Collateral Constraints, Banking Competition and Optimal Monetary Policy¹

Javier Andrés² Óscar Arce³ Carlos Thomas⁴

ESSIM, May 2010

¹These slides reflect the views of the authors and do not necessarily reflect the views of Banco de España or Comisión Nacional del Mercado de Valores.

²Universidad de Valencia

³Comisión Nacional del Mercado de Valores

⁴Banco de España

• Existing work on **optimal monetary policy** largely based on the assumption of frictionless financial markets

- Existing work on optimal monetary policy largely based on the assumption of frictionless financial markets
 - "Standard New Keynesian model": Woodford (2003), Clarida, Gali and Gertler (1999), etc.

- Existing work on optimal monetary policy largely based on the assumption of frictionless financial markets
 - "Standard New Keynesian model": Woodford (2003), Clarida, Gali and Gertler (1999), etc.
- Growing literature on the macroeconomic effects of financial frictions

- Existing work on optimal monetary policy largely based on the assumption of frictionless financial markets
 - "Standard New Keynesian model": Woodford (2003), Clarida, Gali and Gertler (1999), etc.
- Growing literature on the macroeconomic effects of financial frictions
 - "Financial accelerator" literature (Bernanke & Gertler, 1989; Bernanke, Gertler and Gilchrist, 1999): agency costs and the role of net worth

- Existing work on optimal monetary policy largely based on the assumption of frictionless financial markets
 - "Standard New Keynesian model": Woodford (2003), Clarida, Gali and Gertler (1999), etc.
- Growing literature on the macroeconomic effects of financial frictions
 - "Financial accelerator" literature (Bernanke & Gertler, 1989; Bernanke, Gertler and Gilchrist, 1999): agency costs and the role of net worth
 - "Credit cycles" literature (Kiyotaki & Moore, 1997; lacoviello, 2005): collateral constraints and the role of asset price fluctuations

- Existing work on optimal monetary policy largely based on the assumption of frictionless financial markets
 - "Standard New Keynesian model": Woodford (2003), Clarida, Gali and Gertler (1999), etc.
- Growing literature on the macroeconomic effects of financial frictions
 - "Financial accelerator" literature (Bernanke & Gertler, 1989; Bernanke, Gertler and Gilchrist, 1999): agency costs and the role of net worth
 - "Credit cycles" literature (Kiyotaki & Moore, 1997; lacoviello, 2005): collateral constraints and the role of asset price fluctuations
- Less attention devoted to the analysis of optimal monetary policy under frictional financial markets

 Analysis of optimal monetary policy in a New Keynesian model with financial frictions

- Analysis of optimal monetary policy in a New Keynesian model with financial frictions
- We focus on two types of financial frictions

- Analysis of optimal monetary policy in a New Keynesian model with financial frictions
- We focus on two types of financial frictions
 - Collateral constraints à la Kiyotaki-Moore (1997): borrowing restricted to expected liquidation value of collateralizable asset

- Analysis of optimal monetary policy in a New Keynesian model with financial frictions
- We focus on two types of financial frictions
 - Collateral constraints à la Kiyotaki-Moore (1997): borrowing restricted to expected liquidation value of collateralizable asset
 - Imperfect banking competition à la Salop (1979): spatial competition among banks ⇒ endogenous lending spreads

- Analysis of optimal monetary policy in a New Keynesian model with financial frictions
- We focus on two types of financial frictions
 - Collateral constraints à la Kiyotaki-Moore (1997): borrowing restricted to expected liquidation value of collateralizable asset
 - Imperfect banking competition à la Salop (1979): spatial competition among banks ⇒ endogenous lending spreads
- Interaction between both frictions potentially important:

- Analysis of optimal monetary policy in a New Keynesian model with financial frictions
- We focus on two types of financial frictions
 - Collateral constraints à la Kiyotaki-Moore (1997): borrowing restricted to expected liquidation value of collateralizable asset
 - Imperfect banking competition à la Salop (1979): spatial competition among banks ⇒ endogenous lending spreads
- Interaction between both frictions potentially important:
 - degree of amplification due to collateral constraints depends on degree of banking competition

