
Cyclical Skill-Biased Technological Change

Almut Balleer and Thijs van Rens

ESSIM May 25th 2010

Skill-Biased Technological Change

Skill bias is an important feature of technological change (Katz and Murphy '92; Acemoglu '02; Autor et al. '98, '05, '08)

- Substantial increase in relative price of skill
- Substantial increase in relative quantity of skill
- Evidence for increased demand for skill

- Construction of a quarterly series of the skill premium (and skill supply)
- Explore the cyclical properties of skill-biased technology shocks
 - A general model with skill-biased technological change
 - Estimation of skill-biased technology shocks
 - What is the nature of skill-biased technology shocks?
 - What are the dynamic responses to skill-biased technology shocks over the business cycle?
 - How important are SBT shocks for the business cycle?

- Construction of a quarterly series of the skill premium (and skill supply)
- Explore the cyclical properties of skill-biased technology shocks
 - A general model with skill-biased technological change
 - Estimation of skill-biased technology shocks
 - What is the nature of skill-biased technology shocks?
 - What are the dynamic responses to skill-biased technology shocks over the business cycle?
 - How important are SBT shocks for the business cycle?

- Construction of a quarterly series of the skill premium (and skill supply)
- Explore the cyclical properties of skill-biased technology shocks
 - A general model with skill-biased technological change
 - Estimation of skill-biased technology shocks
 - What is the nature of skill-biased technology shocks?
 - What are the dynamic responses to skill-biased technology shocks over the business cycle?
 - How important are SBT shocks for the business cycle?

- Construction of a quarterly series of the skill premium (and skill supply)
- Explore the cyclical properties of skill-biased technology shocks
 - A general model with skill-biased technological change
 - Estimation of skill-biased technology shocks
 - What is the nature of skill-biased technology shocks?
 - What are the dynamic responses to skill-biased technology shocks over the business cycle?
 - How important are SBT shocks for the business cycle?

- Construction of a quarterly series of the skill premium (and skill supply)
- Explore the cyclical properties of skill-biased technology shocks
 - Permanent technology shocks are skill-biased
 - The fall in hours largely due to skill-biased technology shocks
 - Capital and skilled labor are not complementary over the business cycle
 - SBT shocks contribute little to output volatility, but are important for hours worked

Results

Benchmark Model

- RBC model with skilled and unskilled labor

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

$$L_{t} = \left[\beta \left(B_{t}H_{s,t}\right)^{\frac{\sigma-1}{\sigma}} + \left(1-\beta\right)H_{u,t}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

$$\max_{\left\{C_{t},\widehat{H}_{s,t},\widehat{H}_{u,t}\right\}} E_{0} \sum_{t=0}^{\infty} \left(\frac{1}{1+\rho}\right)^{t} \left(Z_{t}u\left(C_{t}\right) - S_{t}\frac{\eta}{\eta+1}\widehat{H}_{s,t}^{\frac{\eta+1}{\eta}} - \left(1-S_{t}\right)\frac{\eta}{\eta+1}\widehat{H}_{u,t}^{\frac{\eta+1}{\eta}}\right)$$
s.t.

$$K_{t+1} = \left(1 - \delta\right)K_t + D_t\left[R_tK_t + S_tW_{s,t}\widehat{H}_{s,t} + \left(1 - S_t\right)W_{u,t}\widehat{H}_{u,t} - C_t\right]$$

Conclusion

Benchmark Model

- RBC model with skilled and unskilled labor
- Production function

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

with

$$L_{t} = \left[\beta \left(B_{t}H_{s,t}\right)^{\frac{\sigma-1}{\sigma}} + \left(1-\beta\right)H_{u,t}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

Preferences

$$\max_{\left\{C_{t},\widehat{H}_{s,t},\widehat{H}_{u,t}\right\}} E_{0} \sum_{t=0}^{\infty} \left(\frac{1}{1+\rho}\right)^{t} \left(Z_{t}u\left(C_{t}\right) - S_{t}\frac{\eta}{\eta+1}\widehat{H}_{s,t}^{\frac{\eta+1}{\eta}} - (1-S_{t})\frac{\eta}{\eta+1}\widehat{H}_{u,t}^{\frac{\eta+1}{\eta}}\right)$$
s.t.

$$K_{t+1} = \left(1 - \delta\right)K_t + D_t\left[R_tK_t + S_tW_{s,t}\widehat{H}_{s,t} + \left(1 - S_t\right)W_{u,t}\widehat{H}_{u,t} - C_t\right]$$

Conclusion

Benchmark Model

- RBC model with skilled and unskilled labor
- Production function

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

with

$$L_{t} = \left[\beta \left(B_{t}H_{s,t}\right)^{\frac{\sigma-1}{\sigma}} + \left(1-\beta\right)H_{u,t}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

Preferences

$$\max_{\left\{C_{t},\widehat{H}_{s,t},\widehat{H}_{u,t}\right\}} E_{0} \sum_{t=0}^{\infty} \left(\frac{1}{1+\rho}\right)^{t} \left(Z_{t}u\left(C_{t}\right) - S_{t}\frac{\eta}{\eta+1}\widehat{H}_{s,t}^{\frac{\eta+1}{\eta}} - \left(1-S_{t}\right)\frac{\eta}{\eta+1}\widehat{H}_{u,t}^{\frac{\eta+1}{\eta}}\right)$$
 s.t.

$$K_{t+1} = (1 - \delta) K_t + D_t \left[R_t K_t + S_t W_{s,t} \widehat{H}_{s,t} + (1 - S_t) W_{u,t} \widehat{H}_{u,t} - C_t \right]$$

