an equilibrium

$$\beta > \frac{u'(z^1)}{u'(z^N)} \tag{2}$$

Recursive formulation of Household's Problem (Alvarez and Jermann 2000)

$$V(z(s), a(s)) = \max_{c, \{a(s')\}} \{u(c) + \beta E_s V(z', a(s'))\}$$

 $s.t. \ c + \sum_s a(s') q(s') \le a(s) + z(s)$
 $a(s') \ge A(s')$
 $A(s') = \min \{\alpha(s') : V(z(s'), \alpha(s')) \ge W(z(s'))\}$

$Competitive\ equilibrium$

- Prices and decision rules with associated V(z, a) such that
 - 1. V is the maximum value function associated to the household problem given $q(s^\prime)$
 - 2. V is attained by c(.), a'(s', .)
 - 3. The market for Arrow-Debreu Securities clears $\sum_i a(s) = 0, \ \forall s$

• Equilibrium allocation is constrained efficient

- Equilibrium allocation is constrained efficient
- Solution to constrained social planner's problem with initial weights $\mu_{i,0} \in \{\mu^1,...,\mu^K\}$ in a social welfare function

- Equilibrium allocation is constrained efficient
- Solution to constrained social planner's problem with initial weights $\mu_{i,0} \in \{\mu^1,...,\mu^K\}$ in a social welfare function
- Solved by Marcet and Marimon (2009) method:
 Planner increases individual weights of participation-constrained agents μ'_i = μ_i + γ_i

1. Marginal value of resources: $\lambda = (\mu_j + \gamma_j)U'(c_j), \ \forall j$

- 1. Marginal value of resources: $\lambda = (\mu_j + \gamma_j)U'(c_j), \ \forall j$
 - \Rightarrow Intratemporal FOC: $\frac{U'(c_i)}{U'(c_j)} = \frac{\mu_j + \gamma_j}{\mu_i + \gamma_i}$

- 1. Marginal value of resources: $\lambda = (\mu_j + \gamma_j)U'(c_j), \ \forall j$
 - \Rightarrow Intratemporal FOC: $\frac{U'(c_i)}{U'(c_j)} = \frac{\mu_j + \gamma_j}{\mu_i + \gamma_i}$
- 2. Definition of interest rate: $R = \frac{\lambda}{\beta E[\lambda']} = \frac{\lambda}{\beta \lambda'}$

- 1. Marginal value of resources: $\lambda = (\mu_j + \gamma_j)U'(c_j), \ \forall j$
 - \Rightarrow Intratemporal FOC: $\frac{U'(c_i)}{U'(c_j)} = \frac{\mu_j + \gamma_j}{\mu_i + \gamma_i}$
- 2. Definition of interest rate: $R = \frac{\lambda}{\beta E[\lambda']} = \frac{\lambda}{\beta \lambda'}$
 - 1.,2. \Rightarrow LOM for c_i

$$U'(c_i') = rac{1}{\mathsf{R}eta} rac{\mu_i'}{\mu_i' + \gamma_i'} U'(c_i)$$

- 1. Marginal value of resources: $\lambda = (\mu_j + \gamma_j)U'(c_j), \ \forall j$
 - \Rightarrow Intratemporal FOC: $\frac{U'(c_i)}{U'(c_j)} = \frac{\mu_j + \gamma_j}{\mu_i + \gamma_i}$
- 2. Definition of interest rate: $R = \frac{\lambda}{\beta E[\lambda']} = \frac{\lambda}{\beta \lambda'}$
 - 1.,2. \Rightarrow LOM for c_i

$$U'(c_i') = \frac{1}{R\beta} \frac{\mu_i'}{\mu_i' + \gamma_i'} U'(c_i)$$

• LOM for unconstrained individuals with CRRA: $c'_i = (R\beta)^{\frac{1}{\sigma}} c_i$

- 1. Marginal value of resources: $\lambda = (\mu_j + \gamma_j)U'(c_j), \ \forall j$
 - \Rightarrow Intratemporal FOC: $\frac{U'(c_i)}{U'(c_j)} = \frac{\mu_j + \gamma_j}{\mu_i + \gamma_i}$
- 2. Definition of interest rate: $R = \frac{\lambda}{\beta E[\lambda']} = \frac{\lambda}{\beta \lambda'}$
 - 1.,2. \Rightarrow LOM for c_i

$$U'(c_i') = \frac{1}{R\beta} \frac{\mu_i'}{\mu_i' + \gamma_i'} U'(c_i)$$

- LOM for unconstrained individuals with CRRA: $c'_i = (R\beta)^{\frac{1}{\sigma}} c_i$
- ⇒ Stationarity implies constant interest rate and vice versa

