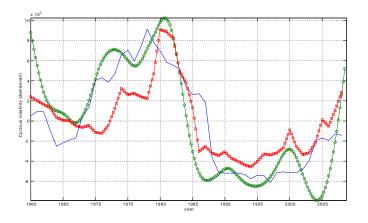

THE GREAT DIVERSIFICATION AND ITS UNDOING

Vasco M Carvalho and Xavier Gabaix CREi/UPF & NYU/Stern

Barcelona 5/10

WHENCE MACRO VOLATILITY?

Two measures of GDP Volatility (US 1960:2008)

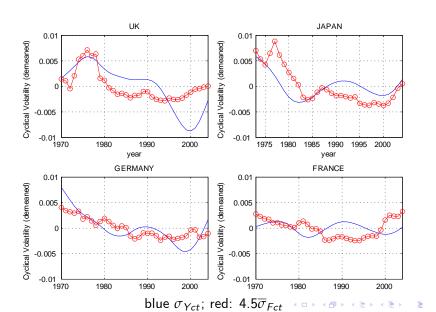

THE MICRO ORIGINS OF MACRO VOLATILITY

- What drives GDP volatility over the past half century?
- We propose that:
 - Macroeconomic volatility behaves as if all volatility was due to idiosyncratic microeconomic shocks.
 - Operationalize this by defining "fundamental" volatility:

$$\sigma_{Ft} = \sqrt{\sum_{i=1}^{n} \left(\frac{S_{it}}{Y_t}\right)^2 \sigma_i^2}$$

 Evolution of macro volatility reflects only changing composition of micro units up to a constant multiplier (micro volatility is assumed constant)

THE MICRO ORIGINS OF MACRO VOLATILITY



In red: $\sigma_{Yt} = 4.6\sigma_{Ft}$; all volatility measures demeaned

THE MICRO ORIGINS OF MACRO VOLATILITY SWINGS

- Changing importance of key sectors can explain the evolution of GDP volatility in the US & offers a narrative for the past 50 years of US macro volatility:
 - low frequency decline from 60s to mid-90s is due to the decline of a handful of manufacturing technologies, that accelerates circa 1980.
 - late 70s temporary peak reflects only movements in energy-related technologies
 - mid/late 90s reversal and recent increase reflects (mostly) the rise of finance activities
- What about other countries?

THE MICRO ORIGINS OF MACRO VOLATILITY SWINGS: INTERNATIONAL EVIDENCE

INTRO RELATED LITERATURE

- Origins of macroeconomic shocks
 - vindicate the hypothesis that macro fluctuations can be traced back to micro shocks (Long and Plosser 83; Horvath 00; Gabaix 09; Carvalho 09)
- Origins of the Great Moderation
 - provide an alternative, micro-based, explanation for the origins of the great moderation (Blanchard and Simon 01; Stock and Watson 03&05; Arias, Hansen and Ohanian 07; Justiniano and Primicieri 08; Gali and Gambetti 09)
- Technological Diversification & Structural Change
 - we emphasize movements over time rather than levels of volatility across countries (Imbs and Wacziarg 03; Koren and Tenreyro 07&09; Moro 09)
 - based on micro-TFP accounting rather than evolution of value added shares

INTRO ROADMAP

- Fundamental Volatility
 - Measurement
 - ► The US case
 - Some international evidence
- How to model it
- A brief narrative of the evolution of fundamental volatiliy
- ▶ Time-varying tail risks in the aggregate economy

KEY STATISTIC

Starting point: Hulten's (1978) TFP growth formula

$$\Delta TFP_t = \sum_{i=1}^{N} rac{S_{it}}{Y_t} \Delta TFP_{i,t}$$

 Fundamental volatility: Hulten + independent draws of ΔTFP_{i,t}

$$\Rightarrow \sigma_{Ft} = \sqrt{\sum_{i=1}^{n} \left(\frac{S_{it}}{Y_t}\right)^2 \sigma_i^2}$$

