## Diversification through Trade

Francesco Caselli, Miklos Koren, Milan Lisicky, and Silvana Tenreyro

Very preliminary

May 2010

Substantial decline in output volatility

- Substantial decline in output volatility
  - in developed countries

- Substantial decline in output volatility
  - in developed countries
  - in majority of developing countries

- Substantial decline in output volatility
  - in developed countries
  - in majority of developing countries
- Large and widespread increase in trade openness

- Substantial decline in output volatility
  - in developed countries
  - in majority of developing countries
- Large and widespread increase in trade openness
  - emergence of new trading partners (e.g. China and India)

- Substantial decline in output volatility
  - in developed countries
  - in majority of developing countries
- Large and widespread increase in trade openness
  - emergence of new trading partners (e.g. China and India)
- Fast transmission of the current crisis, with the near collapse of trade

Openness to trade⇒specialization⇒increases volatility.

- Openness to trade⇒specialization⇒increases volatility.
- Implicit assumption: sector-specific shocks are the prevalent source of volatility.

- Openness to trade⇒specialization⇒increases volatility.
- Implicit assumption: sector-specific shocks are the prevalent source of volatility.
  - But in volatility accounting, country-specific shocks (affecting all sectors) account for a large part of overall volatility.

- Openness to trade⇒specialization⇒increases volatility.
- Implicit assumption: sector-specific shocks are the prevalent source of volatility.
  - But in volatility accounting, country-specific shocks (affecting all sectors) account for a large part of overall volatility.
  - Openness to trade may lead to sectoral specialization, but it may also help diversify country-specific shocks (both on the demand and supply sides).

 Increased trade openness brings about a larger pool of potential suppliers of inputs, and thus the potential for diversification of cost shocks.

- Increased trade openness brings about a larger pool of potential suppliers of inputs, and thus the potential for diversification of cost shocks.
  - the larger the pool of suppliers, the lower the impact of shocks affecting particular suppliers.

4 / 39

- Increased trade openness brings about a larger pool of potential suppliers of inputs, and thus the potential for diversification of cost shocks.
  - the larger the pool of suppliers, the lower the impact of shocks affecting particular suppliers.
  - through GE, mitigation of supply shocks may also lead to more stable global demands.

- Increased trade openness brings about a larger pool of potential suppliers of inputs, and thus the potential for diversification of cost shocks.
  - the larger the pool of suppliers, the lower the impact of shocks affecting particular suppliers.
  - through GE, mitigation of supply shocks may also lead to more stable global demands.
- Increased trade openness also means that a large shock to a particular country (e.g. US), can have a larger impact on other countries through stronger demand linkages.

- Increased trade openness brings about a larger pool of potential suppliers of inputs, and thus the potential for diversification of cost shocks.
  - the larger the pool of suppliers, the lower the impact of shocks affecting particular suppliers.
  - through GE, mitigation of supply shocks may also lead to more stable global demands.
- Increased trade openness also means that a large shock to a particular country (e.g. US), can have a larger impact on other countries through stronger demand linkages.
  - Trade can mitigate the shock's impact on the GDP of the country hit by the shock.

- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade

- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - Add aggregate country-specific shocks.

- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - Add aggregate country-specific shocks.
- Some simple qualitative experiments

- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - Add aggregate country-specific shocks.
- Some simple qualitative experiments
  - Global decline in trade barriers

- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - Add aggregate country-specific shocks.
- Some simple qualitative experiments
  - Global decline in trade barriers
  - "China joins the World"

- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - Add aggregate country-specific shocks.
- Some simple qualitative experiments
  - Global decline in trade barriers
  - "China joins the World"
  - "Big crisis hits large country"

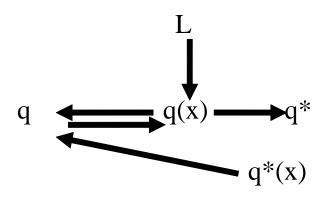
- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - Add aggregate country-specific shocks.
- Some simple qualitative experiments
  - Global decline in trade barriers
  - "China joins the World"
  - "Big crisis hits large country"
- Next step: A quantitative exercise

- Conceptual Framework
  - Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - Add aggregate country-specific shocks.
- Some simple qualitative experiments
  - Global decline in trade barriers
  - "China joins the World"
  - "Big crisis hits large country"
- Next step: A quantitative exercise
  - How have actual changes in trade barriers affected volatility patterns across countries? China? Crisis?

• Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade

- Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - N countries with immobile nonproduced equipped labour and produced goods (used as intermediates and for direct consumption).

- Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - N countries with immobile nonproduced equipped labour and produced goods (used as intermediates and for direct consumption).
  - Efficiency varies across countries and goods; modeled as random variables drawn from a (known) distribution.


- Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - N countries with immobile nonproduced equipped labour and produced goods (used as intermediates and for direct consumption).
  - Efficiency varies across countries and goods; modeled as random variables drawn from a (known) distribution.
  - Constant returns to scale and perfect competition.

- Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - N countries with immobile nonproduced equipped labour and produced goods (used as intermediates and for direct consumption).
  - Efficiency varies across countries and goods; modeled as random variables drawn from a (known) distribution.
  - Constant returns to scale and perfect competition.
  - Output for a given country is deterministic; there is no aggregate volatility

- Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - N countries with immobile nonproduced equipped labour and produced goods (used as intermediates and for direct consumption).
  - Efficiency varies across countries and goods; modeled as random variables drawn from a (known) distribution.
  - Constant returns to scale and perfect competition.
  - Output for a given country is deterministic; there is no aggregate volatility
- Add country-specific shocks, which shift the distribution of efficiencies in a country

- Eaton-Kortum-Alvarez-Lucas's Ricardian model of trade
  - N countries with immobile nonproduced equipped labour and produced goods (used as intermediates and for direct consumption).
  - Efficiency varies across countries and goods; modeled as random variables drawn from a (known) distribution.
  - Constant returns to scale and perfect competition.
  - Output for a given country is deterministic; there is no aggregate volatility
- Add country-specific shocks, which shift the distribution of efficiencies in a country
  - Output in a country becomes stochastic.

### Productive structure EK-AL



### Autarky

• Buyers purchase individual goods q(x) to maximize the CES:

$$q = \left(\int_0^\infty q(x)^{\frac{\eta-1}{\eta}} \phi(x) dx\right)^{\frac{\eta}{\eta-1}}$$

 $\phi$  is the density of goods with technology x.

### Autarky

• Buyers purchase individual goods q(x) to maximize the CES:

$$q = \left(\int_0^\infty q(x)^{\frac{\eta-1}{\eta}} \phi(x) dx\right)^{\frac{\eta}{\eta-1}}$$

- $\phi$  is the density of goods with technology x.
- Technology for q(x) (per unit of L) is Cobb-Douglas:

$$q(x) = x^{-\theta} q_m(x)^{1-\beta}$$

## Autarky

• Buyers purchase individual goods q(x) to maximize the CES:

$$q = \left(\int_0^\infty q(x)^{\frac{\eta-1}{\eta}} \phi(x) dx\right)^{\frac{\eta}{\eta-1}}$$

 $\phi$  is the density of goods with technology x.

• Technology for q(x) (per unit of L) is Cobb-Douglas:

$$q(x) = x^{-\theta} q_m(x)^{1-\beta}$$

• i) draws x are common to all producers; ii) CRS $\rightarrow$ p=mc; iii)  $x \sim exp(\lambda)$ 

8 / 39

### Autarky

• Buyers purchase individual goods q(x) to maximize the CES:

$$q = \left(\int_0^\infty q(x)^{\frac{\eta-1}{\eta}} \phi(x) dx\right)^{\frac{\eta}{\eta-1}}$$

 $\phi$  is the density of goods with technology x.