- 1. Marginal value of resources: $\lambda = (\mu_j + \gamma_j)U'(c_j), \ \forall j$
 - \Rightarrow Intratemporal FOC: $\frac{U'(c_i)}{U'(c_j)} = \frac{\mu_j + \gamma_j}{\mu_i + \gamma_i}$
- 2. Definition of interest rate: $R = \frac{\lambda}{\beta E[\lambda']} = \frac{\lambda}{\beta \lambda'}$
 - 1.,2. \Rightarrow LOM for c_i

$$U'(c_i') = \frac{1}{R\beta} \frac{\mu_i'}{\mu_i' + \gamma_i'} U'(c_i)$$

- LOM for unconstrained individuals with CRRA: $c_i' = (R\beta)^{\frac{1}{\sigma}}c_i$
- ⇒ Stationarity implies constant interest rate and vice versa
- $\Rightarrow R = \frac{1}{\beta}$ implies perfect insurance and vice versa

$An alytical\ results$

Analytical results

• Focus on special case

$An alytical\ results$

- Focus on special case
 - $Z = \{y_0 + \epsilon, y_0 \epsilon\}, \ \epsilon \ge 0$
 - F = [p, 1-p; 1-q, q]

$An alytical\ results$

Focus on special case

•
$$Z = \{y_0 + \epsilon, y_0 - \epsilon\}, \ \epsilon \ge 0$$

•
$$F = [p, 1-p; 1-q, q]$$

CRRA preferences

 There exists a unique stationary equilibrium, with the following properties

- There exists a unique stationary equilibrium, with the following properties
 - 1. Aggregate consumption is constant

- There exists a unique stationary equilibrium, with the following properties
 - 1. Aggregate consumption is constant
 - 2. The stationary consumption distribution has finite support

$$\mathbb{C} = \{c_{max}, c_{max}(R\beta)^{\frac{1}{\sigma}}, c_{max}(R\beta)^{\frac{2}{\sigma}}, ..., c_{min} = y - \epsilon\}$$

- There exists a unique stationary equilibrium, with the following properties
 - 1. Aggregate consumption is constant
 - 2. The stationary consumption distribution has finite support $\mathbb{C} = \{c_{max}, c_{max}(R\beta)^{\frac{1}{\sigma}}, c_{max}(R\beta)^{\frac{2}{\sigma}}, ..., c_{min} = y \epsilon\}$
 - 3. Frequency mass Φ declines geometrically at rate q

Proposition 1

- There exists a unique stationary equilibrium, with the following properties
 - 1. Aggregate consumption is constant
 - 2. The stationary consumption distribution has finite support $\mathbb{C} = \{c_{max}, c_{max}(R\beta)^{\frac{1}{\sigma}}, c_{max}(R\beta)^{\frac{2}{\sigma}}, ..., c_{min} = y \epsilon\}$
 - 3. Frequency mass Φ declines geometrically at rate q
 - 4. With $\Phi(c_{min}) \approx 0$

$$c_{max} = \left[\frac{(1 - \beta(p+q) + \beta^2 (1 - p - q)(1 - \beta q(\beta R)^{\frac{1 - \sigma}{\sigma}}))}{1 + (1 - p - q)(1 - \beta q(\beta R)^{\frac{1 - \sigma}{\sigma}})} \right]^{\frac{1}{1 - \sigma}} \left[(1 - \sigma) W(y_0 + \epsilon)^{\frac{1}{1 - \sigma}} \right]$$

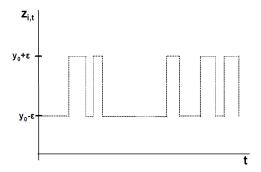
Proposition 1 - Intuition

Proposition 1 - Intuition

- 1. Characterisation of joint c, y distribution for given R
- 2. Existence and uniqueness of market-clearing R

1. Stationary consumption distribution at given R

$Example\ income\ path\ of\ individual\ i$



$Consumption\ path\ with\ debt\mbox{-}constrained\ markets$

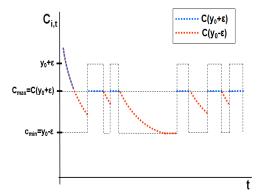
Consumption path with debt-constrained markets

• $c'_{i,t+1} = (R\beta)^{\frac{1}{\sigma}} c_{i,t}$ if i is unconstrained

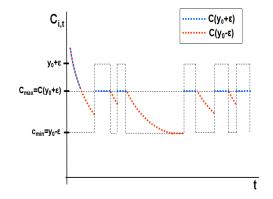
Consumption path with debt-constrained markets