Multi-sector model (developed later)

$$\sigma_{Yt} = \mu \sigma_{Ft}$$
$$\mu \equiv \frac{1+\varphi}{\alpha}$$

where φ is Frisch elasticity, α is labor share

SECTORAL DATA

- Extension of traditional Jorgenson KLEM data
 - ho \simeq 80 sectors, 2 digit SIC, annual panel 1960-05
 - Covers entire economy: added detail in service sectors
 - Prices reflect quality adjustments
 - Can do sectoral TFP accounting
 - Aggregate up to get consistent aggregate GDP series
- ► Splice with BLS input-output data till 2008

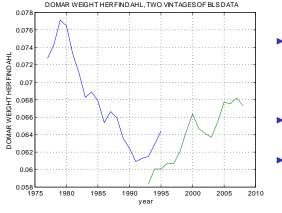
INGREDIENT 1: DOMAR WEIGHTS

Look into the Herfindahl-like index for Domar weights

$$h_t^D = \sum_{i=1}^N \left(rac{S_{it}}{Y_t}
ight)^2$$

where S_{it} is sector i nominal gross output in year t

- •
- Note: Domar weights do not sum to one
- But still valid to look at cross-sectional second moments


TRENDS AND SWINGS IN DIVERSIFICATION

INGREDIENT 1: DOMAR WEIGHTS

TRENDS AND SWINGS IN DIVERSIFICATION

INGREDIENT 1: DOMAR WEIGHTS (CROSS-CHECKS)

- Also holds in BLS source data:
 - ightharpoonup ($\simeq 200 \text{ sectors}$)
 - ► SIC vintage (77-95)
 - ► NAICS vintage (93-08)
- Holds with other measures of dispersion/concentration
- Holds with value added or employment data

INGREDIENT 2: SECTORAL TFP VOLATILITY

Sectoral TFP growth

$$\Delta \mathit{TFP}_{i,t} = \Delta \log \left(Q_{i,t} \right) - \overline{v}_{K_{i,t}} \Delta \log \left(K_{i,t} \right) - \overline{v}_{L_{i,t}} \Delta \log \left(L_{i,t} \right) - \overline{v}_{X_{i,t}} \Delta \log \left(X_{i,t} \right) - \overline{v}_{X_{i,t$$

Sectoral TFP volatility:

$$\sigma_i^2 = Var(\Delta TFP_{i,t})$$

- No time-varying sectoral volatility (borne out by data)
- Assemble to get fundamental volatility:

$$\sigma_{Ft} = \sqrt{\sum_{i=1}^{n} \left(\frac{S_{it}}{Y_t}\right)^2 \sigma_i^2}$$

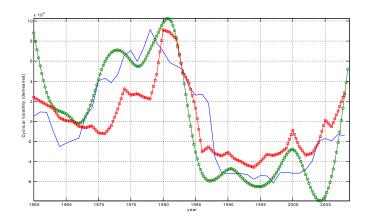
AGGREGATE AND FUNDAMENTAL VOLATILITY

Now consider a regression:

$$\sigma_{Yt} = a + b\sigma_{Ft} + \varepsilon_t$$

- where σ_{Yt} is a measure of cyclical volatility:
 - $ightharpoonup \sigma_{Yt}^{Roll}$: Rolling window standard deviation at quarter t
 - lacksquare $\sigma_{Yt}^{\it Inst}$: Instantaneous quarterly standard deviation computed as

$$\begin{array}{rcl} \Delta y_t & = & \psi + \phi \Delta y_{t-1} + \epsilon_t \\ \sigma_{Yt}^{Inst} & \equiv & 2\sqrt{\frac{\pi}{2}} |\widehat{\epsilon}_t| \end{array}$$


Annualize by taking 4-quarter average

AGGREGATE AND FUNDAMENTAL VOLATILITY

	Annual Data- $\sigma_{Yt}^{ m Roll}$	Annual Data- σ_{Yt}^{Inst}
â	-0.011 (0.005)	-0.019 (0.013)
\widehat{b}	4.614 (0.574)	6.741 (1.434)
R^2	0.60	0.33