Conclusion

Benchmark Model

- RBC model with skilled and unskilled labor
- Production function

$$Y_t = A_t K_t^{\alpha} L_t^{1-\alpha}$$

with

$$L_{t} = \left[\beta \left(B_{t}H_{s,t}\right)^{\frac{\sigma-1}{\sigma}} + \left(1-\beta\right)H_{u,t}^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

Preferences

$$\max_{\left\{C_{t},\widehat{H}_{s,t},\widehat{H}_{u,t}\right\}} E_{0} \sum_{t=0}^{\infty} \left(\frac{1}{1+\rho}\right)^{t} \left(Z_{t}u\left(C_{t}\right) - S_{t}\frac{\eta}{\eta+1}\widehat{H}_{s,t}^{\frac{\eta+1}{\eta}} - \left(1-S_{t}\right)\frac{\eta}{\eta+1}\widehat{H}_{u,t}^{\frac{\eta+1}{\eta}}\right)$$
 s.t.

$$K_{t+1} = \left(1 - \delta\right)K_t + D_t\left[R_tK_t + S_tW_{s,t}\widehat{H}_{s,t} + \left(1 - S_t\right)W_{u,t}\widehat{H}_{u,t} - C_t\right]$$

Results

Benchmark Model

Skill demand

$$w_{s,t} - w_{u,t} = \ln\left(\frac{\beta}{1-\beta}\right) - \frac{1}{\sigma}(h_{s,t} - h_{u,t}) + (\frac{\sigma-1}{\sigma})b_t,$$

where σ is EOS high and low skill in production

Skill supply

$$h_{s,t} - h_{u,t} = \eta(w_{s,t} - w_{u,t}) + s_t$$

where η is Frisch elasticity of labor supply

Equilibrium skill premium

$$w_{s,t} - w_{u,t} = \frac{\sigma}{\sigma + \eta} \ln \left(\frac{\beta}{1 - \beta} \right) - \frac{1}{\sigma + \eta} s_t + \left(\frac{\sigma - 1}{\sigma + \eta} \right) b_t$$

Benchmark Model

Skill demand

$$w_{s,t} - w_{u,t} = \ln\left(\frac{\beta}{1-\beta}\right) - \frac{1}{\sigma}(h_{s,t} - h_{u,t}) + (\frac{\sigma-1}{\sigma})b_t,$$

where σ is EOS high and low skill in production

Skill supply

$$h_{s,t} - h_{u,t} = \eta(w_{s,t} - w_{u,t}) + s_t,$$

where η is Frisch elasticity of labor supply

$$w_{s,t} - w_{u,t} = \frac{\sigma}{\sigma + \eta} \ln \left(\frac{\beta}{1 - \beta} \right) - \frac{1}{\sigma + \eta} s_t + \left(\frac{\sigma - 1}{\sigma + \eta} \right) b_t$$

Benchmark Model

Skill demand

$$w_{s,t} - w_{u,t} = \ln\left(\frac{\beta}{1-\beta}\right) - \frac{1}{\sigma}(h_{s,t} - h_{u,t}) + (\frac{\sigma-1}{\sigma})b_t,$$

where σ is EOS high and low skill in production

Skill supply

$$h_{s,t} - h_{u,t} = \eta(w_{s,t} - w_{u,t}) + s_t,$$

where η is Frisch elasticity of labor supply

Equilibrium skill premium

$$w_{s,t} - w_{u,t} = \frac{\sigma}{\sigma + \eta} \ln \left(\frac{\beta}{1 - \beta} \right) - \frac{1}{\sigma + \eta} s_t + (\frac{\sigma - 1}{\sigma + \eta}) b_t$$

	Skill supply	I-Techn.	SBTechnology	N-Techn.	Labor supply
Investment price	0	1	0	0	0
Skill premium	$-rac{1}{\sigma+\eta}<0$	0	$\frac{\sigma-1}{\sigma+n}>0$	0	0
Wage low skilled	$\frac{\omega_2}{(\sigma+\eta)} > 0$	$\frac{\alpha}{1-\alpha} > 0$	$rac{rac{\sigma-1}{\sigma+\eta}>0}{rac{1+\eta}{\sigma+\eta}\omega_2>0}$	0	
Wage high skilled	$\frac{\frac{\omega_2}{(\sigma+\eta)}}{(\sigma+\eta)} > 0$ $-\frac{(1-\omega_2)}{(\sigma+\eta)} < 0$	$\frac{\alpha}{1-\alpha} > 0$	$\frac{\sigma-1+(1+\eta)\omega_2}{\sigma+\eta}>0$	$\frac{1}{1-\alpha} > 0$	0
Productivity	$\frac{\sigma(1+\eta)(\omega_2-\omega_1)}{(1+\eta)(\sigma+\eta)}$		$\frac{\sigma(1+\eta)\omega_2-(\sigma-1)\eta\omega_1}{\sigma+\eta}$		
	> 0	$\frac{\alpha}{1-\alpha} > 0$	> 0	$\frac{1}{1-\alpha} > 0$	0
Output	$\frac{\xi_t-1+\omega_2}{1+\eta}>0$	$\frac{\alpha}{1-\alpha} > 0$		$\frac{1}{1-\alpha} > 0$	$\frac{\eta}{1+\eta} > 0$
Total hours	•		$-\frac{(\sigma-1)\eta(\omega_2-\omega_1)}{\sigma+\eta}$		
	ambiguous	0	< 0	0	$\frac{\eta}{1+\eta}>0$
Hours high skilled	ambiguous	0	$\frac{(\sigma-1)\eta}{\sigma+\eta}$ $(1-\omega_2)>0$	0	$\frac{\eta}{1+\eta}>0$
Hours low skilled	ambiguous	0	$-\frac{(\sigma-1)\eta}{\sigma+\eta}\omega_2<0$	0	$\frac{\eta}{1+\eta} > 0$
Rel. empl. skill	$\frac{\sigma}{\sigma + \eta} > 0$	0	$\frac{(\sigma-1)\eta}{\sigma+\eta}>0$	0	0