- $c'_{i,t+1} = (R\beta)^{\frac{1}{\sigma}} c_{i,t}$ if i is unconstrained
- $V_{i,t} = W(z_{i,t})$ if i is constrained

Consumption path with debt-constrained markets

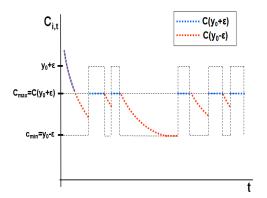


Minimum consumption



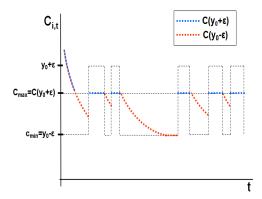
•
$$c_{min} = y - \epsilon$$
, solves
$$W(y_0 - \epsilon) = U(c_{min}) + \beta[qW(y_0 - \epsilon) + (1 - q)W(y_0 + \epsilon)]$$

Maximum consumption

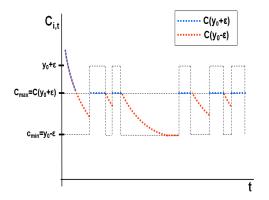


• c_{max} solves participation constraint at $y_0 + \epsilon$ given LOM for c and c_{min}

Consumption distribution

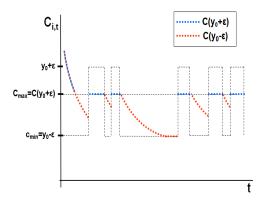


Consumption distribution

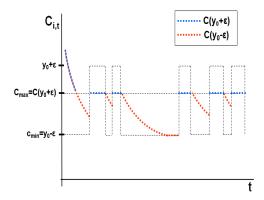


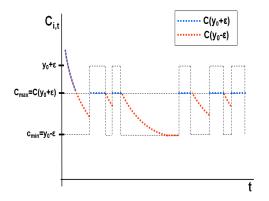
• Support: c_{max} , $c_j = (R\beta)^{\frac{j}{\sigma}} c_{max} \ge c_{min} = y - \epsilon$

Consumption distribution

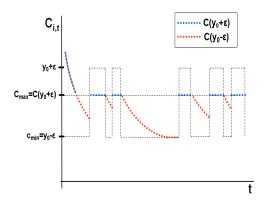


- Support: c_{max} , $c_j = (R\beta)^{\frac{j}{\sigma}} c_{max} \ge c_{min} = y \epsilon$
- Mass: $\Phi(c_{max}) = \Phi(y + \epsilon)$, $\Phi(c_j) = \Phi(y + \epsilon)(1 p)q^{j-1}$, j = 1, ...

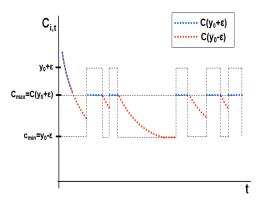




• Cov(c, y) > 0, Mean consumption increases in y



- Cov(c, y) > 0, Mean consumption increases in y
- Variance of c decreases in y



- Cov(c, y) > 0, Mean consumption increases in y
- Variance of c decreases in y
- Left-skew of c, right-skew of dc

Corollary

With CRRA preferences and 2 income values, the following is true:

- The cross-sectional covariance between income and consumption is positive. The covariances between income and both financial returns and wealth are negative.
- 2. The mean of consumption increases in income. Its conditional variance decreases.

Generalisation of the results

- More than 2 income values (N > 2)
- Non-CRRA preferences

ullet Krueger and Perri (2005): aggregate C increasing in R

- Krueger and Perri (2005): aggregate C increasing in R
- But: dual approach (expenditure minimisation) yields no result for $R < 1\,$

- Krueger and Perri (2005): aggregate C increasing in R
- But: dual approach (expenditure minimisation) yields no result for $R < 1\,$
- This paper: Characterisation of consumption distribution based on primal Marcet and Marimon approach

- Krueger and Perri (2005): aggregate C increasing in R
- \bullet But: dual approach (expenditure minimisation) yields no result for R<1
- This paper: Characterisation of consumption distribution based on primal Marcet and Marimon approach
- Defines "excess demand mapping"

$$\Psi : [R^{aut} = \frac{u'(z^1)}{\beta u'(z^N)}, \frac{1}{\beta}[\longrightarrow \mathbb{R} \text{ as}$$

$$\Psi = \sum c_i \Phi_i - Y$$
(3)

- Krueger and Perri (2005): aggregate C increasing in R
- \bullet But: dual approach (expenditure minimisation) yields no result for R<1
- This paper: Characterisation of consumption distribution based on primal Marcet and Marimon approach
- Defines "excess demand mapping"

$$\Psi : [R^{aut} = \frac{u'(z^1)}{\beta u'(z^N)}, \frac{1}{\beta}[\longrightarrow \mathbb{R} \text{ as}$$

$$\Psi = \sum c_i \Phi_i - Y$$
(3)

