Endogenous Systemic Liquidity Risk

Jin Cao & Gerhard Illing

2nd IJCB Financial Stability Conference, Banco de España

June 17, 2010

Outline

Introduction

The myths of liquidity Summary of the paper

The Model

Agents and preferences Information and timing Baseline results

Endogenous Systemic Liquidity Risk

Aggregate risk Free-riding and systemic liquidity risk

Monetary Policy and Banking Regulation

Bail out policy and liquidity regulation Equity requirement

The myths of liquidity

Liquidity is the root of all evils.

- Financial markets: Notion of abundant liquidity;
 - The Economist, A fluid concept (Feb. 2007): "World's financial markets are awash with liquidity"
- However: Fear that liquidity may dry out suddenly (risk of fire sales);
- Liquidity squeeze may force central banks to ease policy again;
- However: Does expectation of such central bank reaction encourage excessive risk taking?
 - □ Over-investment in risky activities creates systemic risk?

Liquidity: Key to understanding monetary policy and banking regulation.

And, the controversies...

- Mervyn King, September 12, 2007
 - □ "The provision of large liquidity facilities penalises those financial institutions that sat out the dance, encourages herd behaviour and increases the intensity of future crises."
- Lawrence Summers, Financial Times, September 24, 2007
 - "Moral hazard fundamentalists misunderstand the insurance analogy"

Implication for banking regulation?

- The Economist, May 14, 2009
 - "There is no single big remedy for the banks' flaws. But better rules
 and more capital could help..."

Research questions. Our approach.

- Research questions:
 - □ Back to origin: What is liquidity? How is liquidity provided?
 - Monetary policy for financial stability, implication for banking regulation.
- This paper: An integrated approach towards banking regulation
 - □ Endogenized systemic liquidity risk in a bank run model;
 - □ Nominal contract and monetary policy;
 - Monetary policy and banking regulation;
 - □ Quantitative policy analysis for varieties of regulatory regimes, e.g. liquidity regulation, equity requirement, etc.

Structure of the model

Baseline model: Risk-neutral agents and real contracts

Investors

Unit endowment at t=0, can be stored or invested in projects Investors want to consume at t=1

Entrepreneur i, i = 1, 2

 $R_1>1$: Safe project, realized early at t=1 $R_2>R_1$: Risky project, may be delayed until t=2, with probability 1-p

Competitive Bankers

Technology: Expertise to collect $0 < \gamma < 1$ from projects' return

Fragile structure: Banks offer deposit contracts as commitment device not to abuse their collection skills

Information and timing

• $t=\frac{1}{2}$ is crucial: If investors anticipate to be paid less than d_0 at t=1, they run already at $t=\frac{1}{2}$ — first-come-first-serve rule — even early projects have to be liquidated.

Investors get deposit	Run		
contract d_0	Wait	Withdraw	
t = 0: p unknown	t = 0.5: p reveals	t = 1	t = 2
Banker a	·>	R_1	
decides $1-\alpha$	>	$oldsymbol{R_2}$ with	R_2 with
		prob. p	prob. $1-p$
		c	

Return maximization and liquidity trade

■ Bertrand competition in deposit market — Bankers maximize investors' return with all resources available at t=1: Liquidity trade between bankers and entrepreneurs, market cleared at interest rate r.

			Liquidity Trade
Entrepreneurs	Safe Projects>	$(1-\gamma)R_1$	
	Risky Projects>	$(1-\gamma)pR_2$	
t = 0	t = 0.5	t = 1	t=2
Banker \alpha	>	γR_1	
$1-\alpha$	>	γpR_2	$\gamma(1-p)R_2$

Baseline results

Market outcome is in line with the solution of the planner's problem when

■ **Deterministic** p: Banker i choose α_i to pay out d_0 to investors and refinance all late projects:

$$\alpha_i(p) = \frac{\gamma - p}{\gamma - p + (1 - \gamma)\frac{R_1}{R_2}} : p \uparrow \Rightarrow \alpha \downarrow$$

■ **Idiosyncratic risk:** As long as there are just idiosyncratic shocks, banks are always solvent via trade on the liquidity market:

$$\alpha_i(p) = \frac{\gamma - E[p]}{\gamma - E[p] + (1 - \gamma)\frac{R_1}{R_2}}$$

Aggregate risk: A stategic trade-off

- p takes two values: $0 \le p_L < p_H \le \gamma$ with probability π for the lucky state with p_H .
- Planner's problem: Trade-off for the bankers
 - $\alpha(p_H)$ maximizes banks' return at p_H but banks will be unable to pay out high return at p_L so banks will be run at $t=\frac{1}{2}$ and can just pay return c:

• However: Market outcome deviates for intermediate π .