	Skill supply	I-Techn.	SBTechnology	N-Techn.	Labor supply
Investment price	0	1	0	0	0
Skill premium	$-rac{1}{\sigma+\eta}<0$	0	$\frac{\sigma-1}{\sigma+\eta}>0$	0	0
Wage low skilled	$\frac{\frac{\omega_2}{(\sigma+\eta)}}{(\sigma+\eta)} > 0$ $-\frac{(1-\omega_2)}{(\sigma+\eta)} < 0$	$\frac{\alpha}{1-\alpha} > 0$	$\frac{1+\eta}{\sigma+\eta}\omega_2>0$	0	
Wage high skilled	$-\frac{(1-\omega_2)}{(\sigma+\eta)} < 0$	$\frac{\alpha}{1-\alpha} > 0$	$\frac{\sigma-1+(1+\eta)\omega_2}{\sigma+\eta}>0$	$\frac{1}{1-\alpha} > 0$	0
Productivity	$\frac{\sigma(1+\eta)(\omega_2-\omega_1)}{(1+\eta)(\sigma+\eta)}$		$\frac{\sigma(1+\eta)\omega_2-(\sigma-1)\eta\omega_1}{\sigma+\eta}$		
	> 0	$\frac{\alpha}{1-\alpha} > 0$	> 0	$\frac{1}{1-\alpha} > 0$	0
Output	$\frac{\xi_t-1+\omega_2}{1+\eta}>0$	$\frac{\alpha}{1-\alpha} > 0$		$\frac{1}{1-\alpha} > 0$	$\frac{\eta}{1+\eta} > 0$
Total hours	•		$-\frac{(\sigma-1)\eta(\omega_2-\omega_1)}{\sigma+n}$		
	ambiguous	0	< 0	0	$\frac{\eta}{1+\eta} > 0$
Hours high skilled	ambiguous	0	$\frac{(\sigma-1)\eta}{\sigma+\eta}$ $(1-\omega_2)>0$	0	$\frac{\eta}{1+\eta} > 0$
Hours low skilled	ambiguous	0	$-\frac{(\sigma-1)\eta}{\sigma+\eta}\omega_2<0$	0	$\frac{\eta}{1+\eta} > 0$
Rel. empl. skill	$\frac{\sigma}{\sigma + \eta} > 0$	0	$\frac{(\sigma-1)\eta}{\sigma+\eta}>0$	0	0

	Skill supply	I-Techn.	SBTechnology	N-Techn.	Labor supply
Investment price	0	1	0	0	0
Skill premium	$-rac{1}{\sigma+\eta}<0$	0	$\frac{\sigma-1}{\sigma+n}>0$	0	0
Wage low skilled	$\frac{\omega_2}{(\sigma+\eta)}>0$	$\frac{\alpha}{1-\alpha} > 0$	$rac{rac{\sigma-1}{\sigma+\eta}>0}{rac{1+\eta}{\sigma+\eta}\omega_2>0}$	0	
Wage high skilled	$\frac{\frac{\omega_2}{(\sigma+\eta)}}{(\sigma+\eta)} > 0$ $-\frac{(1-\omega_2)}{(\sigma+\eta)} < 0$	$\frac{\alpha}{1-\alpha} > 0$	$\frac{\sigma-1+(1+\eta)\omega_2}{\sigma+\eta}>0$	$\frac{1}{1-\alpha} > 0$	0
Productivity	$\frac{\sigma(1+\eta)(\omega_2-\omega_1)}{(1+\eta)(\sigma+\eta)}$		$\frac{\sigma(1+\eta)\omega_2-(\sigma-1)\eta\omega_1}{\sigma+\eta}$		
	> 0	$\frac{\alpha}{1-\alpha} > 0$	> 0	$\frac{1}{1-\alpha} > 0$	0
Output	$\frac{\xi_t - 1 + \omega_2}{1 + \eta} > 0$	$\frac{\alpha}{1-\alpha} > 0$		$\frac{1}{1-\alpha} > 0$	$\frac{\eta}{1+\eta}>0$
Total hours	•		$-\frac{(\sigma-1)\eta(\omega_2-\omega_1)}{\sigma+\eta}$		
	ambiguous	0	< 0	0	$rac{\eta}{1+\eta}>0$
Hours high skilled	ambiguous	0	$\frac{(\sigma-1)\eta}{\sigma+\eta}$ $(1-\omega_2)>0$	0	$\frac{\eta}{1+\eta} > 0$
Hours low skilled	ambiguous	0	$\frac{\frac{(\sigma-1)\eta}{\sigma+\eta}(1-\omega_2)>0}{-\frac{(\sigma-1)\eta}{\sigma+\eta}\omega_2<0}$	0	$\frac{\eta}{1+\eta}>0$
Rel. empl. skill	$\frac{\sigma}{\sigma + \eta} > 0$	0	$\frac{(\sigma-1)\eta}{\sigma+\eta}>0$	0	0