Shows:

- Krueger and Perri (2005): aggregate C increasing in R
- \bullet But: dual approach (expenditure minimisation) yields no result for R<1
- This paper: Characterisation of consumption distribution based on primal Marcet and Marimon approach
- Defines "excess demand mapping"

$$\Psi: [R^{aut} = rac{u'(z^1)}{eta u'(z^N)}, rac{1}{eta}[\longrightarrow \mathbb{R} ext{ as }$$

$$\Psi = \sum c_i \Phi_i - Y \tag{3}$$

- Shows:
 - 1. Ψ is continuous

- Krueger and Perri (2005): aggregate C increasing in R
- \bullet But: dual approach (expenditure minimisation) yields no result for R<1
- This paper: Characterisation of consumption distribution based on primal Marcet and Marimon approach
- Defines "excess demand mapping"

$$\Psi: [R^{aut} = rac{u'(z^1)}{eta u'(z^N)}, rac{1}{eta}[\longrightarrow \mathbb{R} ext{ as }$$

$$\Psi = \sum c_i \Phi_i - Y \tag{3}$$

- Shows:
 - 1. Ψ is continuous
 - 2. $\Psi(R^{aut}) = 0$ (no excess demand at autarky)

- Krueger and Perri (2005): aggregate C increasing in R
- \bullet But: dual approach (expenditure minimisation) yields no result for R<1
- This paper: Characterisation of consumption distribution based on primal Marcet and Marimon approach
- Defines "excess demand mapping"

$$\Psi: [\mathit{R}^{\mathit{aut}} = rac{\mathit{u}'(\mathit{z}^1)}{eta \mathit{u}'(\mathit{z}^N)}, rac{1}{eta}[\longrightarrow \mathbb{R} ext{ as }$$

$$\Psi = \sum c_i \Phi_i - Y \tag{3}$$

- Shows:
 - 1. Ψ is continuous
 - 2. $\Psi(R^{aut}) = 0$ (no excess demand at autarky)
 - 3. $\frac{d\Psi}{dR}$ < 0(> 0) for R < 1 (R > 1)

- Krueger and Perri (2005): aggregate C increasing in R
- \bullet But: dual approach (expenditure minimisation) yields no result for R<1
- This paper: Characterisation of consumption distribution based on primal Marcet and Marimon approach
- Defines "excess demand mapping"

$$\Psi: [R^{aut} = rac{u'(z^1)}{eta u'(z^N)}, rac{1}{eta}[\longrightarrow \mathbb{R} ext{ as }$$

$$\Psi = \sum c_i \Phi_i - Y \tag{3}$$

- Shows:
 - 1. Ψ is continuous
 - 2. $\Psi(R^{aut}) = 0$ (no excess demand at autarky)
 - 3. $\frac{d\Psi}{dR} < 0 (> 0)$ for R < 1 (R > 1)
 - 4. Implies existence and uniqueness

• We know: $\Psi(R^{aut}) = 0$

- We know: $\Psi(R^{aut}) = 0$
- Want to know: slope of excess demand $\frac{d\Psi}{dR} = \frac{dC}{dR} = \sum \frac{dc_i}{dR} \Phi_i$

- We know: $\Psi(R^{aut}) = 0$
- Want to know: slope of excess demand $\frac{d\Psi}{dR}=\frac{dC}{dR}=\sum \frac{dc_i}{dR}\Phi_i$
- 1. Differentiate participation constraint to get condition on weighted sum of $\frac{dc_i}{dR}$ to equal 0: $\sum R^{-i} \frac{dc_i}{dR} \Phi_i = 0$

- We know: $\Psi(R^{aut}) = 0$
- Want to know: slope of excess demand $\frac{d\Psi}{dR} = \frac{dC}{dR} = \sum \frac{dc_i}{dR} \Phi_i$
- 1. Differentiate participation constraint to get condition on weighted sum of $\frac{dc_i}{dR}$ to equal 0: $\sum R^{-i} \frac{dc_i}{dR} \Phi_i = 0$
- 2. Differentiate LOM $U_c(c_{i-1}) = \beta R U_c(c_i)$ to show that $\{\frac{dc_i}{dR}\}$ cross the 0 line once from below.