• Technology for q(x) (per unit of L) is Cobb-Douglas:

$$q(x) = x^{-\theta} q_m(x)^{1-\beta}$$

- i) draws x are common to all producers; ii) CRS $\rightarrow$ p=mc; iii)  $x \sim exp(\lambda)$ 
  - Price of bundle

$$p = \left(\lambda \int_0^\infty p(x)^{1-\eta} e^{-\lambda x} dx\right)^{\frac{1}{1-\eta}}$$

### Autarky

• Buyers purchase individual goods q(x) to maximize the CES:

$$q = \left(\int_0^\infty q(x)^{\frac{\eta-1}{\eta}} \phi(x) dx\right)^{\frac{\eta}{\eta-1}}$$

 $\phi$  is the density of goods with technology x.

• Technology for q(x) (per unit of L) is Cobb-Douglas:

$$q(x) = x^{-\theta} q_m(x)^{1-\beta}$$

- i) draws x are common to all producers; ii) CRS $\rightarrow$ p=mc; iii)  $x \sim exp(\lambda)$ 
  - Price of bundle

$$p = \left(\lambda \int_0^\infty p(x)^{1-\eta} e^{-\lambda x} dx\right)^{\frac{1}{1-\eta}}$$

• Price of individual goods

$$p(x) = Bx^{\theta}w^{\beta}p^{1-\beta}$$

4 D > 4 D > 4 B > 4 B > B 9 9 0

• q(x) can be traded internationally.

- q(x) can be traded internationally.
- $\phi(x) = \phi(x_1, ..., x_N)$  is the joint density of goods that have productivity draws  $x = (x_1, ..., x_N)$  across N countries.

- q(x) can be traded internationally.
- $\phi(x) = \phi(x_1, ..., x_N)$  is the joint density of goods that have productivity draws  $x = (x_1, ..., x_N)$  across N countries.
- Draws independent across countries.

- q(x) can be traded internationally.
- $\phi(x) = \phi(x_1, ..., x_N)$  is the joint density of goods that have productivity draws  $x = (x_1, ..., x_N)$  across N countries.
- Draws independent across countries.
- Delivering a tradable good from country j to country i results in  $0 < \kappa_{ij} \le 1$  arriving at j (= if i = j);  $\kappa_{ij} \ge \kappa_{ik} \kappa_{kj} \nabla i$ , k, j

#### Production

• The total output for use as input or consumption in country i.

$$q_i = \left(\int_{\mathbf{R}_+^N} q_i(x)^{\frac{\eta-1}{\eta}} \phi(x) dx\right)^{\frac{\eta}{\eta-1}}$$

#### Production

• The total output for use as input or consumption in country i.

$$q_i = \left(\int_{\mathbf{R}_+^N} q_i(x)^{\frac{\eta-1}{\eta}} \phi(x) dx\right)^{\frac{\eta}{\eta-1}}$$

Price

$$p_i = AB \left( \sum_{j=1}^{N} \left( \frac{w_j^{\beta} p_j^{-1-\beta}}{\kappa_{ij}} \right)^{-1/\theta} \lambda_j \right)^{-\theta}$$

# Simple Version of the Model: Summary

$$d_{ij}(w) = (AB)^{-1/\theta} \left( \frac{w_j^{\beta} p_j(w)^{1-\beta}}{p_i(w) \kappa_{ij}} \right)^{-1/\theta} \lambda_j;$$

$$\sum_{j=1} d_{ij} = 1$$

$$\bullet L_i p_i q_i = \sum_{j=1}^N L_j p_j q_j d_{ji}(w)$$

$$Y_i = \frac{L_i w_i}{p_i} = \text{real } GDP$$

### Adding country-specific shocks

- In EKAL,  $\lambda'_j s$  are deterministic, so GDP per capita is a deterministic constant for each country j.
- Assume now that  $\lambda_i's$  are subject to shocks
  - Higher realization of  $\lambda_j$  leads to stochastically lower costs x in country j and higher  ${\rm GDP}_j$
  - Stochasticity in  $\lambda_j$  imparts stochasticity in GDP<sub>j</sub>.

