
Jordi Galí and Thijs van Rens CREI, Universitat Pompeu Fabra, and Barcelona GSE

European Summer Symposium in International Macroeconomics (ESSIM) 2010

May 25, 2010

	Pre-84	Post-84	Change
Corr prod with output	0.78	0.60	-0.18
	[0.04]	[0.05]	[0.06]
Corr prod with labor input	0.31	-0.15	-0.47
	[80.0]	[0.10]	[0.13]

- BP, 1949-2007
 - prod = output / worker
 - labor input = employment
- Robustness

Changes in Labor Market Dynamics

	Pre-84	Post-84	Ratio
Std.dev. employment	1.57	0.91	0.58
	[80.0]	[0.05]	[0.04]
Relative std.dev. empl	0.66	0.81	1.23
	[0.03]	[0.05]	[0.09]

Changes in Labor Market Dynamics

	Pre-84	Post-84	Ratio
Std.dev. employment	1.57	0.91	0.58
	[80.0]	[0.05]	[0.04]
Relative std.dev. empl	0.66	0.81	1.23
	[0.03]	[0.05]	[0.09]
Std.dev. wages	0.71	0.99	1.38
	[0.05]	[0.06]	[0.12]
Relative std.dev. wages	0.30	0.88	2.93
	[0.02]	[0.07]	[0.31]

Robustness

Changes in Labor Market Dynamics

- Procyclicality labor productivity 'vanished'
 - Correlation with output: less procyclical
 - Correlation with labor input: countercyclical
- Relative volatility labor input increased
- Relative volatility wages increased
- Volatility output decreased (Great Moderation)

• A reduction in labor market frictions can explain all of these facts

- A reduction in labor market frictions can explain all of these facts
- Production requires employment n_t and effort e_t

$$y_t = a_t + (1 - \alpha) \left(n_t + \psi e_t \right)$$

- A reduction in labor market frictions can explain all of these facts
- Production requires employment n_t and effort e_t

$$y_t = a_t + (1 - \alpha) \left(n_t + \psi e_t \right)$$

Adjusting employment subject to search frictions

- A reduction in labor market frictions can explain all of these facts
- Production requires employment n_t and effort e_t

$$y_t = a_t + (1 - \alpha) \left(n_t + \psi e_t \right)$$

- Adjusting employment subject to search frictions
- Effort provides intensive margin to adjust labor input

- A reduction in labor market frictions can explain all of these facts
- Production requires employment n_t and effort e_t

$$y_t = a_t + (1 - \alpha) \left(n_t + \psi e_t \right)$$

- Adjusting employment subject to search frictions
- Effort provides intensive margin to adjust labor input
- \bullet Search frictions $\downarrow \Rightarrow$ volatility employment $\uparrow \Rightarrow$ volatility effort \downarrow

- A reduction in labor market frictions can explain all of these facts
- Production requires employment n_t and effort e_t

$$y_t = a_t + (1 - \alpha) \left(n_t + \psi e_t \right)$$

- Adjusting employment subject to search frictions
- Effort provides intensive margin to adjust labor input
- Search frictions $\downarrow \Rightarrow$ volatility employment $\uparrow \Rightarrow$ volatility effort \downarrow
 - Relative volatility employment (with respect to output) increases

- A reduction in labor market frictions can explain all of these facts
- Production requires employment n_t and effort e_t

$$y_t = a_t + (1 - \alpha) \left(n_t + \psi e_t \right)$$

- Adjusting employment subject to search frictions
- Effort provides intensive margin to adjust labor input
- ullet Search frictions $\downarrow \Rightarrow$ volatility employment $\uparrow \Rightarrow$ volatility effort \downarrow
 - Relative volatility employment (with respect to output) increases
 - Labor productivity becomes less procyclical (countercyclical)

$$y_t - n_t = a_t - \alpha n_t + (1 - \alpha) \psi e_t$$

- A reduction in labor market frictions can explain all of these facts
- Production requires employment n_t and effort e_t