- We know: $\Psi(R^{aut}) = 0$
- Want to know: slope of excess demand $\frac{d\Psi}{dR} = \frac{dC}{dR} = \sum \frac{dc_i}{dR} \Phi_i$
- 1. Differentiate participation constraint to get condition on weighted sum of $\frac{dc_i}{dR}$ to equal 0: $\sum R^{-i} \frac{dc_i}{dR} \Phi_i = 0$
- 2. Differentiate LOM $U_c(c_{i-1}) = \beta R U_c(c_i)$ to show that $\{\frac{dc_i}{dR}\}$ cross the 0 line once from below.
- 3. Since R^{-i} is decreasing (increasing) for R>1 (R<1) it underweighs the positive (negative) elements of $\frac{dc_i}{dR}$. So unweighted sum $\frac{d\Psi}{dR}=\sum \frac{dc_i}{dR}\Phi_i$ is positive (negative).

Analytical results

1. PC:
$$V(c_0^m, z^m) - W(z^m) = \sum_{i=0}^n \beta^i [\pi_{i|m} u(c_i^m) - \sum_i \pi_{ii|m} u(z_{ii})] = 0$$

2. Differentiate to get:

$$0 = \sum_{i=0}^n \beta^i \pi_{i|m} u'(c_i) dc_i = u'(c_0^m) \sum_{i=0}^n \pi_{i|m} R^{-i} dc_i$$

3. Differentiate LOM $U_c(c_{i-1}) = \beta R U_c(c_i)$

$$\frac{dc_{i}}{dR} = \frac{\frac{u''(c_{i-1})}{u'(c_{i-1})}}{\frac{u''(c_{i})}{u'(c_{i})}} \frac{dc_{i-1}}{dR} - \frac{u'(c_{i})}{u''(c_{i})} \frac{1}{R} \doteq \alpha_{1}(c_{i}, c_{i-1}) \frac{dc_{i-1}}{dR} + \alpha_{2}(c_{i}), \alpha_{2} >$$

If $\frac{dc_{i-1}}{dR} < (>)0$ then $\frac{dc_i}{dR} > \frac{dc_{i-1}}{dR} (>0)$. So $\frac{dc_{i-1}}{dR}$ crosses 0 line once from below.

4. Implies

$$\frac{dC^{m}}{dR} = \nu \sum_{i=0}^{m} \pi_{i} dc_{i} < (>) \nu \sum_{i=0}^{m} \pi_{i} R^{-i} dc_{i} = 0 \text{ for } R < 1 \text{ } (R > 1)$$

$Analytical\ results$ - Summary

- 1. Marginal consumption distribution is geometric
- 2. Variance of consumption declines with income.
- 3. LOM $U_c(c_{i-1}) = \beta R U_c(c_i) \longrightarrow$ all unconstrained agents at the floor of consumption growth.
- 4. Participation constraints \longrightarrow some individuals experience very large growth in consumption

$Quantitative\ results$

$Quantitative\ results$

- Non-parametric comparison of joint c,y,w distribution with CEX data
- 2. GMM estimation
- 3. Model Comparison
- 4. Sensitivity

• Estimated on CEX data for 2003

- Estimated on CEX data for 2003
- $log(z_{i,t}) = m_{i,t} + \varepsilon_{i,t} \ \varepsilon_{i,t} \sim N(0, \sigma_{\varepsilon,t}^2)$ $m_{i,t} = \rho m_{i,t-1} + \nu_{i,t} \ \nu_{i,t} \sim N(0, \sigma_{\nu,t}^2)$

- Estimated on CEX data for 2003
- $log(z_{i,t}) = m_{i,t} + \varepsilon_{i,t} \ \varepsilon_{i,t} \sim N(0, \sigma_{\varepsilon,t}^2)$ $m_{i,t} = \rho m_{i,t-1} + \nu_{i,t} \ \nu_{i,t} \sim N(0, \sigma_{\nu,t}^2)$
- $\rho = 0.9989$

- Estimated on CEX data for 2003
- $log(z_{i,t}) = m_{i,t} + \varepsilon_{i,t} \ \varepsilon_{i,t} \sim N(0, \sigma_{\varepsilon,t}^2)$ $m_{i,t} = \rho m_{i,t-1} + \nu_{i,t} \ \nu_{i,t} \sim N(0, \sigma_{\nu,t}^2)$
- $\rho = 0.9989$
- Discretisation:

 $m_{i,t}$: 7-state Markov Chain (Tauchen and Hussey 1991) $\varepsilon_{i,t}$: binary process

Asset markets

 As before but with saving at equilibrium interest rate after default I. Comparison of joint c,y,w distribution with US data

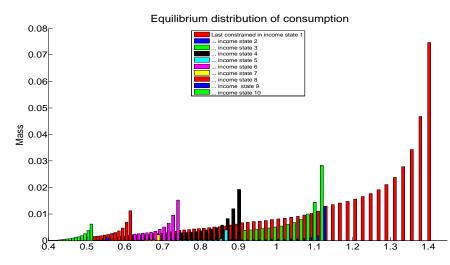
I. Comparison of joint c,y,w distribution with US data