- Analysis of optimal monetary policy in a New Keynesian model with financial frictions
- We focus on two types of financial frictions
 - Collateral constraints à la Kiyotaki-Moore (1997): borrowing restricted to expected liquidation value of collateralizable asset
 - Imperfect banking competition à la Salop (1979): spatial competition among banks ⇒ endogenous lending spreads
- Interaction between both frictions potentially important:
 - degree of amplification due to collateral constraints depends on degree of banking competition
 - lending spreads depend on stringency of collateral constraint and expected evolution of asset prices

Theoretical framework

- Two consumer types: households (patient/savers) and entrepreneurs (impatient/borrowers)
- Banks intermediate all credit flows between households and entrepreneurs; monopolistic competition on the loans side
- Entrepreneurs subject to collateral constraints. Commercial real estate as collateralizable asset
- Real estate used for production (entrepreneurs) and housing services (households)

 Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)

- Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)
- Central bank has four stabilization goals: inflation, output gap (both standard), plus:

- Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)
- Central bank has four stabilization goals: inflation, output gap (both standard), plus:
 - Consumption gap between households and entrepreneurs: collateral constraints ⇒ inefficient risk-sharing

- Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)
- Central bank has four stabilization goals: inflation, output gap (both standard), plus:
 - Consumption gap between households and entrepreneurs: collateral constraints ⇒ inefficient risk-sharing
 - Housing gap: distortion in the distribution of real estate, due to its role as collateral

- Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)
- Central bank has four stabilization goals: inflation, output gap (both standard), plus:
 - Consumption gap between households and entrepreneurs: collateral constraints ⇒ inefficient risk-sharing
 - Housing gap: distortion in the distribution of real estate, due to its role as collateral
- Short-run trade-off between all four goals (⇒ strict inflation or output-gap targeting are suboptimal)

- Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)
- Central bank has four stabilization goals: inflation, output gap (both standard), plus:
 - Consumption gap between households and entrepreneurs: collateral constraints ⇒ inefficient risk-sharing
 - Housing gap: distortion in the distribution of real estate, due to its role as collateral
- Short-run trade-off between all four goals (⇒ strict inflation or output-gap targeting are suboptimal)
- Optimal policy approximated reasonably well by simple targeting rule involving inflation and asset prices

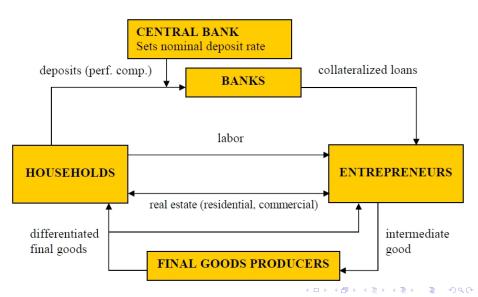
- Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)
- Central bank has four stabilization goals: inflation, output gap (both standard), plus:
 - Consumption gap between households and entrepreneurs: collateral constraints ⇒ inefficient risk-sharing
 - Housing gap: distortion in the distribution of real estate, due to its role as collateral
- Short-run trade-off between all four goals (⇒ strict inflation or output-gap targeting are suboptimal)
- Optimal policy approximated reasonably well by simple targeting rule involving inflation and asset prices
- Banking competition tends to worsen these trade-offs

- Linear-Quadratic (LQ) approach to optimal monetary policy analysis (Rotemberg & Woodford, 1997)
- Central bank has four stabilization goals: inflation, output gap (both standard), plus:
 - Consumption gap between households and entrepreneurs: collateral constraints ⇒ inefficient risk-sharing
 - Housing gap: distortion in the distribution of real estate, due to its role as collateral
- Short-run trade-off between all four goals (⇒ strict inflation or output-gap targeting are suboptimal)
- Optimal policy approximated reasonably well by simple targeting rule involving inflation and asset prices
- Banking competition tends to worsen these trade-offs
 - fall in lending spreads ⇒ increase in financial leveraging ⇒ greater amplification

Literature review

- Curdia and Woodford (2008): banks intermediate credit flows, but...
 - lending spread is an ad-hoc function of loan volume (origination and monitoring costs)
 - no collateral constraints: asset prices do not matter
- Monacelli (2007): Ramsey optimal monetary policy under collateral constraints; savers lend directly to borrowers
- De Fiore, Teles and Tristani (2009): optimal monetary policy with nominal, predetermined debt
- De Fiore and Tristani (2009): optimal monetary policy under costly state verification à la Bernanke-Gertler.