Some Simple Analytical Results

## Level and volatility of GDP in Autarky

• GDP:

$$Y_i = (AB)^{-1/\beta} \, Z_i$$

$$Z_i \equiv \lambda_i^{\theta/\beta_i} L_i$$

## Level and volatility of GDP in Autarky

GDP:

$$Y_i = (AB)^{-1/\beta} Z_i$$

$$Z_i \equiv \lambda_i^{\theta/\beta_i} L_i$$

Volatility

$$Var(\hat{Y}_i) = Var(\hat{Z}_i)$$

$$\hat{x} \equiv \frac{\Delta \ln x}{\Delta t}$$

### Level and volatility of GDP in costless trade

GDP

$$Y_i = (AB)^{-1/\beta} Z_i^{\frac{\beta}{\beta+\theta}} \left(\sum_{j=1}^N Z_j^{\frac{\beta}{\theta+\beta}}\right)^{\theta/\beta}$$

### Level and volatility of GDP in costless trade

GDP

$$Y_i = (AB)^{-1/\beta} Z_i^{rac{eta}{eta + heta}} \left( \sum_{j=1}^N Z_j^{rac{eta}{eta + eta}} 
ight)^{ heta/eta}$$

Volatility:

$$Var(\hat{Y}_i) = \left\{ egin{array}{l} \left(rac{eta + heta \gamma_i}{eta + heta}
ight)^2 Var(\hat{Z}_i) + \ \left[rac{ heta}{eta + heta}
ight]^2 \sum\limits_{j 
eq i}^N \gamma_j^2 Var(\hat{Z}_j) + \ 2 heta rac{eta + heta \gamma_i}{(eta + heta)^2} \sum\limits_{j 
eq i}^N \gamma_j Cov(\hat{Z}_j, \hat{Z}_i) \end{array} 
ight\}$$

$$\gamma_{j} = rac{ar{ar{Z}_{j}^{eta+eta}}}{\sum_{j=1}^{m{N}}ar{ar{Z}_{j}^{eta+eta}}}$$

## Costless trade versus autarky

• Productivity gain:

$$\frac{Y_i^T}{Y_i^A} = \frac{Z_i^{\frac{\beta}{\beta+\theta}} \left(\sum_{j=1}^N Z_j^{\frac{\beta}{\theta+\beta}}\right)^{\theta/\beta}}{Z_i} = \left[1 + Z_i^{\frac{-\beta}{\beta+\theta}} \sum_{j\neq i}^N Z_j^{\frac{\beta}{\theta+\beta}}\right]^{\theta/\beta} > 1$$

## Costless trade versus autarky

• Productivity gain:

$$\frac{Y_i^T}{Y_i^A} = \frac{Z_i^{\frac{\beta}{\beta+\theta}} \left(\sum_{j=1}^N Z_j^{\frac{\beta}{\theta+\beta}}\right)^{\theta/\beta}}{Z_i} = \left[1 + Z_i^{\frac{-\beta}{\beta+\theta}} \sum_{j\neq i}^N Z_j^{\frac{\beta}{\theta+\beta}}\right]^{\theta/\beta} > 1$$

• Gain higher

- i) the smaller the country  $Z_i^{rac{-eta}{eta+eta}}\sum Z_j^{rac{eta}{eta+eta}}$
- ii) the higher the importance of tradeables in production  $(1-\beta)$ , and
- iii) the higher the scope for comparative advantage heta.

ullet If  $Var(\hat{Z}_i)=\sigma$  and  $Cov(\hat{Z}_i;\hat{Z}_j)=0$ 

$$\mathit{Var}(\hat{Y}_i^{\mathcal{T}}) = \sigma \left\{ \left( rac{eta + heta \gamma_i}{eta + heta} 
ight)^2 + \left[ rac{ heta}{eta + heta} 
ight]^2 \sum_{j 
eq i}^N \gamma_j^2 
ight\}$$

ullet If  $Var(\hat{Z}_i)=\sigma$  and  $Cov(\hat{Z}_i;\hat{Z}_j)=0$ 

$$\textit{Var}(\hat{\textit{Y}}_{\textit{i}}^{\textit{T}}) = \sigma \left\{ \left( \frac{\beta + \theta \gamma_{\textit{i}}}{\beta + \theta} \right)^2 + \left[ \frac{\theta}{\beta + \theta} \right]^2 \sum_{j \neq \textit{i}}^{\textit{N}} \gamma_{\textit{j}}^2 \right\}$$