	Skill supply	I-Techn.	SBTechnology	N-Techn.	Labor supply
Investment price	0	1	0	0	0
Skill premium	$-rac{1}{\sigma+\eta}<0$	0	$\frac{\sigma-1}{\sigma+n}>0$	0	0
Wage low skilled	$\frac{\omega_2}{(\sigma+\eta)} > 0$	$\frac{\alpha}{1-\alpha} > 0$	$rac{rac{\sigma-1}{\sigma+\eta}>0}{rac{1+\eta}{\sigma+\eta}\omega_2>0}$	0	
Wage high skilled	$\frac{\frac{\omega_2}{(\sigma+\eta)}}{(\sigma+\eta)} > 0$ $-\frac{(1-\omega_2)}{(\sigma+\eta)} < 0$	$\frac{\alpha}{1-\alpha} > 0$	$\frac{\sigma-1+(1+\eta)\omega_2}{\sigma+\eta}>0$	$\frac{1}{1-\alpha} > 0$	0
Productivity	$\frac{\sigma(1+\eta)(\omega_2-\omega_1)}{(1+\eta)(\sigma+\eta)}$		$\frac{\sigma(1+\eta)\omega_2-(\sigma-1)\eta\omega_1}{\sigma+\eta}$		
	> 0	$\frac{\alpha}{1-\alpha} > 0$	> 0	$\frac{1}{1-\alpha}>0$	0
Output	$\frac{\xi_t-1+\omega_2}{1+\eta}>0$	$\frac{\alpha}{1-\alpha} > 0$		$\frac{1}{1-\alpha} > 0$	$\frac{\eta}{1+\eta} > 0$
Total hours	•		$-\frac{(\sigma-1)\eta(\omega_2-\omega_1)}{\sigma+n}$		
	ambiguous	0	< 0	0	$\frac{\eta}{1+\eta} > 0$
Hours high skilled	ambiguous	0	$\frac{(\sigma-1)\eta}{\sigma+\eta}$ $(1-\omega_2)>0$	0	$\frac{\eta}{1+\eta} > 0$
Hours low skilled	ambiguous	0	$-\frac{(\sigma-1)\eta}{\sigma+\eta}\omega_2<0$	0	$\frac{\eta}{1+\eta} > 0$
Rel. empl. skill	$\frac{\sigma}{\sigma + \eta} > 0$	0	$\frac{(\sigma-1)\eta}{\sigma+\eta} > 0$	0	0

- Use the model to motivate identifying assumptions of the various shocks
- How robust are the long-run effects to generalizations of the benchmark model?

	Skill supply	I-Techn.	SBTechnology	N-Techn.	Labor supply
Investment price	0	> 0	0	0	0
Skill premium	< 0	0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours		0	< 0	0	> 0
Rel. empl. skill	> 0	0	> 0	0	0

Generalizations: Endogenous skill supply

- Law of motion: $S_{t+1} = X_{t+1} \left[(1 \lambda) S_t + T_t \right]$
- Cost of training: $g(T_t)$

	Skill supply	I-Techn.	SBTechnology	N-Techn.	Labor supply
Investment price	0	> 0	0	0	0
Skill premium	< 0	0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours		0	< 0	0	> 0
Rel. empl. skill	> 0	0	> 0	0	0

Model

Generalizations: Capital-skill complementarity

KORV '00 production function

$$Y_{t} = \left[\beta\left(\gamma K_{t}^{\frac{\theta-1}{\theta}} + (1-\gamma)\left(B_{t}A_{t}H_{s,t}\right)^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}\frac{\sigma-1}{\sigma}} + (1-\beta)\left(A_{t}H_{u,t}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$

	Skill supply	D-Shock	B-Shock	A-Shock.	Labor supply
Investment price	0	> 0	0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	≠ 0	> 0	0	0

Generalizations: Capital-skill complementarity

• Capital-skill complementarity $\theta < \sigma$

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	0	> 0	0	0	0
Skill premium	< 0	> 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	> 0	> 0	0	0

Generalizations: Capital-skill substitutability

• Capital-skill substitutability $\theta > \sigma$

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	0	> 0	0	0	0
Skill premium	< 0	< 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	< 0	> 0	0	0

Motivation

Generalizations: KORV production function

- $\alpha = \frac{1}{2}$, $\rho = 0.01$, $\eta = 2$, $\delta = 0.025$, $\sigma = 1.67$, mean skill supply in population: 47%
- Labor supply shock calibrated to match 20% of time spent working
- Share parameters γ and β to match 30% income share of capital and skilled wages 50% higher than unskilled wages
- Capital-skill complementarity $\theta = 0.67$, substitutability $\theta = 2.67$

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	0	> 0	0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	≠ 0	> 0	0	0

Generalizations: Two sector model

- Investment-goods sector
- Consumption goods sector

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	≠ 0	> 0	≠ 0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	$\neq 0$	> 0	0	0

Identification of Shocks

- Structural VAR methodology
 - Long-run restrictions (Blanchard and Quah '89)
 - Only technology shocks affect labor productivity in the long run (Galí '99)

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	≠ 0	> 0	≠ 0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	≠ 0	> 0	0	0

Identification of Shocks

- Shocks to the supply of skill invalidate the identifying restrictions
 - Exogenous increase in supply increases the employment of skill
 - Labor productivity increases if high skilled are more productive

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	≠ 0	> 0	≠ 0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	$\neq 0$	> 0	0	0

Identification of Shocks I

- Skill supply shocks
 - ... are the *only* shocks that affect skill supply within the quarter ... may affect labor productivity in the long run
- Technology shocks are the only remaining shocks that affect labor productivity in the long run

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	≠ 0	> 0	<i>≠</i> 0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	≠ 0	> 0	0	0

Identification of Shocks I

• Do technology shocks have an effect on the skill premium?