Model structure



Households

Mass $\omega < 1$ of identical households. Each household maximizes

$$E_0 \sum_{t=0}^{\infty} \beta^t \left(\log c_t - \frac{\left(I_t^s\right)^{1+\varphi}}{1+\varphi} + \vartheta_t \log h_t \right)$$

subject to (ignoring lump-sum transfers)

$$w_t I_t^s + rac{R_{t-1}^D d_{t-1}}{\pi_t} = c_t + p_t^h \left[\left(1 + au^h \right) h_t - h_{t-1} \right] + d_t,$$

 c_t : consumption, I_t^s : labor hours, h_t : residential property, p_t^h : real house price, d_t : real deposits, R_t^D : nominal deposit rate, π_t : gross inflation rate, τ^h : tax rate on housing purchases, $\log \vartheta_t \sim AR(1)$.

Entrepreneurs

Mass $1-\omega$ of identical entrepreneurs. Each entrepreneur maximizes

$$E_0 \sum_{t=0}^{\infty} (\beta^e)^t \left(\log c_t^e - \alpha d_t^i \right),$$

 $\beta^e < \beta$, subject to

$$egin{align} b_t + (1 - au^e) \left(p_t^I y_t - w_t I_t^d
ight) &= c_t^e + p_t^h (h_t^e - h_{t-1}^e) + rac{R_{t-1}^L b_{t-1}}{\pi_t}, \ y_t &= a_t \left(I_t^d
ight)^{1-
u} (h_{t-1}^e)^
u \,, \ b_t &\leq m_t E_t rac{\pi_{t+1}}{R_t^L} p_{t+1}^h h_t^e, \ \end{cases}$$

 d_t^i : distance to bank i, α : utility cost per unit distance, c_t^e : consumption, b_t : real debt, I_t^d : labor demand, R_t^L : nominal loan rate, h_t^e : commercial property, y_t : output, p_t^l : real price of intermediate good, τ^e : tax rate on entrepreneur profits, $\log a_t \sim AR(1)$, m_t : pledgeability_ratio_

Entrepreneurs (2)

FOCs wrt to c_t^e and h_t^e ,

$$\frac{1}{c_t^e} = \beta^e R_t^L E_t \left\{ \frac{1}{c_{t+1}^e \pi_{t+1}} \right\} + \xi_t,$$

$$\frac{p_t^h}{c_t^e} = E_t \frac{\beta^e}{c_{t+1}^e} \left\{ (1 - \tau^e) \, p_{t+1}^I \nu \frac{y_{t+1}}{h_t^e} + p_{t+1}^h \right\} + \xi_t m_t E_t \frac{\pi_{t+1}}{R_t^L} p_{t+1}^h,$$

 ξ_t : Lagrange multiplier on collateral constraint.

Assuming $\beta/\beta^e > R_{ss}^L/R_{ss}^D$, collateral constraint holds in SS and its neighborhood \Rightarrow entrepreneur consumes a constant fraction of her *real net worth*,

$$c_t^e = \left(1 - \beta^e\right) \left[\left(1 - \tau^e\right) p_t^I v y_t + p_t^h h_{t-1}^e - \frac{R_{t-1}^L b_{t-1}}{\pi_t} \right]$$