ullet Then  $Var(\hat{Y}_i^A) > Var(\hat{Y}_i^T)$ 

ullet If  $Var(\hat{Z}_i)=\sigma$  and  $Cov(\hat{Z}_i;\hat{Z}_j)=0$ 

$$\textit{Var}(\hat{\textit{Y}}_{\textit{i}}^{\textit{T}}) = \sigma \left\{ \left( \frac{\beta + \theta \gamma_{\textit{i}}}{\beta + \theta} \right)^2 + \left[ \frac{\theta}{\beta + \theta} \right]^2 \sum_{j \neq \textit{i}}^{\textit{N}} \gamma_{\textit{j}}^2 \right\}$$

- ullet Then  $Var(\hat{Y}_i^A) > Var(\hat{Y}_i^T)$
- Decline in volatility is higher
  - i) the smaller the country (lower  $\gamma_i$ )
  - ii) the higher the share of tradeables in the economy

ullet If  $Var(\hat{Z}_i)=\sigma$  and  $Cov(\hat{Z}_i;\hat{Z}_j)=0$ 

$$\textit{Var}(\hat{\textit{Y}}_{\textit{i}}^{\textit{T}}) = \sigma \left\{ \left( \frac{\beta + \theta \gamma_{\textit{i}}}{\beta + \theta} \right)^2 + \left[ \frac{\theta}{\beta + \theta} \right]^2 \sum_{j \neq \textit{i}}^{\textit{N}} \gamma_{\textit{j}}^2 \right\}$$

- ullet Then  $Var(\hat{Y}_i^A) > Var(\hat{Y}_i^T)$
- Decline in volatility is higher
  - i) the smaller the country (lower  $\gamma_i$ )
  - ii) the higher the share of tradeables in the economy
- Results can be reversed if covariance are high and/or the volatility of other countries is high.

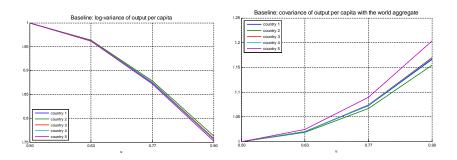
◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Intermediate Levels of Trading Costs

### Qualitative exercise

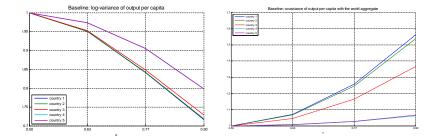
- Each period, draw  $\lambda = (\lambda_1...\lambda_N)$  from a log-normal distribution with fixed mean and std deviation
- Choose A,B, $\theta$ ,  $\alpha$ ,  $\beta$  as in AL
- Time series, volatility and covariance:

| country/period |                        |                        |                        |                             | 1              |                  |                    |
|----------------|------------------------|------------------------|------------------------|-----------------------------|----------------|------------------|--------------------|
| country 1      | <i>y</i> <sub>11</sub> | <i>y</i> <sub>12</sub> | <i>y</i> <sub>13</sub> | <br><i>y</i> 1 <sub>T</sub> | $\sigma_{y_1}$ | $\sigma_{y_1,W}$ | _                  |
| country 2      | <i>y</i> <sub>21</sub> | $y_{2_2}$              | <i>y</i> <sub>23</sub> | <br>$y_{2_T}$               | $\sigma_{y_2}$ | $\sigma_{y_2,W}$ | for given $\kappa$ |
|                |                        |                        |                        | <br>                        |                |                  |                    |
| country n      | $y_{N_1}$              | $y_{N_2}$              | $y_{N_3}$              | <br>$y_{N_T}$               | $\sigma_{y_N}$ | $\sigma_{y_N,W}$ |                    |


## Some simple (qualitative) experiments

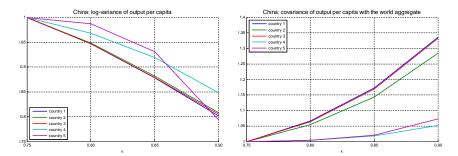
- Widespread decrease in international trade barriers
- China joins the World
- Orisis hits big country