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	≠ 0	> 0	≠ 0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	$\neq 0$	> 0	0	0

Identification of Shocks II

- Control for skill supply shocks
- Skill-biased technology shocks
 ... are the *only* shocks that affect the relative price of skill in the long run
 ... may affect labor productivity in the long run
- Neutral technology shocks are the only remaining shocks that affect labor productivity in the long run

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	≠ 0	> 0	≠ 0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	$\neq 0$	> 0	0	0

Identification of Shocks III

- Control for skill supply shocks
 - Investment-specific technology shocks
 ... are the *only* shocks that affect the relative price of investment in the long run
 ... may affect labor productivity in the long run
- Skill-biased technology shocks are the only remaining shocks that affect the skill premium in the long run
- Neutral technology shocks are the only remaining shocks that affect labor productivity in the long run

	Skill supply	D-Shock	B-Shock	A-Shock	Labor supply
Investment price	0	> 0	0	0	0
Skill premium	< 0	≠ 0	> 0	0	0
Productivity	> 0	> 0	> 0	> 0	0
Output	> 0	> 0	> 0	> 0	> 0
Total hours			< 0	0	> 0
Rel. empl. skill	> 0	≠ 0	> 0	0	0

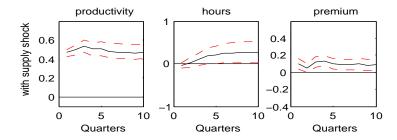
- CPS outgoing rotation groups: 1979:1-2006:2 (110 quarters)
- Wage = weekly earnings / usual weekly hours
 - Workers 16-64 years old, private non-farm business sector
 - topcoding, varying hours, trimming outliers
- Skill = educational attainment
 - 5 categories:
 - <HS, HS grad, some college, college grad, >college
 - Consistent over sample period (Jaeger 1997)
- Skill premium
 - log wage differential college over high-school graduates
 - allows for heterogeneity; sampling and hours weights (Autor, Katz and Kearney 2005)
 - → plot →correlation

- CPS outgoing rotation groups: 1979:1-2006:2 (110 quarters)
- Wage = weekly earnings / usual weekly hours
 - Workers 16-64 years old, private non-farm business sector
 - topcoding, varying hours, trimming outliers
- Skill = educational attainment
 - 5 categories:
 - <HS, HS grad, some college, college grad, >college
 - Consistent over sample period (Jaeger 1997)
- Skill premium
 - log wage differential college over high-school graduates
 - allows for heterogeneity; sampling and hours weights (Autor, Katz and Kearney 2005)
 - → plot →correlation

- CPS outgoing rotation groups: 1979:1-2006:2 (110 quarters)
- Wage = weekly earnings / usual weekly hours
 - Workers 16-64 years old, private non-farm business sector
 - topcoding, varying hours, trimming outliers
- Skill = educational attainment
 - 5 categories:
 <HS, HS grad, some college, college grad, >college
 - Consistent over sample period (Jaeger 1997)
- Skill premium
 - log wage differential college over high-school graduates
 - allows for heterogeneity; sampling and hours weights (Autor, Katz and Kearney 2005)
 - → plot → correlation

- CPS outgoing rotation groups: 1979:1-2006:2 (110 quarters)
- Wage = weekly earnings / usual weekly hours
 - Workers 16-64 years old, private non-farm business sector
 - topcoding, varying hours, trimming outliers
- Skill = educational attainment
 - 5 categories:
 <HS, HS grad, some college, college grad, >college
 - Consistent over sample period (Jaeger 1997)
- Skill premium
 - log wage differential college over high-school graduates
 - allows for heterogeneity; sampling and hours weights (Autor, Katz and Kearney 2005)
 - → plot →correlations

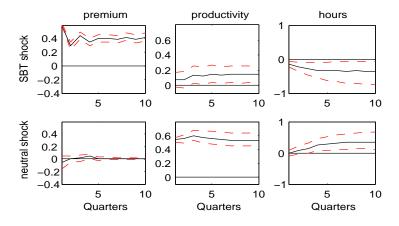
Estimation and Implementation


- Structural VAR
 - Very little theory imposed, full dynamic impulse responses
 - Implementation via a combination of short- and long-run restriction in VAR
- Estimation of the reduced form VAF
 - Quarterly US data, 1979:1-2000:4
 - Labor productivity and hours worked from the BLS
 - Skill premium and relative skill supply
 - First differences, seasonally adjusted data
 - Bayesian VAR with 8 lags, Minnesota prior with a decaying weight on past lags

Estimation and Implementation

- Structural VAR
 - Very little theory imposed, full dynamic impulse responses
 - Implementation via a combination of short- and long-run restriction in VAR
- Estimation of the reduced form VAR
 - Quarterly US data, 1979:1-2000:4
 - Labor productivity and hours worked from the BLS
 - Skill premium and relative skill supply
 - First differences, seasonally adjusted data
 - Bayesian VAR with 8 lags, Minnesota prior with a decaying weight on past lags