$$y_t = a_t + (1 - \alpha) \left(n_t + \psi e_t \right)$$

- Adjusting employment subject to search frictions
- Effort provides intensive margin to adjust labor input
- \bullet Search frictions $\downarrow \Rightarrow$ volatility employment $\uparrow \Rightarrow$ volatility effort \downarrow
 - Relative volatility employment (with respect to output) increases
 - Labor productivity becomes less procyclical (countercyclical)

$$y_t - n_t = a_t - \alpha n_t + (1 - \alpha) \psi e_t$$

• Wages endogenously become more flexible

Outline

- Facts
- Model
- Results I
- Endogenous wage rigidity
- Results II
- Discussion

Model

- RBC model with labor market frictions (adjustment costs)
 - No capital
 - No other frictions or market imperfections
- Intensive margin for labor input (effort)
- Two types of shocks
 - Technology shocks (TFP)
 - Non-technology shocks (preference shocks)

Firms

• Choose vacancies and labor demand to maximize

$$E_{0}\sum_{t=0}^{\infty}Q_{0,t}\left[Y_{t}-W_{t}N_{t}-g\left(V_{t}\right)\right]$$

subject to

$$N_t = (1 - \delta) N_{t-1} + qV_t$$

Output

$$Y_t = A_t \left(\int_0^{N_t} \mathcal{E}_{it}^{\psi} di \right)^{1-\alpha} = A_t \left(\mathcal{E}_t^{\psi} N_t \right)^{1-\alpha}$$

Households

Choose consumption and labor supply to maximize

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[Z_t u \left(C_t \right) - \gamma L_t \right]$$

subject to (given new hires qV_t)

$$C_t = W_t N_t$$

$$N_t = (1 - \delta) N_{t-1} + qV_t$$

Total effective labor supply

$$L_t = \int_0^{N_t} \frac{1 + \zeta \mathcal{E}_{it}^{1+\phi}}{1 + \zeta} di = \frac{1 + \zeta \mathcal{E}_t^{1+\phi}}{1 + \zeta} N_t$$

Effort and Wages

Effort is set to maximize match surplus (MDU = MP)

$$\mathcal{E}_{it}^{1+\phi} = \mathcal{E}_{t}^{1+\phi} = \frac{\psi}{1+\phi} \frac{1+\zeta}{\zeta} \frac{Z_{t}u'\left(C_{t}\right)}{\gamma} \frac{\left(1-\alpha\right)Y_{t}}{N_{t}}$$

- Effort increases with preference shocks and technology shocks
- Effort decreases with employment N_t (substitutes)
- Wages are set to share surplus equally (Nash bargaining)

$$W_t = rac{1}{2} \left(W_t^{UB} + W_t^{LB}
ight)$$

where $S_t^H = W_t - W_t^{LB}$ and $S_t^F = W_t^{UB} - W_t$

Equilibrium

- Efficiency condition for effort
- Job creation equation

$$\frac{g'(V_t)}{q} = W_t^{UB} - W_t
= E_t \sum_{s=0}^{\infty} (1 - \delta)^s Q_{t,t+s} \left[(1 - \Psi_F) \frac{(1 - \alpha) Y_{t+s}}{N_{t+s}} - W_{t+s} \right]$$

- Nash bargaining over wages
- Good market clearing

$$Y_t = C_t + g(V_t)$$

Preview of the Results

Infinite matching frictions ⇒ Employment is constant

$$\begin{array}{rcl} e_t &=& \left(1-\eta\right) a_t + z_t \\ y_t &=& \left(1+\phi\right) a_t + \left(1-\alpha\right) \psi z_t \\ y_t - n_t &=& y_t \end{array}$$