#### Calibration


- "Barriers decrease"
  - $L_N = 1$ ;  $\kappa_{ijt} = \kappa_t$  increases over time for  $i \neq j$  and  $\kappa_{iit} = 1$ .
  - Same, but  $L_N = (1, 1, 1, 3, 3)$ .
- "China joins": Same, but  $L_N=(1,1,1,3,3)$ ; and  $\kappa_{i5t}=\kappa_{5jt}$  smaller at t=1
- "Crisis hits": low  $\lambda$  for a big country;  $L_N = (1, 1, 1, 3, 3)$ .

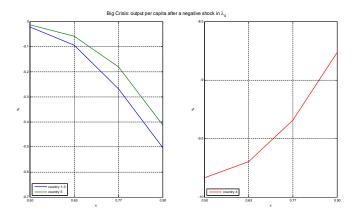
#### Uniform decrease in trade barriers




Volatility change Covariance change  $L_N=1$ ;  $\kappa_{ij}$  increases uniformly over time from 0.5 to 0.9 ( $\kappa_{iit}=1$ )

# Uniform decrease in trade barriers, with some big countries




 $\kappa_{ij}$  increases uniformly over time from 0.5 to 0.9 L=(1,1,1,3,3)

## China joins the World



 $\kappa_{ij}$  increases uniformly but for a big country it increases more rapidly:1-4 = 0.75->0.9, for the 5th moves 0.4->0.9L=(1,1,1,3,3) Correlation among the "old" partners (say US-Europe) can actually decrease with the rise of China. Key what is defined as world

## Shock to Big country



L(1, 1, 1, 3, 3); shock to  $\lambda_4$ .

#### Next Steps

- Use data on bilateral trade, gross output, GDP to back out the  $\lambda s$  and  $\kappa s$ .
- Study how much of the changes in volatility and comovement patterns can be accounted for by changes in  $\kappa$ , the process generating  $\lambda$ , the growth of China.

#### Minimalist Counterfactual

• Spending on goods from i as a share of i's spending:

$$d_{ij} = \frac{I_{ij}}{L_i p_i q_i} = \frac{I_{ij}}{GNO_i - S_i}$$

Spending share on domestic goods:

$$d_{ii}=1-\sum_{j
eq i}d_{ij}$$

Real aggregate GDP:

$$\frac{w_i L_i}{p_i} = \operatorname{const} \cdot L_i \left( \frac{\lambda_i}{d_{ii}} \right)^{\theta/\beta_i}.$$

# Minimalist Counterfactual (continued)

• Real aggregate GDP:

$$\frac{w_i L_i}{p_i} = \operatorname{const} \cdot L_i \left( \frac{\lambda_i}{d_{ii}} \right)^{\theta/\beta_i}.$$

Call  $z_{it}$  the combination  $L_i$  and  $\lambda_i$ 

$$z_{it} = \ln L_{it} + \frac{\theta}{\beta_i} \ln \lambda_{it}.$$

 $z_{it}$  can be recovered from:

$$y_{it} = \operatorname{const}' + z_{it} - \frac{\theta}{\beta_i} \ln d_{ii,t},$$

We can then decompose GDP volatility as

$$\mathsf{Var}(\tilde{y}_i) = \mathsf{Var}(\tilde{z}_i) + \left(rac{ heta}{eta_i}
ight)^2 \mathsf{Var}(\mathsf{In}\ ilde{d}_{ii}) - rac{2 heta}{eta_i} \mathsf{Cov}(\tilde{z}_i, \mathsf{In}\ ilde{d}_{ii}).$$