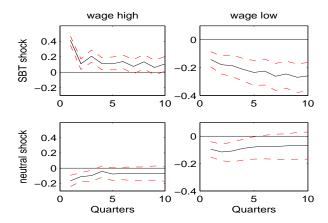
Identification of Shocks I


- Identify skill supply and technology shocks
- Skill supply shocks do not affect results significantly

→ Assumptions

Identification of Shocks II

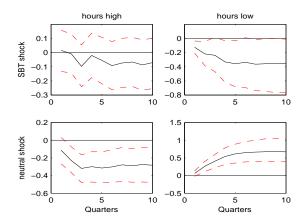
Identify skill supply, skill-biased and skill-neutral technology shocks


Benchmark Model: Long-run effects

	Skill supply	I-Techn.	SBTechnology	N-Techn.	Labor supply
Investment price	0	1	0	0	0
Skill premium	$-\frac{1}{\sigma + n} < 0$	0	$\frac{\sigma-1}{\sigma+\eta}>0$	0	0
Wage low skilled	$-\frac{1}{\frac{\sigma+\eta}{\omega_2}} < 0$ $\frac{\omega_2}{(\sigma+\eta)} > 0$	$\frac{\alpha}{1-\alpha} > 0$	$\frac{1+\eta}{\sigma+\eta}\omega_2>0$	0	
Wage high skilled	$-\frac{(1-\omega_2)}{(\sigma+\eta)}<0$	$\frac{\alpha}{1-\alpha} > 0$	$\frac{\sigma-1+(1+\eta)\omega_2}{\sigma+\eta}>0$	$\frac{1}{1-\alpha} > 0$	0
Productivity	$\frac{\sigma(1+\eta)(\omega_2-\omega_1)}{(1+\eta)(\sigma+\eta)}$		$\frac{\sigma(1+\eta)\omega_2-(\sigma-1)\eta\omega_1}{\sigma+\eta}$		
	> 0	$\frac{\alpha}{1-\alpha} > 0$	> 0	$\frac{1}{1-\alpha} > 0$	0
Output	$\frac{\xi_t-1+\omega_2}{1+\eta}>0$	$\frac{\alpha}{1-\alpha} > 0$		$\frac{1}{1-\alpha} > 0$	$\frac{\eta}{1+\eta} > 0$
Total hours			$-\frac{(\sigma-1)\eta(\omega_2-\omega_1)}{\sigma+\eta}$		
	ambiguous	0	< 0	0	$rac{\eta}{1+\eta}>0$
Hours high skilled	ambiguous	0	$\frac{\frac{(\sigma-1)\eta}{\sigma+\eta}(1-\omega_2)>0}{-\frac{(\sigma-1)\eta}{\sigma+\eta}\omega_2<0}$	0	$\frac{\eta}{1+\eta}>0$
Hours low skilled	ambiguous	0	$-\frac{(\sigma-1)\eta}{\sigma+\eta}\omega_2<0$	0	$\frac{\eta}{1+\eta}>0$
Rel. empl. skill	$\frac{\sigma}{\sigma + \eta} > 0$	0	$\frac{\frac{\sigma+\eta}{(\sigma-1)\eta}}{\frac{\sigma+\eta}{\sigma+\eta}}>0$	0	0

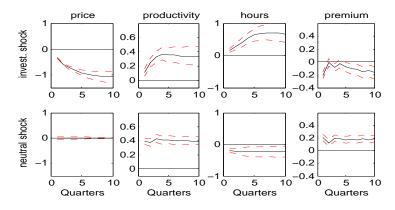
[→] Dynamics

Identification of Shocks II


Identify skill supply, skill-biased and skill-neutral technology shocks

→ Dynamics

Identification of Shocks II


Identify skill supply, skill-biased and skill-neutral technology shocks

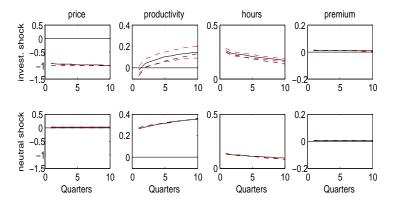
→ Dynamics

Identification of Shocks III

 Identify skill supply, investment-specific and investment-neutral technology shocks

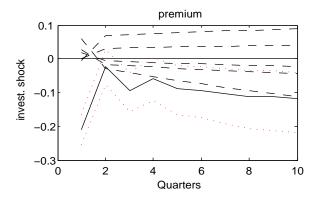
 $[\]rightarrow$ SBT with price

[→] Assumptions


Robustness of Capital-skill complementarity

- Can we trust our results on the substitutability of capital and skill?
- Simulation of model with different degrees of capital-skill complementarity and substitutability
- Estimation of our structural VAR with simulated data
 - Can the VAR replicate the model responses of the different technology shocks?
 - What degree of substitutability do we observe in the data?

Robustness of Capital-skill complementarity


- Can we trust our results on the substitutability of capital and skill?
- Simulation of model with different degrees of capital-skill complementarity and substitutability
- Estimation of our structural VAR with simulated data
 - Can the VAR replicate the model responses of the different technology shocks?
 - What degree of substitutability do we observe in the data?