- Parameters
 - u(c) = log(c)
 - $\beta = 0.96$

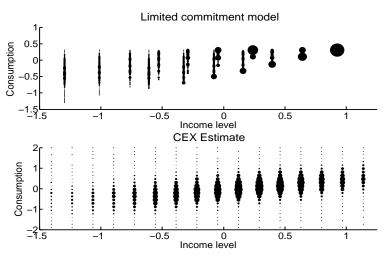
I. Comparison of joint c,y,w distribution with US data

- Parameters
 - u(c) = log(c)
 - $\beta = 0.96$
- Consumption and Income from CEX 2003 (KP 06)
- Wealth data from 2004 SCF

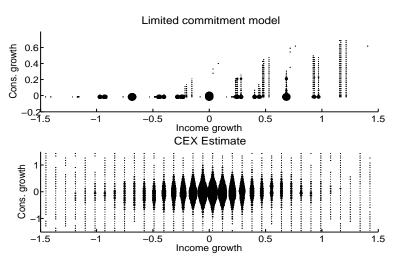
$The \ marginal \ consumption \ distribution$



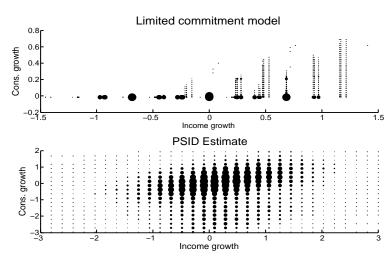
Joint distribution of consumption and income



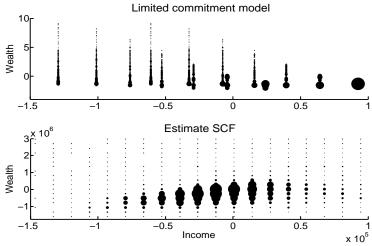
Joint distribution of consumption and income changes



Joint distribution of consumption and income changes



Joint distribution of wealth and income



 Use GMM to estimate preference parameters and to show how model fits different moments

- Use GMM to estimate preference parameters and to show how model fits different moments
- Problem: $ln(c') = ln(c) + \frac{ln(\beta) + ln(R)}{\sigma}$ $\Rightarrow \beta$ and σ affect consumption heterogeneity similarly

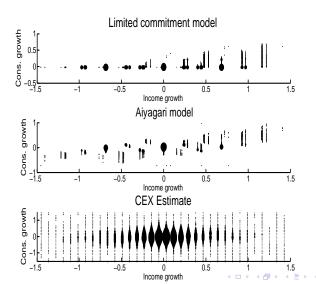
- Use GMM to estimate preference parameters and to show how model fits different moments
- Problem: $ln(c') = ln(c) + \frac{ln(\beta) + ln(R)}{\sigma}$ $\Rightarrow \beta$ and σ affect consumption heterogeneity similarly
- Restrict attention to economies with market-clearing interest rate $R^{\star}=1.03$

Results

	β	σ	$\frac{Var(C)}{VAR(Y)}$	$\beta_{dc,dy}$	$\frac{Var(dc)}{VAR(dy)}$	Skew(dc)	Chi ²
CEX 2003	3		0.25	0.05	0.28	0.07	
$W^{opt}, 2mt$	s 0.95	0.7	0.39	0.077	(0.030)	(3.4)	9.6
$\mathbb{I}, 2mts$	0.95	1.14	0.25	0.039	(0.013)	(4.65)	
W^{opt} , 4mt	s 0.945	0.685	0.41	0.087	0.034	3.3	$1.3 e^{6}$
$\mathbb{I}, 4mts$	-	-	-	-	-	-	-

III. Model Comparison

dc and dz: Limited Commitment vs. Self-insurance



Model Comparison: Limited Commitment (LC) vs. Self-insurance (SI)

	β	σ	$\frac{Var(C)}{VAR(Y)}$	$\beta_{dc,dy}$	$\frac{Var(dc)}{VAR(dy)}$	Skew(dc)	R
CEX 2003			0.25	0.05	0.28	0.07	
LC	0.96	1	0.24	0.037	0.012	4.7	1.024
SI	0.96	1	0.68	0.22	0.12	0.65	1.0129