### Change in Variance from 70-84 to 85-2006

| Country               | Percent<br>Change in<br>Standard<br>Deviation<br>(1) | Absolute<br>Difference in<br>Variance<br>(2) | Absolute<br>Difference<br>in Var(Z)<br>(3) | Absolute<br>Difference<br>in Var(dii)<br>(4) | Absolute<br>Difference in<br>the Covariance<br>(5) | Percent Share of<br>difference (2)<br>accounted for by (4)<br>and (5) |
|-----------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|
| Australia             | 45.79                                                | 4.65                                         | 4.97                                       | -0.33                                        | 0.01                                               | -6.89                                                                 |
| Austria               | -36.28                                               | -8.07                                        | -2.48                                      | 2.03                                         | -7.61                                              | 69.22                                                                 |
| Belgiumplus           | -45.38                                               | -13.09                                       | -4.37                                      | 13.37                                        | -22.10                                             | 66.64                                                                 |
| Canada                | -4.02                                                | -1.44                                        | 12.16                                      | 2.55                                         | -16.15                                             | 943.79                                                                |
| China, P.R.: Mainland | -15.43                                               | -12.29                                       | -9.42                                      | 1.62                                         | -4.48                                              | 23.34                                                                 |
| Denmark               | -7.89                                                | -1.54                                        | -8.94                                      | 1.47                                         | 5.93                                               | -480.04                                                               |
| Finland               | 54.87                                                | 33.69                                        | 48.85                                      | 0.43                                         | -15.58                                             | -44.97                                                                |
| Franceplus            | -28.48                                               | -7.37                                        | -8.27                                      | 0.68                                         | 0.21                                               | -12.18                                                                |
| Germany               | 0.69                                                 | 0.18                                         | 2.16                                       | 2.97                                         | -4.94                                              | -1121.14                                                              |
| Greece                | -47.92                                               | -53.29                                       | -57.64                                     | 0.60                                         | 3.76                                               | -8.18                                                                 |
| India                 | -18.19                                               | -7.86                                        | -13.60                                     | 0.45                                         | 5.29                                               | -73.02                                                                |
| Ireland               | 64.02                                                | 27.38                                        | 30.38                                      | 11.24                                        | -14.24                                             | -10.93                                                                |
| Italy                 | -29.04                                               | -7.78                                        | 1.78                                       | -0.93                                        | -8.64                                              | 122.86                                                                |
| Japan                 | 24.11                                                | 9.24                                         | 10.36                                      | -0.52                                        | -0.60                                              | -12.08                                                                |
| Korea                 | 25.28                                                | 19.21                                        | 22.47                                      | -2.84                                        | -0.43                                              | -17.00                                                                |
| Mexico                | -36.98                                               | -41.58                                       | -26.29                                     | 3.86                                         | -19.15                                             | 36.77                                                                 |
| Netherlands           | -21.98                                               | -6.31                                        | 1.50                                       | 14.04                                        | -21.84                                             | 123.75                                                                |
| Norway                | 7.35                                                 | 1.54                                         | -1.33                                      | -1.12                                        | 3.99                                               | 186.63                                                                |
| Portugal              | -14.96                                               | -13.87                                       | -22.40                                     | 0.48                                         | 8.05                                               | -61.52                                                                |
| Spain                 | -43.41                                               | -28.74                                       | -27.25                                     | -0.61                                        | -0.88                                              | 5.18                                                                  |
| Sweden                | 50.35                                                | 10.24                                        | 13.71                                      | 1.40                                         | -4.87                                              | -33.92                                                                |
| United Kingdom        | -18.53                                               | -6.17                                        | -3.70                                      | -0.95                                        | -1.51                                              | 40.00                                                                 |
| United States         | -44.63                                               | -14.39                                       | -13.03                                     | -0.17                                        | -1.20                                              | 9.49                                                                  |

## Next Step: Towards a more "quantitative" model

$$d_{ij} = A^{-1/\theta} \left( \frac{B_j w_j^{\beta_j} p_j^{1-\beta_j}}{p_i \kappa_{ij}} \right)^{-1/\theta} \lambda_j \tag{1}$$

$$p_{i} = A \left[ \sum_{j=1}^{N} \left( \frac{B_{j} w_{j}^{\beta_{j}} p_{j}^{1-\beta_{j}}}{\kappa_{ij}} \right)^{-1/\theta} \lambda_{j} \right]^{-\theta}$$
(2)

$$L_i p_i q_i + S_i = \sum_{i=1}^N L_j p_j q_j d_{ji}$$
(3)

$$L_i w_i = \beta_i (L_i p_i q_i + S_i) \tag{4}$$

where

$$d_{ij} = \frac{I_{ij}}{L_i p_i q_i}. (5)$$

 $d_{ii} = 1 - \sum_{j 
eq i} d_{ij}$ ; Big Unknowns:  $L_j$ ;  $\lambda_j$ ;  $\kappa_{ij}$ 