Banks

Bank $i \in \{1, 2, ..., n\}$ chooses $\{R_t^L(i)\}_{t=0}^{\infty}$ to maximize

$$E_0 \sum_{t=0}^{\infty} \left(\beta^t \frac{c_0}{c_t} \right) \frac{\Omega_t^i}{P_t}$$

subject to

$$\Omega_t(i) = \left(R_t^L(i) - R_t^D\right) B_{t-1}(i),$$

$$\frac{B_t(i)}{P_t} = b_t(i) \tilde{b}_t(i)$$

and the expressions for intensive business margin, $b_t(i)$, and extensive business margin or market share, $\tilde{b}_t(i)$. FOC,

$$R_t^L(i) = R_t^D + \frac{1}{\left(-\frac{\partial b_t(i)}{\partial R_t^L(i)}\right)\tilde{b}_t(i) + \left(-\frac{\partial \tilde{b}_t(i)}{\partial R_t^L(i)}\right)b_t(i)}.$$

Banks (2)

In a symmetric equilibrium $(R_t^L(i) = R_t^L \text{ for all } i)$,

$$R_t^L - R_t^D = rac{R_t^D - m_t E_t \left(\pi_{t+1} p_{t+1}^h / p_t^h\right)}{\eta m_t E_t \left(\pi_{t+1} p_{t+1}^h / p_t^h\right) - R_t^D} R_t^D,$$
 $\eta \equiv 1 + rac{n}{lpha} rac{eta^e}{1 - eta^e}.$

Spreads are:

- decreasing in pledgeability ratio, m_t , and expected inflation in property prices, $E_t\left(\pi_{t+1}p_{t+1}^h/p_t^h\right)$. (From borrowing constraint, $m_t E_t\left(\pi_{t+1}p_{t+1}^h/p_t^h\right) = b_t/\left(p_t^hh_t^e\right)$: loan-to-value ratio)
- increasing in deposit/policy rate, R_t^D .
- decreasing in number of banks (n) and increasing in utility cost (α) .

Final goods producers

Buy intermediate good at real price p_t^l , transform it one-for-one into differentiated final goods $\Rightarrow p_t^l = \text{retailers' real marginal cost.}$ Demand curve of each retailer $j \in [0,1]$,

$$y_t^f(j) = (P_t(j)/P_t)^{-\varepsilon} y_t^f$$
,

 ε : elasticity of subst. across varieties, y_t^f : aggregate demand of final goods. Set prices à la Calvo (1983). Optimal price decision \tilde{P}_t ,

$$E_{t} \sum_{T=t}^{\infty} \left(\beta \theta\right)^{T-t} \frac{c_{t}}{c_{T}} \left\{ \left(1+\tau\right) \frac{\tilde{P}_{t}}{P_{T}} - \frac{\varepsilon}{\varepsilon-1} p_{T}^{I} \right\} P_{T}^{\varepsilon} y_{T}^{f} = 0,$$

 θ : Calvo parameter, au: subsidy rate for retailers. Law of motion of price level,

$$P_t = \left[\theta P_{t-1}^{1-\varepsilon} + (1-\theta) \, \tilde{P}_t^{1-\varepsilon} \right]^{1/(1-\varepsilon)}.$$

Market clearing

All variables in per capita terms. Equilibrium in intermediate good market,

$$(1-\omega)y_t=\Delta_t y_t^f$$
 ,

 $\Delta_t \equiv \int_0^1 \left(P_t(j)/P_t \right)^{-\varepsilon} dj$: price dispersion in final goods. Equilibrium in final goods markets,

$$y_t^f = \omega c_t + (1 - \omega) c_t^e.$$

Equilibrium in labor market,

$$\omega I_t^s = (1 - \omega) I_t^d.$$

Equilibrium in real estate market,

$$\bar{h} = \omega h_t + (1 - \omega) h_t^e$$
.