- $ightharpoonup \sigma_{Yt} = a + b\sigma_{Ft} + \varepsilon_t$
- s.e. in parenthesis
- ► Same results for quarterly frequency

AGGREGATE AND FUNDAMENTAL VOLATILITY

In red: $\sigma_{Yt} = 4.6\sigma_{Ft}$; all volatility measures demeaned

ACCOUNTING FOR BREAKS

► A common way of encoding the Great Moderation is to test null of a constant level in volatility:

$$\sigma_{Yt}^{\mathit{Inst}} = \mathbf{a} + \mathbf{\eta}_{t}$$

against the alternative featuring a break:

$$\sigma_{Yt} = a + cD_t + \eta_t$$

where D_t is a dummy (1 for $t \geq T$) for an estimated break date T.

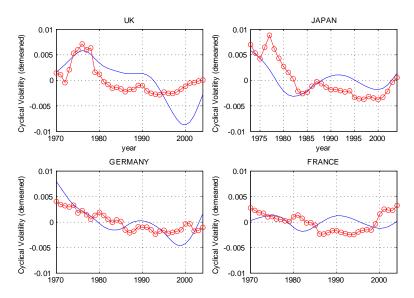
- Strong support for a level break in 1984:Q1 (as in McConnell and Quiros, 00)
- Estimate \hat{c} implies a permanent percentage point decrease in aggregate volatility after this date.

ACCOUNTING FOR BREAKS

- Now consider testing the following hypothesis
 - Controlling for our fundamental volatility measure there is no level break in aggregate volatility.
 - ► That is we test for the null of no break in the intercept in the following equation:

$$\sigma_{Yt}^{\mathsf{Inst}} = \mathsf{a} + \mathsf{b}\sigma_{\mathsf{F}t} + \eta_{\,t}$$

	Without σ_{Ft}	With σ_{Ft}	
H ₀	No break in <i>a</i>	No Break in <i>a</i>	No Break in b
SupF test	32.33	8.60	8.96
Null of no break	Reject	Accept	Accept
Est. break date	1984:1	None	None


INTERNATIONAL EVIDENCE

- Different countries exhibit different time patterns in macro-volatility.
 - Does this reflect different evolution of fundamental volatility?
- ▶ Look into largest economies: France, Germany, Japan and UK
 - ▶ Use EUKLEMS database (1970-2005 only)
 - Sufficiently detailed nominal breakdown
 - ▶ Limitation: uneven availability of sectoral price indexes⇒can't do σ_i^2 for $\forall i$
 - Instead define country-specific fundamental volatility:

$$\overline{\sigma}_{Fct} = \overline{\sigma}_c \sqrt{\sum_{i=1}^{N} \left(\frac{S_{ict}}{Y_{ct}}\right)^2}$$

lacktriangle where $\overline{\sigma}_c$ is the average for the sectors we do observe prices

INTERNATIONAL EVIDENCE

▶ Red: Fundamental volatility measure, $\sigma_{Yt} = 4.5\overline{\sigma}_{Ft}$.

INTERNATIONAL EVIDENCE

► As a complement, consider running panel:

$$\sigma_{Yct} = \alpha_c + \chi t + \beta \overline{\sigma}_{Fct} + \varepsilon_{ct}$$

- $ightharpoonup \sigma_{Yct}$: cyclical volatility for country c in year t (rolling window measure)
- Include the US along with the four other economies mentioned above.

		$\sigma_{ct}(OLS)$	$\sigma_{ct}(OLS)$
•	\widehat{eta}	3.193 (0.478)	1.971 (0.578)
	χt	No	Yes
	Observations	172	172

▶ Still significant when instrumenting by lagged fundamental volatility.