Free-riding, equilibrium of mixed strategies

- Opportunity for free-riding liquidity provision at mid- π
 In state p_H, early entrepreneurs provide excess liquidity supply;
 Profitable free-riding: Setting α = 0 and trade liquidity at t = 1 by its
 - □ Though run in state p_L .

high return from late projects;

- Equilibrium? Mixed strategies (cf. Allen & Gale, 2004)
 - □ More free-riding banks become free-riders with $\alpha = 0$, interest rate r_H bid higher;
 - □ The prudent banks reduce $\alpha_s < \alpha(p_L)$, to cut down the opportunity cost of investing in safe projects;
 - \Box Ex ante probability θ of being free-rider: Determined by aggregate market clearing conditions in both states.

Free-riding and inferior solution

Investors' expected return

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Nominal contracts and cash-in-market pricing LMU

- What can central bank do? How does central bank intervention affect the outcome?
 - Inefficiencies:
 - Inferior mixed strategy equilibrium, and
 - Costly bank run.
 - □ Nominal deposits allow central bank to implement state contingent payoffs as a public good: Injection of additional liquidity
 - To prevent bank runs;
 - To eliminate free-riding.
- Cash-in-the-market principle (Allen & Gale, 2004): Price level determined by the ratio of market liquidity (sum of money and real goods) to real goods.

Liquidity requirement & conditional bail out

• Via open market operation, central bank injects paper money to the banks whose $\alpha \geq \underline{\alpha}$, filling in liquidity shortage.

Risk-taking and welfare improvement

Investors' expected return

Dynamic inconsistency problem

In a systemic crisis, conditional liquidity support (the commitment not to provide liquidity to free-riders) is not credible! — Dynamic inconsistency problem.

- Illiquidity problem: Free-riding banks have sufficient "good collaterals"; so
- Always ex post optimal to bail out free-riders.
- Prudent banks driven out whenever there is unconditional liquidity supply! — Bagehot Rule not sufficient!
- Surprising result: Moral hazard arises even in an economy with pure illiquidity risk.

Equity requirement: Introducing equity

- Equity requirement: Banks required to hold some equity level k in their assets.
 - □ Introducing equity: Banks issue a mixture of deposit contract and equity for the investors in T=0:
 - \Box Equity holders can only get a share of $\zeta = \frac{1}{2}$ from the surplus

$$\to k = \frac{\frac{\gamma E[R_{s,i}] - d_{0,i}}{2}}{\frac{\gamma E[R_{s,i}] - d_{0,i}}{2} + d_{0,i}} \Rightarrow d_{0,i} = \frac{1 - k}{1 + k} \gamma E[R_{s,i}].$$

Optimal level of k? Intuition: Holding equity is costly for the banks, therefore k should make banks just stay solvent in the bad state ("narrow banking")

$$\underbrace{\frac{1-k}{1+k}\gamma E[R_H]}_{\text{deposit contract}} = \underbrace{\alpha\left(p_H\right)R_1 + \left(1-\alpha\left(p_H\right)\right)p_LR_2}_{\text{real resource in bad state}}.$$

Does capital requirement help?

• Outcome: Equity requirement versus laissez-faire.

Intuition: More equity helps absorb losses in bad time. But: Costly in good time.

Does equity requirement help? (cont'd)

Equity requirement dominated by credible monetary policy. Still: Equity holding is costly.

Conclusion

Key	find	lings
,		-ري

- Endogenized liquidity risk: Free-riding incentive and coordinative failure:
- Inefficiencies of banking: Inferior mixed strategy equilibrium and costly bank run;
- Nominal contract and its impact on the equilibrium: Central bank improves allocation by targeted liquidity injection. But: Dynamic inconsistency problem!
- □ Equity requirements: Stability gain at a cost; dominated by credible bail out policy;
- □ Stricter regulation and supervisory reform.

Future research:

□ Illiquidity versus insolvency. Preliminary results: Cao (2009).