Insulation Impossible: Fiscal Spillovers in a Monetary Union

Russell Cooper* Hubert Kempf** Dan Peled***

*European University Institute and University of Texas at Austin

**Banque de France and Paris School of Economics

***University of Haifa

February 2010
Outline

1. Motivation
2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds
3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results
4. Market Segmentation
5. Conclusion
Outline

1. Motivation

2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds

3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results

4. Market Segmentation

5. Conclusion
Outline

1. Motivation

2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds

3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results

4. Market Segmentation

5. Conclusion
Outline

1. Motivation
2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds
3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results
4. Market Segmentation
5. Conclusion
Outline

1 Motivation

2 Model
 • Non-binding Reserve Requirement
 • Reserve Requirement Binds

3 Insulating Region 2 from Region 1 Fiscal Policy
 • Special Policies
 • Two General Results

4 Market Segmentation

5 Conclusion
Outline

1 Motivation

2 Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds

3 Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results

4 Market Segmentation

5 Conclusion
Figure: Our World View
World View

- federations of regions (countries, states)
- regional fiscal policy: financing of transfers to regional agents
- central tax authority (Treasury)
- central monetary authority (CB)

Effects of Interdependence

- gain: trade and factor reallocation enhanced
- loss: policy spillovers
 - policy coordination
 - policy segmentation: insulation
World View

- federations of regions (countries, states)
- regional fiscal policy: financing of transfers to regional agents
- central tax authority (Treasury)
- central monetary authority (CB)

Effects of Interdependence

- gain: trade and factor reallocation enhanced
- loss: policy spillovers
 - policy coordination
 - policy segmentation: insulation
World View

- federations of regions (countries, states)
- regional fiscal policy: financing of transfers to regional agents
- central tax authority (Treasury)
- central monetary authority (CB)

Effects of Interdependence

- gain: trade and factor reallocation enhanced
- loss: policy spillovers
 - policy coordination
 - policy segmentation: insulation
Example: Who Pays Regional Debt Obligations?

- regional government want to spread obligations
- who will provide the bailout?
 - by Treasury (Cooper, Kempf and Peled, *IER*)
 - by CB

Rationale for CB Bailout

- “Weak CB” prints money to finance debt obligations of regional government (Cooper and Kempf, *REStud*)
- tax and consumption smoothing motivates CB bail-out (multiplicity)
- CB rules may accommodate bail-out by linking policy to endogenous variables
Example: Who Pays Regional Debt Obligations?

- regional government want to spread obligations
- who will provide the bailout?
 - by Treasury (Cooper, Kempf and Peled, *IER*)
 - by CB

Rationale for CB Bailout

- “Weak CB” prints money to finance debt obligations of regional government (Cooper and Kempf, *RESTud*)
- tax and consumption smoothing motivates CB bail-out (multiplicity)
- CB rules may accommodate bail-out by linking policy to endogenous variables
Example: Who Pays Regional Debt Obligations?

- Regional government want to spread obligations
- Who will provide the bailout?
 - by Treasury (Cooper, Kempf and Peled, *IER*)
 - by CB

Rationale for CB Bailout

- “Weak CB” prints money to finance debt obligations of regional government (Cooper and Kempf, *RESTud*)
- Tax and consumption smoothing motivates CB bail-out (multiplicity)
- CB rules may accommodate bail-out by linking policy to endogenous variables
Example: Who Pays Regional Debt Obligations?

- regional government want to spread obligations
- who will provide the bailout?
 - by Treasury (Cooper, Kempf and Peled, *IER*)
 - by CB

Rationale for CB Bailout

- “Weak CB” prints money to finance debt obligations of regional government (Cooper and Kempf, *REStud*)
- tax and consumption smoothing motivates CB bail-out (multiplicity)
- CB rules may accommodate bail-out by linking policy to endogenous variables
Two perspectives on CB policy rules

- **Policy response**: monetary policy may accommodate regional fiscal policy:
- **(fiscal spillovers)**: monetary policy acts to offset (eliminate) fiscal policy effects on wages and interest rates
- Both perspectives co-exist here
Figure: ECB

ECB
Monetary Policy Rules

Regional Government
- Spending/transfers
- Issues debt
- Regional taxes

Regional Government
- Spending/transfers
- Issues debt
- Regional taxes

markets
Questions

- How effective is CB policy in insulating one country from another?
 - How does CB policy influence fiscal spillovers across regions?
 - Are there CB policies which will insulate one region from the fiscal policy of another?