Impulse-responses from Model

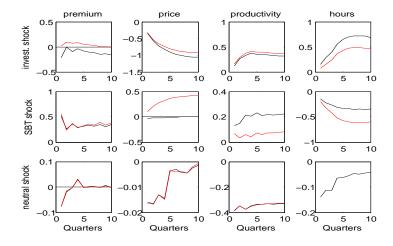
Capital and skill are neither complements nor substitutes

Capital-skill complementarity

Dashed lines show responses from the model with depict $\sigma = 1.67$ and $\theta = [0.67, 1.17, 2.17, 2.67, 5]$

- Joint identification of all shocks in order to assess their relative importance over the business cycle
- Skill- and investment-neutral technology shocks are uniquely identified
- Skill-biased and investment-specific technology shocks cannot be entirely separated

Shocks that affect	Ordering I	
the skill premium	LB: skill-biased	UB: skill-biased
	inv-neutral	inv-specific
the relative price	UB: inv-spec	LB: inv-spec
		skill-neutral


- Joint identification of all shocks in order to assess their relative importance over the business cycle
- Skill- and investment-neutral technology shocks are uniquely identified
- Skill-biased and investment-specific technology shocks cannot be entirely separated

Shocks that affect	Ordering I	
the skill premium	LB: skill-biased	UB: skill-biased
	inv-neutral	inv-specific
the relative price	UB: inv-spec	LB: inv-spec
		skill-neutral

- Joint identification of all shocks in order to assess their relative importance over the business cycle
- Skill- and investment-neutral technology shocks are uniquely identified
- Skill-biased and investment-specific technology shocks cannot be entirely separated

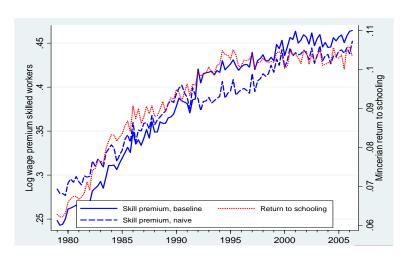
Shocks that affect	Ordering I	Ordering II
the skill premium	LB: skill-biased	UB: skill-biased
	inv-neutral	inv-specific
the relative price	UB: inv-spec	LB: inv-spec
	skill-biased	skill-neutral

Joint Identification of Shocks

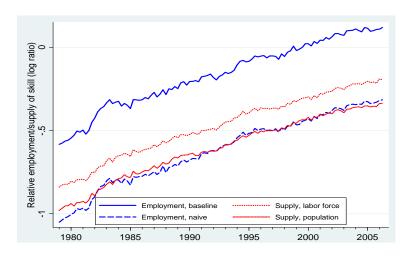
black lines: ordering I, red lines: ordering II

→ additional variables

Horizon	8	3	1	6	3	2
	I	П	I	П	I	Ш
output						
i-shock (ul,lb)	58.95	45.84	62.40	48.73	63.75	50.4
SBT shock (lb,ub)	0.91	9.99	0.88	10.50	0.84	10.8
neutral shock	6.64	6.44	5.66	5.45	5.29	5.16
hours						
i-shock (ul,lb)	38.89	21.91	42.37	24.24	43.55	25.1
SBT shock (lb,ub)	10.34	25.13	9.11	24.71	8.84	24.47
neutral shock	1.36	1.53	0.91	1.09	0.78	0.91
premium						
i-shock (ul,lb)	8.71	1.65	9.39	0.87	9.65	0.4
SBT shock (lb,ub)	89.57	96.46	89.76	98.17	89.76	99.08
neutral shock	0.52	0.48	0.27	0.25	0.14	0.12


- Technological change is skill-biased at all frequencies
- Fall in hours is largely due to SBT shocks
- Capital and skill are not complementary over the business cycle
 - Investment-specific technology shocks are not skill-biased
 - Volatility in the skill premium is largely explained by (i-neutral) SBT shocks
 - Correlation in trends remains unexplained
- SBT shocks
 - explain almost all of the fluctuations in the skill premium
 - explain up to 25% of fluctuations in hours worked
 - explain little output volatility

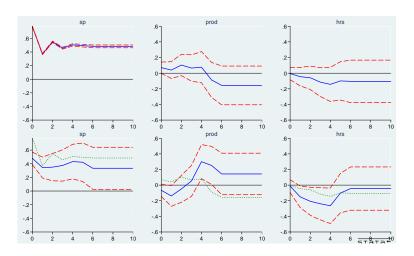
- Technological change is skill-biased at all frequencies
- Fall in hours is largely due to SBT shocks
- Capital and skill are not complementary over the business cycle
 - Investment-specific technology shocks are not skill-biased
 - Volatility in the skill premium is largely explained by (i-neutral) SBT shocks
 - Correlation in trends remains unexplained
- SBT shocks
 - explain almost all of the fluctuations in the skill premium
 - explain up to 25% of fluctuations in hours worked
 - explain little output volatility


- Technological change is skill-biased at all frequencies
- Fall in hours is largely due to SBT shocks
- Capital and skill are not complementary over the business cycle
 - Investment-specific technology shocks are not skill-biased
 - Volatility in the skill premium is largely explained by (i-neutral) SBT shocks
 - Correlation in trends remains unexplained
- SBT shocks
 - explain almost all of the fluctuations in the skill premium
 - explain up to 25% of fluctuations in hours worked
 - explain little output volatility

- Technological change is skill-biased at all frequencies
- Fall in hours is largely due to SBT shocks
- Capital and skill are not complementary over the business cycle
 - Investment-specific technology shocks are not skill-biased
 - Volatility in the skill premium is largely explained by (i-neutral)
 SBT shocks
 - Correlation in trends remains unexplained
- SBT shocks
 - explain almost all of the fluctuations in the skill premium
 - explain up to 25% of fluctuations in hours worked
 - explain little output volatility