III. Sensitivity

Including Production

Parameters

1. Technology

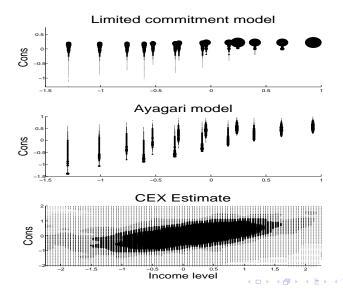
$$Y = AK^{\alpha}L^{1-\alpha}$$

- $\alpha = 0.3$
- $\delta = 0.08$

2. Preferences

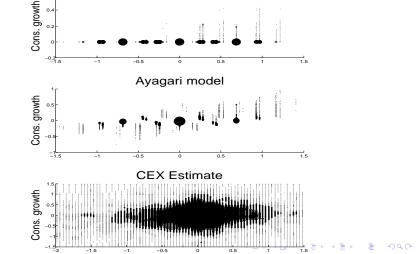
- u(c) = log(c)
- $\beta = 0.96$

Joint distribution of c and z with capital



Joint distribution of dc and dz with capital

Limited commitment model



Model Comparison with Capital

	R	$\frac{Var(C)}{VAR(Y)}$	$\beta_{dc,dy}$	$\frac{Var(dc)}{VAR(dy)}$	Skew(dc)
CEX 2003		0.25	0.05	0.28	0.07
LC	1.386	0.05	0.007	0.0016	10.1
SI	1.322	0.58	0.11	0.046	0.91

A limited commitment model with heterogeneity in discount factors (Broer 2009)

- Chose heterogeneity in β on uniform grid $\{0.9, 0.92, 0.94, 0.96, 0.98\}$ to match US Gini coefficient on wealth
- yields 50/50 "spenders/savers" (Mankiw)

Model Comparison

	R	$\frac{Var(C)}{VAR(Y)}$	$\beta_{dc,dy}$	$\frac{Var(dc)}{VAR(dy)}$	Skew(dc)
CEX 2003		0.25	0.05	0.28	0.07
LC	1.039	0.05	0.007	0.0016	10.1
SI	1.032	0.58	0.11	0.046	0.91
LC ^{het}	1.02	0.52	0.10	0.046	1.18

Conclusion

1. Data calls for model with partial insurance. Here: limited commitment to complete contracts.

Conclusion

- 1. Data calls for model with partial insurance. Here: limited commitment to complete contracts.
- 2. The resulting equilibrium is unique under general conditions.

- Data calls for model with partial insurance. Here: limited commitment to complete contracts.
- 2. The resulting equilibrium is unique under general conditions.
- 3. Distributions inherit the asymmetry of insurance:

commitment to complete contracts.

1. Data calls for model with partial insurance. Here: limited

- 2. The resulting equilibrium is unique under general conditions.
- 3. Distributions inherit the asymmetry of insurance:
 - The marginal distribution of consumption is geometric.

- Data calls for model with partial insurance. Here: limited commitment to complete contracts.
- 2. The resulting equilibrium is unique under general conditions.
- 3. Distributions inherit the asymmetry of insurance:
 - The marginal distribution of consumption is geometric.
 - Mean consumption increases in income, but variance decreases.

- Data calls for model with partial insurance. Here: limited commitment to complete contracts.
- 2. The resulting equilibrium is unique under general conditions.
- 3. Distributions inherit the asymmetry of insurance:
 - The marginal distribution of consumption is geometric.
 - Mean consumption increases in income, but variance decreases.
 - Consumption growth has a binding floor and right skew.

commitment to complete contracts.

1. Data calls for model with partial insurance. Here: limited

- 2. The resulting equilibrium is unique under general conditions.
- 3. Distributions inherit the asymmetry of insurance:
 - The marginal distribution of consumption is geometric.
 - Mean consumption increases in income, but variance decreases.
 - Consumption growth has a binding floor and right skew.
 - Wealth and income are negatively correlated.

commitment to complete contracts.

1. Data calls for model with partial insurance. Here: limited

- 2. The resulting equilibrium is unique under general conditions.
- 3. Distributions inherit the asymmetry of insurance:
 - The marginal distribution of consumption is geometric.
 - Mean consumption increases in income, but variance decreases.
 - Consumption growth has a binding floor and right skew.
 - Wealth and income are negatively correlated.
- 4. Asymmetry of simple LimCom insurance not found in the data

 More detailed data work for US (CEX vs. PSID-BPP vs CEX-Gervais Klein) and other countries

- More detailed data work for US (CEX vs. PSID-BPP vs CEX-Gervais Klein) and other countries
- 2. Properly model measurement error

- More detailed data work for US (CEX vs. PSID-BPP vs CEX-Gervais Klein) and other countries
- 2. Properly model measurement error
- 3. Different preference specification?