Frictionless labor market ⇒ Effort is constant

$$n_t = (1 - \eta) a_t + z_t$$

$$y_t = a_t + (1 - \alpha) z_t$$

$$y_t - n_t = \eta a_t - \alpha z_t$$

Calibration

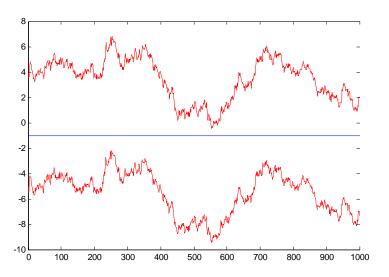
Standard parameters

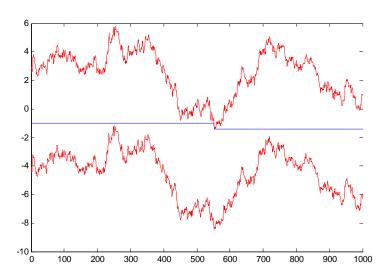
α	β	u (C _t)	γ	δ
1/3	0.99	$\log C_t$	$\bar{N}=0.7$	6%/qrt

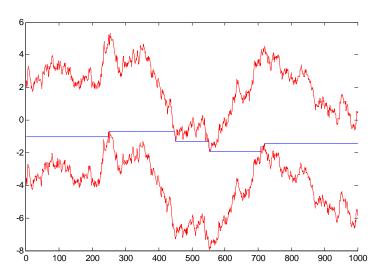
- Non-standard parameters
 - Relative variance preference shocks
 ⇒ match relative volatility employment
 - Labor market frictions: 0-3% of output (Silva-Toledo 2007: 1-1.4%)
- Free parameter
 - Importance of effort, $\phi + \psi$

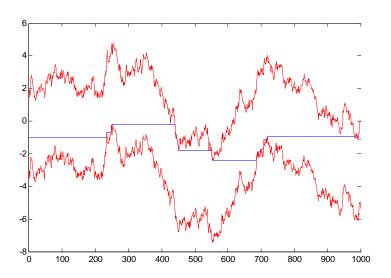
Results I

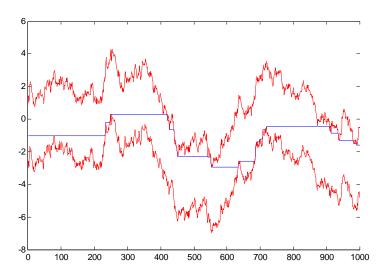
	N	$\rho(p,y)$	$\rho\left(p,n\right)$	$\frac{\operatorname{sd}(n)}{\operatorname{sd}(y)}$	$\frac{\operatorname{sd}(w)}{\operatorname{sd}(y)}$
Data					
Pre-84		0.78	0.31	0.66	0.30
Post-84		0.60	-0.15	0.81	0.88
Model					
frictions 3%	0.57			0.66	
frictions 2%	0.61				
frictions 1%	0.66				
frictionless	0.70				

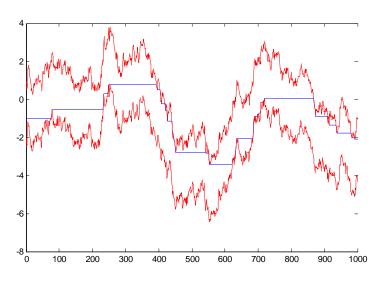

Results I


	N	$\rho(p,y)$	$\rho\left(p,n\right)$	$\frac{\operatorname{sd}(n)}{\operatorname{sd}(y)}$	$\frac{\operatorname{sd}(w)}{\operatorname{sd}(y)}$
Data					
Pre-84		0.78	0.31	0.66	0.30
Post-84		0.60	-0.15	0.81	0.88
Model					
frictions 3%	0.57	0.75	-0.04	0.66	0.87
frictions 2%	0.61	0.69	-0.14	0.73	0.86
frictions 1%	0.66	0.63	-0.24	0.79	0.86
frictionless	0.70	0.56	-0.35	0.88	0.87


Results I


	N	$\rho(p,y)$	$\rho\left(p,n\right)$	$\frac{\operatorname{sd}(n)}{\operatorname{sd}(y)}$	$\frac{\operatorname{sd}(w)}{\operatorname{sd}(y)}$	sd(y)
Data						
Pre-84		0.78	0.31	0.66	0.30	
Post-84		0.60	-0.15	0.81	0.88	
Model						
frictions 3%	0.57	0.75	-0.04	0.66	0.87	1.00
frictions 2%	0.61	0.69	-0.14	0.73	0.86	1.00
frictions 1%	0.66	0.63	-0.24	0.79	0.86	1.00
frictionless	0.70	0.56	-0.35	0.88	0.87	1.01