A SIMPLE, STATIC, MULTI-SECTOR MODEL

Technology

- ▶ 1 final good: used either for consumption *C* or for use as an input in each of the *N* sectors, *X_i*.
- ightharpoonup Final good technology: CES aggregate of the intermediates Q_i

$$\left(\sum_{i=1}^N Q_i^{rac{1}{\psi}}
ight)^{\psi} = Y + \sum_{i=1}^N X_i, \quad \psi > 1$$

- ▶ Each intermediate sector combines labor L_i , capital, K_i and the final good X_i
- Cobb-Douglas, constant returns to scale

$$Q_i = \frac{1}{\kappa} A_i (L_i^{\alpha} K_i^{1-\alpha})^b X_i^{1-b}$$

where κ normalization constant: $\kappa = b^b (1-b)^{1-b}$

A SIMPLE, STATIC, MULTI-SECTOR MODEL

Preferences and Endowments:

Representative Household

$$U(C,L)=C-L^{1+\frac{1}{\varphi}}$$

► The household owns stock of labor *L* and capital *K*. Capital rented out to the *N* sectors at rate *r*.

Resource Constraints:

- ▶ There is no investment, so C = Y.
- $ightharpoonup \Sigma K_i = K, \Sigma L_i = K$

A SIMPLE, STATIC, MULTI-SECTOR MODEL

Social Planner's solution gives:

$$\mathsf{GDP}: Y = \Lambda L^lpha \mathcal{K}^{1-lpha}$$
 $\mathsf{TFP}: \Lambda = \left(\sum_i \mathcal{A}_i^{1/(\psi-1)}
ight)^{(\psi-1)/b}$

▶ 1/b is a "productivity multiplier". If all sectors increase their productivity A_i by 1%, TFP increases by 1/b %.

A SIMPLE, STATIC, MULTI-SECTOR MODEL

▶ Suppose each sector i is hit by productivity shock \widehat{A}_i . Then:

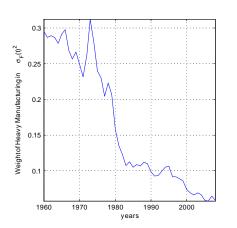
$$\begin{aligned} \mathsf{TFP}: \ \widehat{\Lambda} &= \sum \frac{S_i}{Y} \widehat{A}_i = \sum \frac{\mathsf{Sales}_i}{\mathsf{GDP}} \widehat{A}_i \\ \mathsf{GDP}: \ \widehat{Y} &= \frac{1+\varphi}{\alpha} \widehat{\Lambda} \end{aligned}$$

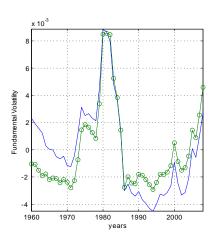
Proposition: if \widehat{A}_i is independently distributed. across sectors:

$$\sigma_{Yt} = \mu \sqrt{\sum_{i=1}^{n} \left(\frac{S_{it}}{Y_t}\right)^2 \sigma_i^2} \equiv \mu \sigma_{Ft}$$

$$\mu \equiv \frac{1+\varphi}{\alpha}$$

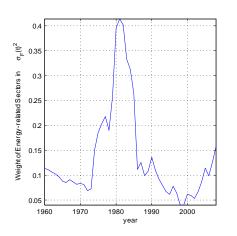
▶ Note: $\varphi \simeq 2$, $\alpha = 0.66 \Rightarrow \mu \simeq 4.5!$

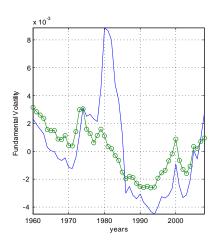

A BRIEF HISTORY OF FUNDAMENTAL VOLATILITY MACRO QUESTIONS & MICRO ANSWERS FOR THE U.S.


- What accounts for the long and large decline from 1960-mid 1990s?
 - A: Construction + 4 heavy-manufacturing sectors: Primary Metals, Fabricated Metal Products, Machinery (excluding computers) and Motor Vehicles.
- What accounts for the interruption of this trend from mid 70s to early 80s?
 - A: Energy related sectors: Oil and gas extraction and Petroleum and coal products
- ▶ What is behind the reversal of fundamental volatility trends and its increase since the mid 90s?
 - A: Depository Institutions, Non-Depository Financial Institutions (including Brokerage Services and Investment Banks), and Insurance Services.