Efficient equilibrium

Useful normative benchmark. Social planner solution characterized by

- **1** perfect risk sharing: $c_t = c_t^e$
- 2 constant labor hours: $I_t^s = I^{s,*}$
- distribution of real estate driven only by preference shocks:

$$\frac{h_t^{\rm e}}{h_t} = \frac{\beta \nu}{(1-\omega)\,\vartheta_t}$$

Optimal monetary policy

Linear-quadratic approach (Rotemberg & Woodford, 1997, Benigno & Woodford, 2008):

- Quadratic approximation of welfare criterion
- Linear approximation of equilibrium conditions

Clarifies stabilization goals and trade-offs among goals

Quadratic loss function

Assuming an efficient steady-state (implemented by τ , τ^e , τ^h), aggregate welfare can be approximated up to second order by

$$\sum_{t=0}^{\infty}\beta^{t}\left[\lambda_{\pi}\hat{\pi}_{t}^{2}+\lambda_{y}\left(\hat{y}_{t}-\hat{y}_{t}^{*}\right)^{2}+\lambda_{c}\left(\hat{c}_{t}-\hat{c}_{t}^{e}\right)^{2}+\lambda_{h}\left(\hat{h}_{t}-\hat{h}_{t}^{*}\right)^{2}\right],$$

where

$$\lambda_{\pi} \equiv \frac{\varepsilon \theta}{\left(1 - \theta\right) \left(1 - \beta \theta\right)}, \ \lambda_{y} \equiv \frac{1 + \varphi}{1 - \nu}, \ \lambda_{c} \equiv \omega \left(1 - \omega\right), \ \lambda_{h} \equiv \omega \vartheta \frac{\omega \vartheta + \beta \nu}{\beta \nu}$$

$$\hat{y}_t^* \equiv \hat{a}_t + \nu \hat{h}_{t-1}^e$$
 $\hat{h}_t^* \equiv \frac{\beta \nu}{\omega \vartheta + \beta \nu} \hat{\vartheta}_t^h$

Hats: log-deviations from SS

Quadratic loss function (2)

Four stabilization goals for monetary policy:

- Inflation (⇒ inefficient price dispersion)
- Output gap (⇒ inefficient fluctuations in labor hours)
- Consumption gap: inefficient risk-sharing between constrained and unconstrained consumers
- Housing gap: distortion in the distribution of the real estate stock (residential vs. commercial)
- (1) and (2) are standard in the New Keynesian model
- (3) and (4) are due to collateral constraints

Policy trade-offs

Log-linearized entrepreneur consumption,

$$\begin{split} \frac{\hat{c}_{t}^{e}}{1-\beta^{e}} &= \frac{\nu\left(\hat{p}_{t}^{l}+\hat{y}_{t}\right)}{1-\omega} - m\hat{m}_{t-1} \\ &+ \frac{p_{ss}^{h}h_{ss}^{e}}{c_{ss}^{e}} \left[\hat{p}_{t}^{h} - mE_{t-1}p_{t}^{h} + (1-m)\,\hat{h}_{t-1}^{e} + \hat{\pi}_{t} - E_{t-1}\hat{\pi}_{t}\right]. \end{split}$$

Endogenous determinants: entrepreneur profits $(\hat{p}_t^l + \hat{y}_t)$, inflation surprises $(\hat{\pi}_t - E_{t-1}\hat{\pi}_t)$, and real estate prices. Entrepreneur profits can be expressed as,

$$\hat{p}_t^I + \hat{y}_t = \left(\frac{1+arphi}{1-
u} + 1\right) \left(\hat{y}_t - \hat{y}_t^*\right) + \left(1-\omega\right) \left(\hat{c}_t^e - \hat{c}_t\right) + \hat{y}_t^*.$$

 \Rightarrow Closing consumption gap requires inefficient fluctuations in inflation and output (along with manipulation of real estate prices).