### Next: Back to the experiments

- How much can the (presumable) increase in  $\kappa s$  account for the observed changes in volatility and comovements?
- Or was it good luck—improvements in the distribution of  $\lambda$ ?
- Or was it the rise of China (increase in L)?
- ullet What if, with this structure in place, the US's  $\lambda$  gets a bad draw?

#### Calibration I

$$S_i = \sum_c E_{ci} - \sum_c M_{ic}$$

$$\beta_{i} = \frac{L_{i}w_{i}}{L_{i}p_{i}q_{i} + S_{i}}$$
$$= \frac{GDP_{i}}{GNO_{i}}$$

#### Calibration II

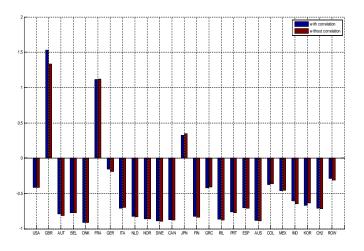
Backing out the  $\kappa_{ii}$ . From

$$d_{ij} = A^{-1/ heta} \left(rac{B_j w_j^{eta_j} p_j^{1-eta_j}}{p_i \kappa_{ij}}
ight)^{-1/ heta} \lambda_j$$

And assuming  $\kappa_{ji}=\kappa_{ji}$ 

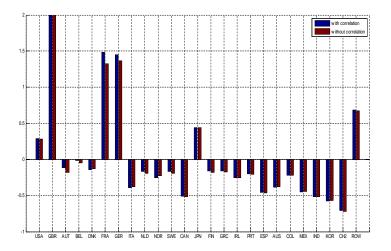
$$\kappa_{ji} = \left(rac{d_{ij}}{d_{jj}}rac{d_{ji}}{d_{ii}}
ight)^{ heta/2}$$

#### Calibration II


Backing out  $\lambda_i L_i^{\beta_i/\theta} = Z_i^{\beta_i/\theta}$ From

$$d_{ii} = A^{-1/\theta} \left(\frac{w_i}{p_i}\right)^{-\beta/\theta} \lambda_j$$

$$\lambda_{i}L_{i}^{\beta_{i}/\theta}=d_{ii}\left(AB_{i}
ight)^{1/\theta}\left(rac{w_{i}L_{i}}{p_{i}}
ight)^{eta_{i}/ heta}$$


Some Very Preliminary Results from Counterfactuals

#### Effect of Openness if Shocks had been as in 1970-84



actual  $\kappa$  and shocks from 70-84

#### Effect of Openness if Shocks had been as in post 85.



actual  $\kappa$  and shocks from 87-2006

#### Some Conclusions

- When country-specific shocks are imperfectly correlated, trade can lead to lower volatility, particularly when
  - i) a country is small
  - ii) the share of tradeables in the economy is big
  - iii) trading partners are less volatile or the correlations are small.

#### Some Conclusions

- When country-specific shocks are imperfectly correlated, trade can lead to lower volatility, particularly when
  - i) a country is small
  - ii) the share of tradeables in the economy is big
  - iii) trading partners are less volatile or the correlations are small.
- The introduction of new trading partners:
  - i) increases the correlation of growth rates with the new partners
  - ii) can decrease bilateral correlations among members of the "old" group (US-Europe)

#### Some More Tentative Conclusions

- Trade seems to have contributed to lower volatility in the majority of countries analyzed
- For the US, if the process of shocks had been the same as in the 1970-84, openness would have contributed to lower volatility.
  - But it appears that the process of shocks in the US became significantly less volatile post 84; thus, openness exposed it to the shocks of its more volatile partners.
  - A very tentative conclusion is that in the US trade actually contributed to higher volatility.