Find

- Insulation Impossible
- CB influence through both interest rates and monetary transfers used to implement monetary policy
Questions

- how effective is CB policy in insulating one country from another?
 - how does CB policy influence fiscal spillovers across regions?
 - are there CB policies which will insulate one region from the fiscal policy of another?

Find

- Insulation Impossible
- CB influence through both interest rates and monetary transfers used to implement monetary policy
Questions

- how effective is CB policy in insulating one country from another?
 - how does CB policy influence fiscal spillovers across regions?
 - are there CB policies which will insulate one region from the fiscal policy of another?

Find

- Insulation Impossible
- CB influence through both interest rates and monetary transfers used to implement monetary policy
Study Using

- two-period, two-region Diamond OG model: money, capital and bonds
- interactions between regional government’s fiscal policy and (CB)
- reserve requirements generate money demand
- focus on steady state monetary equilibria; potentially interesting dynamics
- integrated capital markets
- no crises *per se* but mechanisms are relevant during these periods as well.
fiscal spillovers iff reserve requirements bind (non-Ricardian)

- regional debt \(\Rightarrow\) aggregate capital stock
- aggregate capital \(\Rightarrow\) real wages and interest rates
- CB may be induced to respond

CB rules

- abstract feedback rule
- fixed nominal money growth: no policy response
- interest peg: policy response through inflation tax, insulation from interest rate part of fiscal spillover
• fiscal spillovers iff reserve requirements bind (non-Ricardian)
 • regional debt \Rightarrow aggregate capital stock
 • aggregate capital \Rightarrow real wages and interest rates
 • CB may be induced to respond

• CB rules
 • abstract feedback rule
 • fixed nominal money growth: no policy response
 • interest peg: policy response through inflation tax, insulation from interest rate part of fiscal spillover
Outline

1. Motivation

2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds

3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results

4. Market Segmentation

5. Conclusion
Overview

- Agents
 - Households
 - Firms
 - Intermediaries
 - Governments

- friction through reserve requirements
 - difference between return on household saving and government debt
 - Ricardian equivalence is lost
 - fiscal spillovers emerge
 - choice of CB policy matters
Households

- HH in region \(i = 1, 2 \) solves

\[
\max_s u(c^i_y) + v(c^i_o) \tag{1}
\]

where \(c^i_y = \omega + g^i - \tau^i_y - s \) and \(c^i_o = sR - \tau^i_o \).

- tax is \(\tau^i_j, i = 1, 2 \) and \(j = y, o \).

- deposit \(s^i \) in intermediaries, return of \(R \)

- do not demand money

- \(u'(c^i_y) = Rv'(c^i_o) \)
Firms

- CRS, perfect competition
- $\omega = f(k) - kf'(k)$
- $r = f'(k)$
Intermediaries

- reserve requirement of λ on deposits (S)
- $\frac{M}{p} = \lambda S$ and $b + k = (1 - \lambda)S$
- Return on deposits linked to asset portfolio by:

$$R = r(k)(1 - \lambda) + \frac{\lambda}{\pi} \tag{2}$$

- r is return on capital and bonds
- construct equilibria with $r > R$ when constraint binds as $\lambda > 0$
Regional Governments

- only region 1 is fiscally active
- transfer $g^1 > 0$ to young agents (broadly defined)
- financed by taxes τ_y^1 and τ_o^1
- Budget Constraint (steady state)
 - $g^1 = \tau_y^1 + B^1$
 - $rB^1 = \tau_o^1 + T^1$: one-period debt
 - $0 = \tau_o^2 + T^2$ in region 2
 - $T^i = \frac{\phi^i \times T(k,b)}{\eta^i}$: real transfer from the CB to each agent in region i
- B^1 is per region 1 agent, b is per capita
• monetary policy through transfers: \((T(k, b), \phi^1, \phi^2) \)
• real transfers financed by printing money
• commit to \(T(k, b) \), prior to fiscal policy of regional government
• transfers to regional governments implement policies
• special rules
 • \(\sigma \text{ – rule: fix the money growth rate} \)
 • \(R \text{ – rule: peg an interest rate} \)
Steady State