A Brief History of Fundamental Volatility

1960-MID 1990S

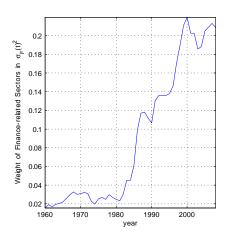


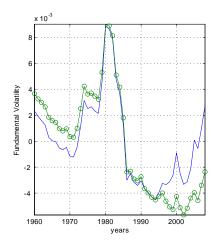


- ▶ LHS: Weight of 5 manufacturing sectors in $\sigma_F^2(t)$.
- ▶ RHS (Blue): baseline fundamental vol. $(4.5\sigma_F(t))$; (Green): counterfactual volatility (weights of manuf. sectors fixed)

A Brief History of Fundamental Volatility

Late 70s spike




- ▶ LHS: Weight of energy related sectors in $\sigma_F^2(t)$.
- ► RHS (Blue): baseline fundamental vol $(4.5\sigma_F(t))$; (Green): counterfactual volatility (weights of energy sectors fixed)

A Brief History of Fundamental Volatility

MID 90s-2008

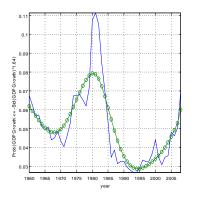
- ▶ LHS: Weight of finance related sectors in $\sigma_F^2(t)$.
- ▶ RHS (Blue): baseline fundamental vol $(4.5\sigma_F(t))$; (Green): counterfactual volatility (weights of finance sectors fixed)

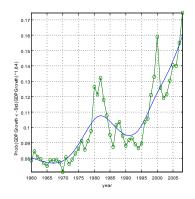
TAIL RISK IN THE AGGREGATE ECONOMY METHODS

- What is the probability of a large negative GDP growth event?
- ► To answer this:
 - Fix $\mu = 4.5$ and feed sample domar-weights in:

$$\Delta Y_t = \mu \sum_{i=1}^{N} \left(\frac{S_{i,t}}{Y_t} \right) \Delta TFP_{i,t}$$

- At each t, 10^4 draws of $\Delta TFP_{i,t} \sim N(0, \sigma_i^2)$
- Compute tail risk probability:


$$\Pr[\Delta Y_t < -1.64\overline{\sigma_Y}]$$


• where $\overline{\sigma_Y}$ is model implied average GDP volatility (over full sample)

FRAGILITY TO FINANCE? METHODS

- However, this tail risk does not inform of fragility to tail events in particular sectors of the economy.
- ▶ What is the evolution of fragility to finance-related sectors?
 - Pick "Non-depository institutions, security and commodity brokers and investment banks"
 - For ∀ t and ∀ simulations: draw negative 2 std. deviation shock to TFP growth in this sector
 - All other shocks drawn from $N(0, \sigma_i^2)$

TAIL RISK & FRAGILITY IN GDP GROWTH

LHS: Probability of negative GDP growth in excess of 1.64 st.dev., given the level of fundamental volatility.

RHS: Probability of negative GDP growth in excess of 1.64 st.dev., given two st.dev. shocks to the financial sector.

CONCLUSION

Key to macroeconomic volatility might be found in local, microeconomic shocks.

- We find that macro volatility swings can be accounted for by fundamental volatility swings:
 - The evolution of fundamental volatility can account for the US "great moderation"
 - It can account for its recent undoing
 - It can account for heterogeneity in the evolution of macro volatility across major economies
- Looking ahead
 - Efficient diversification? Have some technologies "grown too large"? Is there a role for policy?
 - Can fundamental volatility serve as an early warning system?

THANKS... NOW VOTE!

- "Fundamental volatility" or:
 - Microeconomic volatility
 - Granular volatility
 - Incompressible volatility
 - [Insert your answer here]
- "The Great Diversification and its Undoing" or:
 - The Micro Origins of Macro Volatility Swings
 - Accounting for Aggregate Volatility Swings
 - The Fall and Rise of Aggregate Volatility
 - [Insert your answer here]