Calibration

	Value	Target	Description
β	0.993	$R_{ss}^{D}/\pi_{ss}=1.03$	household discount factor
eta^{e}	0.95	standard	entrepreneur discount factor
ν	0.05	$p_{ss}^h h_{ss}^e / (4y_{ss}) = 0.62$	elasticity of output wrt real estate
n, α	10, 6.32	$4(R_{ss}^L - R_{ss}^D) = 2.5\%$	number of banks, distance cost
ω	0.979	$ au^e = 0$	household share of population
m	0.85	standard	pledgeability ratio
ϑ	0.11	$p_{ss}^h h_{ss} / (4y_{ss}) = 1.40$	relative weight on housing utility
φ	2	$1/\varphi = 0.5$	(inverse of) labor supply elasticity
ε	6	$(1+\tau)/p_{ss}^{l}=1.20$	intratemporal elasticity of subst.
θ	0.67	$1/(1-\theta)=3$ qrts.	Calvo parameter
$ au^h$	0.012	efficient SS	tax rate on house purchases

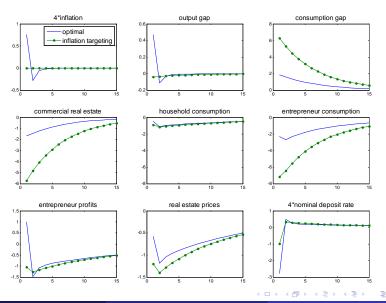
Normalized weights: $(\lambda_{\pi}, \lambda_{y}, \lambda_{c}, \lambda_{h}) = (0.909, 0.081, 0.001, 0.009).$

Impulse-response analysis

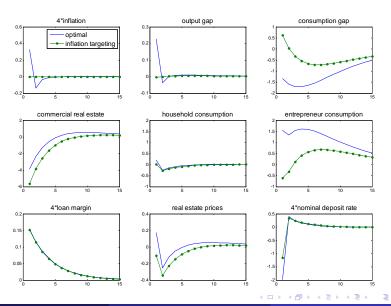
Compare the economy's response to shocks under

- Strict inflation targeting: $\hat{\pi}_t = 0$
- Optimal monetary policy: minimize $\sum_{t=0}^{\infty} \beta^t L_t$ subject to log-linear constraints

1% negative productivity shock



1% negative shock to pledgeability ratio (credit crunch)



Welfare analysis

Compute volatility of stabilization goals and average welfare losses under:

- Inflation targeting
- ullet Output gap targeting: $\hat{y}_t = \hat{y}_t^*$
- Optimal monetary policy
- Optimal simple rule,

$$\hat{\pi}_t + \zeta \left(\hat{p}_t^h - \hat{p}_{t-1}^h + E_t \hat{p}_{t+1}^h - \hat{p}_t^h \right) = 0.$$

Choose ζ that minimizes $E(L_t)$.

Welfare analysis: productivity shocks (std=1%)

Welfare loss
0.11
0.09
0.03
0.04

Note: standard deviations in %, welfare loss as a % of steady-state consumption

^{*} optimal weight: $\zeta=0.212$

Welfare analysis: credit-crunch shocks (std=1%)

Policy rule	$4\hat{\pi}_t$	$\hat{y}_t - \hat{y}_t^*$	$\hat{c}_t - \hat{c}_t^e$	$\hat{h}_t - \hat{h}_t^*$	Welfare loss
inflation targeting	0	0.01	2.19	3.37	0.04
output gap targeting	0.31	0	2.08	3.45	0.05
optimal policy	0.36	0.23	4.94	2.21	0.03
simple targeting rule*	0.31	0.11	2.85	2.98	0.04

Note: standard deviations in %, welfare loss as a % of steady-state consumption

^{*} optimal weight: $\zeta=0.262$

The effects of banking competition

- We want to isolate the effects of banking competition on monetary policy trade-offs.
- We repeat our exercises under the assumption of perfect banking competition ($\alpha = 0$, or $n \to \infty$).
 - \Rightarrow Loan rate R_{ss}^L falls from baseline to $R_{ss}^D = 1/\beta$.