- \((T(k, b), \phi^1, \phi^2)\) and \(b\) given
- \(k\) determined in steady state equilibrium satisfying:
 - Household Euler Equations: \(u'(c^i_y) = Rv'(c^i_o)\)
 - Intermediary Zero Profits
 - factor demand: \(r(k) = f'(k)\) and \(\omega(k) = f(k) - kf'(k)\)
 - Regional Government Budget Constraints
 - market clearing conditions
Benchmark: Non-binding Reserve Requirement

- all assets earn same return: \(r = \frac{1}{\pi} \) so \(R = r \)
- Ricardian outcome: fiscal policy of Region 1 is irrelevant

Proposition If \(T_b(k, b) \equiv 0 \), then the steady state equilibrium is independent of \(b \).

- but the CB can create spillovers directly:

Proposition If \(T_b(k, b) \neq 0 \), then the steady state equilibrium depends upon \(b \).
Benchmark: Non-binding Reserve Requirement

- all assets earn same return: $r = \frac{1}{\pi}$ so $R = r$
- Ricardian outcome: fiscal policy of Region 1 is irrelevant

Proposition If $T_b(k, b) \equiv 0$, then the steady state equilibrium is independent of b.

- but the CB can create spillovers directly:

Proposition If $T_b(k, b) \neq 0$, then the steady state equilibrium depends upon b.
Binding Reserve Requirement: General $T(k, b)$

- $r > R$
- **Proposition** [Non-neutrality] *For* $T(k, b) \equiv 0$, *the steady state equilibrium is dependent on* b.

- variations in b influence k and hence factor prices and thus welfare in other region
- Characterize the Spillovers with more structure
Binding Reserve Requirement: General $T(k, b)$

- $r > R$
- **Proposition** [Non-neutrality] *For $T(k, b) \equiv 0$, the steady state equilibrium is dependent on b.*
 - variations in b influence k and hence factor prices and thus welfare in other region
 - Characterize the Spillovers with more structure
Leading Case

Local Stability of the steady state and crowding out with $b^H > b^L$.
Characterizing the Spillovers

- Capital dynamics are given by:

\[k_{t+1} = (1 - \lambda) \sum_i \eta_i s_i^i(\omega(k_t), R(k_{t+1}, b), \tau_y^i, \tau_o^i(k_{t+1}, b)) - b. \]

- \(s_i^i(\omega, R, \tau_y^i, \tau_o^i) \) is the savings function for a region \(i \) agent given factor prices and taxes.
- \(\tau_o^1(k, b) = \frac{rb}{\eta_1^1} - T^1(k, b), \quad \tau_o^2(k, b) = -T^2(k, b). \)

- Local dynamics are governed by:

\[\frac{dk_{t+1}}{dk_t} = \frac{(1 - \lambda) \sum_i \eta_i s_i^i \omega'(k_t)}{1 - (1 - \lambda)[\sum_i \eta_i (s_i^i R_k(k_{t+1}, b) + s_i^i \frac{\partial \tau_i^o(k_{t+1}, b)}{\partial k})]} . \]
Crowding Out

- response of k to region 1 debt per capita, b

\[
\frac{dk}{db} = \frac{-[1 - (1 - \lambda) \sum_i \eta^i \left(s^i_{\tau_y} \frac{d\tau^i_y}{db} + s^i_{\tau_o} \frac{d\tau^i_o}{db} + s^i_R R_b(k, b) \right)]}{1 - (1 - \lambda) \left[\sum_i \eta^i s^i_R R_k(k, b) + s^i_{\omega} \omega'(k) + s^i_{\tau_o} \frac{\partial \tau^i_o(k, b)}{\partial k} \right]}.
\]

- **Proposition** [crowding out] If $\frac{dk_{t+1}}{dk_t} \in (0, 1)$ at the steady state and $T_b(k, b) \geq 0$, then $\frac{dk}{db} < 0$.