- With flexible wages, wage proportional to MP of labor
- Search frictions allow for equilibrium wage rigidity (Hall 2005)
- Endogenizing wage rigidity
 - Wages are rigid within the bargaining set
 - The width of the bargaining set is determined by search frictions
- Reduction in labor market frictions makes wages more flexible



Wage Rule

Wages are rigid within the bargaining set

$$W_t = R_t W_{t-1} + (1 - R_t) \frac{1}{2} \left(W_t^{UB} + W_t^{LB} \right)$$

- The width of the bargaining set is determined by search frictions
- Degree of rigidity $R_t \in [0,1]$ is endogenous

$$R_t = ar{R} \left[1 - \left(rac{W_t - rac{1}{2} \left(W_t^{UB} + W_t^{LB}
ight)}{rac{1}{2} \left(W_t^{UB} - W_t^{LB}
ight)}
ight)^{2
ho}
ight]$$

- ullet Guarantees that $W_t \in \left(W_t^{LB}, W_t^{UB}
 ight)$
- Need non-linear solution method: 2nd order approximation

Calibration

Standard parameters

	β	u (C _t)	γ	δ
1/3	0.99	$\log C_t$	$\bar{N} = 0.7$	6%/qrt

- Non-standard parameters
 - Relative variance preference shocks
 ⇒ match relative volatility employment
 - Labor market frictions: 0-3% of output (Silva-Toledo 2007: 1-1.4%)
- Free parameters
 - Importance of effort, $\phi + \psi$
 - Maximum wage rigidity, R̄

Results II

	N	$\rho(p,y)$	$\rho\left(p,n\right)$	$\frac{\operatorname{sd}(n)}{\operatorname{sd}(y)}$	$\frac{\operatorname{sd}(w)}{\operatorname{sd}(y)}$	sd(y)
Data						
Pre-84		0.78	0.31	0.66	0.30	
Post-84		0.60	-0.15	0.81	0.88	
Model						
frictions 3%	0.57	0.75	-0.04	0.66	0.87	1.00
frictions 2%	0.61	0.69	-0.14	0.73	0.86	1.00
frictions 1%	0.66	0.63	-0.24	0.79	0.86	1.00
frictionless	0.70	0.56	-0.35	0.88	0.87	1.01
Endog wage r	igidity					
frictions 3%	0.57			0.66		
frictions 2%	0.61					
frictions 1%	0.66					
frictionless	0.70					

Results II

	N	$\rho(p,y)$	$\rho(p, n)$	$\frac{\operatorname{sd}(n)}{\operatorname{sd}(n)}$	$\frac{\operatorname{sd}(w)}{\operatorname{sd}(w)}$	sd(y)
 Data		1 (1 (, ,	sd(y)	sd(y)	
Pre-84		0.78	0.31	0.66	0.30	
Post-84		0.60	-0.15	0.81	0.88	
Model						
frictions 3%	0.57	0.75	-0.04	0.66	0.87	1.00
frictions 2%	0.61	0.69	-0.14	0.73	0.86	1.00
frictions 1%	0.66	0.63	-0.24	0.79	0.86	1.00
frictionless	0.70	0.56	-0.35	0.88	0.87	1.01
Endog wage rigidity						
frictions 3%	0.57	0.75	0.17	0.66	0.69	1.00
frictions 2%	0.61	0.68	0.05	0.72	0.69	1.00
frictions 1%	0.66	0.64	-0.05	0.76	0.70	1.02
frictionless	0.70	0.62	-0.14	0.78	0.74	0.99

 Can a reduction in labor market frictions explain the increase wage volatility?