Effects of banking competition: productivity shocks

Banking regime	$4\hat{\pi}_t$	$\hat{y}_t - \hat{y}_t^*$	$\hat{c}_t - \hat{c}_t^e$	$\hat{h}_t - \hat{h}_t^*$	Welfare loss	
Inflation targeting						
baseline calibration	0	0.08	11.67	4.73	0.11	
perfect competition	0	0.10	14.24	5.74	0.16	
Output gap targeting						
baseline calibration	0.85	0	9.79	3.97	0.09	
perfect competition	1.22	0	11.44	4.61	0.14	
Optimal policy						
baseline calibration	0.81	0.49	3.49	1.41	0.03	
perfect competition	0.90	0.54	3.27	1.32	0.04	
Simple targeting rule*						
baseline calibration	0.95	0.31	5.17	2.10	0.04	
perfect competition	1.12	0.35	5.33	2.15	0.05	

Note: standard deviations in %, welfare loss as a % of steady-state consumption * optimal weight: 0.212 (baseline) and 0.251 (perfect comp.)

Banking competition and financial leveraging

• Let $LR_t \equiv p_t^h h_t^e / \left(p_t^h h_t^e - b_t \right)$ be entrepreneurs' leverage ratio. In the steady state,

$$LR_{ss} = \frac{1}{1 - b_{ss} / (p_{ss}^h h_{ss}^e)} = \frac{1}{1 - m/R_{ss}^L}$$

Stronger banking competition $(\downarrow R_{ss}^L)$ raises financial leveraging.

Banking competition and financial leveraging

• Let $LR_t \equiv p_t^h h_t^e / (p_t^h h_t^e - b_t)$ be entrepreneurs' leverage ratio. In the steady state,

$$LR_{ss} = \frac{1}{1 - b_{ss} / (p_{ss}^h h_{ss}^e)} = \frac{1}{1 - m / R_{ss}^L}.$$

Stronger banking competition ($\downarrow R_{ss}^L$) raises financial leveraging.

Entrepreneur consumption,

$$\begin{split} \frac{\hat{c}_{t}^{e}}{1-\beta^{e}} &= \frac{\nu\left(\hat{p}_{t}^{I}+\hat{y}_{t}\right)}{1-\omega}-m\hat{m}_{t-1} \\ &+LR_{ss}\left[\hat{p}_{t}^{h}-mE_{t-1}p_{t}^{h}+\left(1-m\right)\hat{h}_{t-1}^{e}+\hat{\pi}_{t}-E_{t-1}\hat{\pi}_{t}\right]. \end{split}$$

The increase in LR_{ss} amplifies the effect of asset prices on the consumption and housing gaps.

Effects of banking competition: credit-crunch shocks

Banking regime	$4\hat{\pi}_t$	$\hat{y}_t - \hat{y}_t^*$	$\hat{c}_t - \hat{c}_t^e$	$\hat{h}_t - \hat{h}_t^*$	Welfare loss	
Inflation targeting						
baseline calibration	0	0.01	2.19	3.37	0.04	
perfect competition	0	0.02	2.63	3.33	0.04	
Output gap targeting						
baseline calibration	0.31	0	2.08	3.45	0.05	
perfect competition	0.42	0	2.41	3.45	0.05	
Optimal policy						
baseline calibration	0.36	0.23	4.94	2.21	0.03	
perfect competition	0.28	0.18	5.38	2.42	0.03	
Simple targeting rule*						
baseline calibration	0.31	0.11	2.85	2.98	0.04	
perfect competition	0.27	0.10	3.37	3.00	0.04	

Note: standard deviations in %, welfare loss as a % of steady-state consumption * optimal weight: 0.262 (baseline) and 0.226 (perfect comp.)

Effects of banking competition: summary

- Welfare loss increases conditional on productivity shocks, especially for suboptimal policy rules
- Virtually no effect conditional on credit crunch shocks:
 - amplifying role of counter-cyclical lending spreads disappears under perfect competition

Conclusions

- Optimal monetary policy analysis in a New Keynesian model with financial frictions (collateral constraints + imperfect banking competition)
- Optimal policy involves a trade-off between (1) inflation, (2) output-gap, (3) consumption risk sharing and (4) efficient distribution of real estate.
 - Case against strict inflation targeting
- Simple rule targeting a weighted average of inflation and asset price fluctuations performs relatively well
- Severity of trade-offs increases as the banking sector becomes more competitive (i.e. as lending spreads fall)
 - especially for suboptimal policy rules and conditional on productivity shocks