- Region 2 agents not insulated from region 1 fiscal policy
Outline

1. Motivation

2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds

3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results

4. Market Segmentation

5. Conclusion
CB Policy

- here we see spillovers and crowding out
- how does the choice of $T(k, b)$ influence these spillovers
- answer
 - through some illuminating special cases
 - in general
Fiscal Spillovers and a $\sigma - rule$

- Transfers proportional to money stock

$$T(k, b) = \lambda S \frac{(\sigma - 1)}{\sigma} = \frac{\lambda(k + b)}{(1 - \lambda)} \tilde{\sigma}$$

(3)

where $\tilde{\sigma} \equiv \frac{\sigma - 1}{\sigma}$

- **Corollary** Under a $\sigma - rule$ with $\tilde{\sigma} \geq 0$, an increase in b leads to a reduction in the capital stock, an increase in the real interest rate and a reduction in the real wage.

- crowding out effect

- real transfers are influenced by b.

- region 2 agents affected by b.
Fiscal Spillovers and a $R \rightarrow$ rule

- $\text{fix } R = r(k)(1 - \lambda) + \frac{\lambda}{\sigma}$

- **Corollary** Under a $R \rightarrow$ rule pegging R, if $\tilde{\sigma} \geq 0$, an increase in b leads to a reduction in the capital stock and an increase in the rate of inflation.

- crowding out increases R

- CB inflates to peg it.

- Region 2 agents are insulated from both R and inflation tax: $u'(\omega(k) - s^2) = Rv'(s^2R)$

- wages depend on k
Insulation Impossible

- Can the CB neutralize the effects of region 1 debt on region 2 agents?
 Proposition: There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption of region 2 agents, (c_2^y, c_2^o), are independent of b.

- Are the equilibrium levels of consumption and k independent of b?
 Proposition: There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption for agents in regions $i = 1, 2$ and the capital stock are independent of b.
Insulation Impossible

- Can the CB neutralize the effects of region 1 debt on region 2 agents?

Proposition: There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption of region 2 agents, (c^2_y, c^2_o), are independent of b.

- Are the equilibrium levels of consumption and k independent of b?

Proposition: There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption for agents in regions $i = 1, 2$ and the capital stock are independent of b.
Insulation Impossible

• Can the CB neutralize the effects of region 1 debt on region 2 agents?

Proposition: *There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption of region 2 agents, (c^2_y, c^2_o), are independent of b.*

• Are the equilibrium levels of consumption and k independent of b?

Proposition: *There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption for agents in regions $i = 1, 2$ and the capital stock are independent of b.*
Insulation Impossible

- Can the CB neutralize the effects of region 1 debt on region 2 agents?
 Proposition: There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption of region 2 agents, (c_y^2, c_o^2), are independent of b.

- Are the equilibrium levels of consumption and k independent of b?
 Proposition: There do not exist $T^i(k, b)$ transfer functions, for $i = 1, 2$, such that the steady state equilibrium levels of consumption for agents in regions $i = 1, 2$ and the capital stock are independent of b.
Outline

1. Motivation

2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds

3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results

4. Market Segmentation

5. Conclusion
Financial Market Segmentation

- understand robustness of insulation to portfolio
- Region 1 agents have access to intermediaries
- Region 2 agents only hold money: \(u'(\omega(k) - s^2) = \frac{1}{\pi} v'(\frac{s^2}{\pi}) \)
- Find:
 - \(\sigma - rule \): limits fiscal spillovers across regions to wages.
 Return for region 2 agents is fixed with money growth rate.
 - \(R - rule \): CB response leads to inflation tax on region 2 agents
Outline

1. Motivation

2. Model
 - Non-binding Reserve Requirement
 - Reserve Requirement Binds

3. Insulating Region 2 from Region 1 Fiscal Policy
 - Special Policies
 - Two General Results

4. Market Segmentation

5. Conclusion
CB policy matters

- can influence impact of spillovers from regional fiscal policy
- policy rules may partially insulate region 2 agents from inflation tax
- key is portfolio return relative to peg

To Do

- optimal CB policy and optimal choice of regional debt b
- other special CB rules
- are fiscal restrictions useful?
- OMOs vs money transfers
CB policy matters

- can influence impact of spillovers from regional fiscal policy
- policy rules may partially insulate region 2 agents from inflation tax
- key is portfolio return relative to peg

To Do

- optimal CB policy and optimal choice of regional debt b
- other special CB rules
- are fiscal restrictions useful?
- OMOs vs money transfers