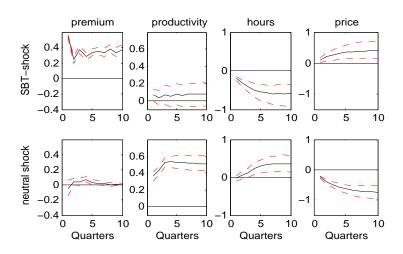
Quarterly Measures of the Price of Skill

Quarterly Measures of the Quantity of Skill

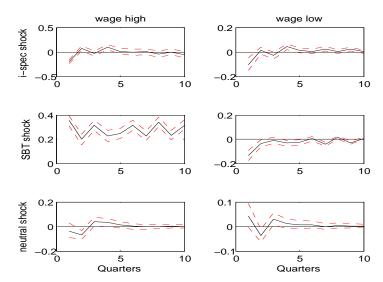


Unconditional Business Cycle Correlations

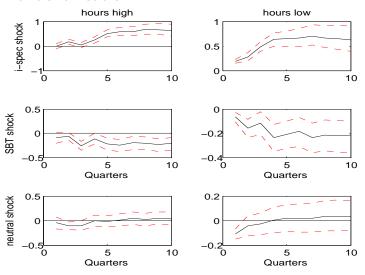
	Std	Correlation with			
		Output	Hours	Productivity	Price
Baseline measure					
Skill premium	0.0067	0.1189	-0.0685	0.3338*	-0.1571
Relative employment	0.020	-0.4178*	-0.2727*	-0.3452*	0.6257*
Naive measure					
Skill premium	0.0073	0.0506	0.1370	-0.1259	0.0497
Relative employment	0.0173	-0.4160*	-0.3337*	-0.2435	0.6062*
Relative supply	0.0119	0.0320	0.1268	-0.1445	0.3990*


(Notes: HP with $\lambda = 1600$. * indicates significance of at least 10%.)

Impulse-responses to Solow Residual

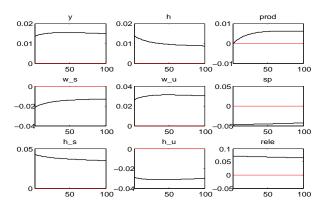


→ back

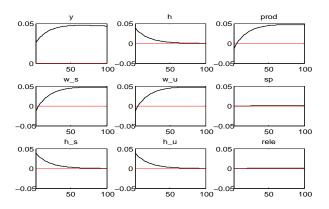

Identification of Shocks III: reverse

Joint Identification I

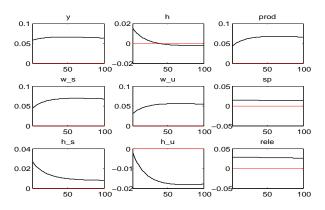
Joint Identification I

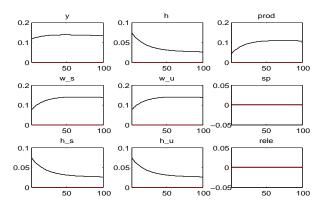


 \rightarrow back

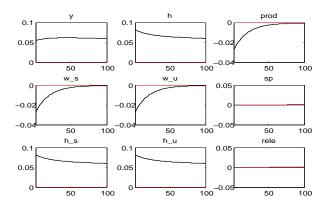

Calibration

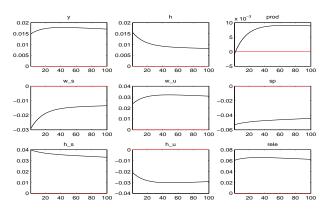
- $\alpha = \frac{1}{3}$, $\rho = 0.01$, $\eta = 2$, $\delta = 0.025$
- $\sigma = 1.67$ and mean skill supply in population: 47%
- Labor supply shock calibrated to match 20% of time spent working
- Share parameter β to match skilled wages 50% higher than unskilled wages


Skill supply shocks

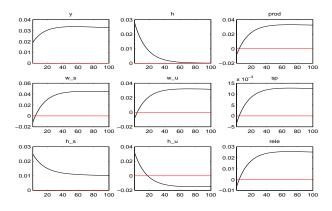

Investment-specific technology shocks

Skill-biased technology shocks


Neutral technology shocks

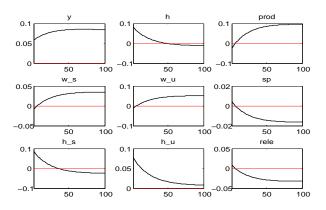

→ back to results

→ back to model


Labor supply shocks

Skill supply shocks

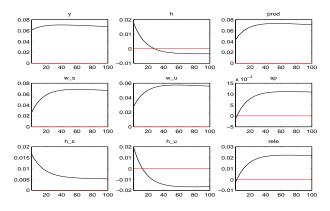
Investment-specific technology shocks



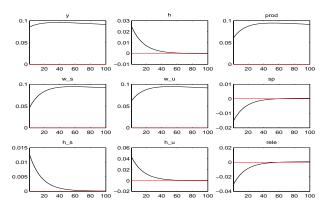
→ back to results

→ back to model

Model Dynamics: Capital-Skill Substitutability

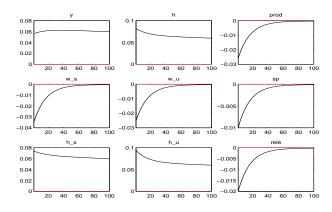

Investment-specific technology shocks

→ back to results


→ back to model

Skill-biased, investment-neutral technology shocks

→ back to results
→ back to model


Neutral technology shocks

→ back to results

→ back to model

Labor supply shocks

→ back to results
→ back to model