- Can a reduction in labor market frictions explain the increase wage volatility?
 - In principle yes, quantitatively not sure

- Can a reduction in labor market frictions explain the increase wage volatility?
 - In principle yes, quantitatively not sure
 - Endogenous wage rigidity needs to be sufficiently strong (non-linear)

- Can a reduction in labor market frictions explain the increase wage volatility?
 - In principle yes, quantitatively not sure
 - Endogenous wage rigidity needs to be sufficiently strong (non-linear)
- Can a reduction in labor market frictions explain the Great Moderation?

- Can a reduction in labor market frictions explain the increase wage volatility?
 - In principle yes, quantitatively not sure
 - Endogenous wage rigidity needs to be sufficiently strong (non-linear)
- Can a reduction in labor market frictions explain the Great Moderation?
 - Only if increase wage volatility large enough (direct effect makes output more volatile)

- Can a reduction in labor market frictions explain the increase wage volatility?
 - In principle yes, quantitatively not sure
 - Endogenous wage rigidity needs to be sufficiently strong (non-linear)
- Can a reduction in labor market frictions explain the Great Moderation?
 - Only if increase wage volatility large enough (direct effect makes output more volatile)
 - If wage rigidity is extended to newly hired workers (Haefke-Sonntag-van Rens 2008)

- Can a reduction in labor market frictions explain the increase wage volatility?
 - In principle yes, quantitatively not sure
 - Endogenous wage rigidity needs to be sufficiently strong (non-linear)
- Can a reduction in labor market frictions explain the Great Moderation?
 - Only if increase wage volatility large enough (direct effect makes output more volatile)
 - If wage rigidity is extended to newly hired workers (Haefke-Sonntag-van Rens 2008)
 - If fluctuations driven largely by labor demand (technology) shocks

• More flexible labor markets (lower hiring costs) can explain

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours

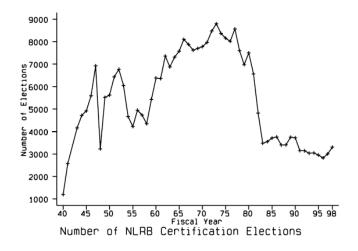
- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Open Potentially: The rising relative volatility of wages

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Otentially: The rising relative volatility of wages
 - Potentially: The Great Moderation

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Open Potentially: The rising relative volatility of wages
 - Open Potentially: The Great Moderation
- What caused the reduction in search frictions?

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Open Potentially: The rising relative volatility of wages
 - Open Potentially: The Great Moderation
- What caused the reduction in search frictions?
 - Internet-based job search (monster.com)

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Otentially: The rising relative volatility of wages
 - Open Potentially: The Great Moderation
- What caused the reduction in search frictions?
 - Internet-based job search (monster.com)
 - Wrongful discharge protection laws (Autor, Kerr and Kugler 2007)


- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Otentially: The rising relative volatility of wages
 - Open Potentially: The Great Moderation
- What caused the reduction in search frictions?
 - Internet-based job search (monster.com)
 - Wrongful discharge protection laws (Autor, Kerr and Kugler 2007)
 - Temporary help services (Estevao and Lach 1999)

Temporary help services (Estevao and Lach 1999)

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Open Potentially: The rising relative volatility of wages
 - Open Potentially: The Great Moderation
- What caused the reduction in search frictions?
 - Internet-based job search (monster.com)
 - Wrongful discharge protection laws (Autor, Kerr and Kugler 2007)
 - Temporary help services (Estevao and Lach 1999)
 - Ronald Reagan and the decline of unions (Farber and Western 2002)

Declining unionization (Farber and Western 2002)

- More flexible labor markets (lower hiring costs) can explain
 - The vanishing procyclicality of labor productivity
 - The rising relative volatility of employment and hours
 - Open Potentially: The rising relative volatility of wages
 - Open Potentially: The Great Moderation
- What caused the reduction in search frictions?
 - Internet-based job search (monster.com)
 - Wrongful discharge protection laws (Autor, Kerr and Kugler 2007)
 - Temporary help services (Estevao and Lach 1999)
 - Ronald Reagan and the decline of unions (Farber and Western 2002)