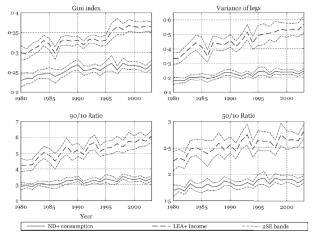
- More detailed data work for US (CEX vs. PSID-BPP vs CEX-Gervais Klein) and other countries
- 2. Properly model measurement error
- 3. Different preference specification?
- 4. Combining bufferstock saving with insurance

Stationary equilibrium distributions in economies with limited commitment

Tobias Broer
Institute for International Economic Studies,
Stockholm University

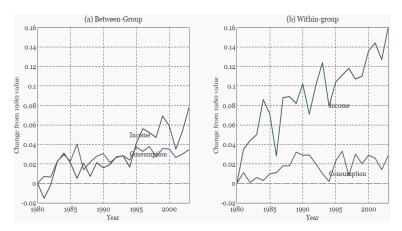
ESSIM 2010

US income and consumption inequality - CEX data



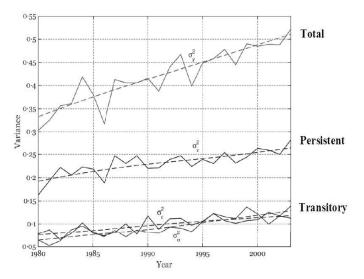
Source: Krueger and Perri (2006)

Within vs. between group inequality in the US (log-variance)



Source: Krueger and Perri (2006)

US income inequality: Permanent and transitory shocks



Source: Krueger and Perri (2006)

Planner's Problem

$$\begin{aligned} \max_{\{c_{i,t}\}} \int_{\mathbb{I}} \mu_{i,0} \sum_{t=0}^{\infty} \beta^{t} u(c_{i,t}) \\ s.t. & \int_{\mathbb{I}} c_{i,t} = \int_{\mathbb{I}} z_{i,t}, \ \forall t \\ V_{i,t} \geq W(z_{i,t}), \ \forall t, i \end{aligned}$$

Recursive Planner's Problem (Marcet and Marimon 1998)

$$\begin{split} \mathbb{VV}(\Phi_{\mu,z}) &= \\ &\inf_{\{\gamma_i \geq 0\}} \max_{\{c_i\}} \int_{\mathbb{I}} [(\mu_i + \gamma_i) u(c_i) - \gamma_i W(z_i)] + \beta E[\mathbb{VV}(\Phi_{\mu',z'})] \\ &s.t. \int_{\mathbb{I}} c_i = \int_{\mathbb{I}} z_i \\ &\mu_i' = \mu_i + \gamma_i, \ \forall i \end{split}$$

First order conditions with CRRA preferences

First order conditions with CRRA preferences

• LOM for unconstrained individuals: $c'_i = (R\beta)^{\frac{1}{\sigma}} c_i$

- LOM for unconstrained individuals: $c_i' = (R\beta)^{\frac{1}{\sigma}} c_i$
- Definition of R:

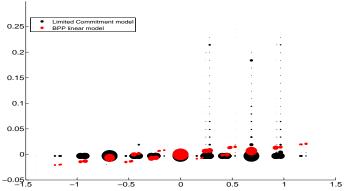
$$R\beta = \frac{\lambda}{\lambda'} = \left[\frac{C'}{C}\right]^{\sigma} \frac{\left(\sum_{i} \mu_{i}'^{1/\sigma}\right)^{\sigma}}{\left[\sum_{i} (\mu_{i}' + \gamma_{i}')^{1/\sigma}\right]^{\sigma}}$$

Model Comparison: Limited Commitment (LC) vs. Self-insurance (SI)

	β	σ	$\frac{Var(C)}{VAR(Y)}$	$\beta_{dc,dy}$	$\frac{Var(dc)}{VAR(dy)}$	Skew(dc)	R
CEX 2003			0.25	0.05	0.28	0.07	
LC	0.96	1	0.24	0.037	0.012	4.7	1.024
SI	0.96	1	0.68	0.22	0.12	0.65	1.0129

Consumption and income growth - actual and predicted by BPP coefficients

Model distribution and BPP predictions



Model Comparison: Limited Commitment (LC) vs. Self-insurance (SI), GMM

	β	σ	$\frac{Var(C)}{VAR(Y)}$	$\beta_{dc,dy}$	$\frac{Var(dc)}{VAR(dy)}$	Skew(dc)	Chi ²
CEX 2003			0.25	0.05	0.28	0.07	
2 moments							
LC	0.95	0.7	0.39	0.077	(0.030)	(3.4)	9.6
SI	0.958	1.04	0.75	0.13	(0.07)	(0.98)	124
4 moments							
LC	0.945	0.685	0.41	0.087	0.034	3.3	1.3 e^6
SI	0.96	8.0	0.75	0.14	0.07	0.99	$1.7e^{6}$