On the International Dimension of Fiscal Policy

Gianluca Benigno and Bianca De Paoli

London School of Economics and Bank of England

February 2010

- How should fiscal policy be conducted in an open economy?
 - Is the prescription different than the case of closed economies?

- How should fiscal policy be conducted in an open economy?
 - Is the prescription different than the case of closed economies?
- What is the optimal level of tax smoothing?
 - Does the answer depend on the optimal level of exchange rate volatility?

- How should fiscal policy be conducted in an open economy?
 - Is the prescription different than the case of closed economies?
- What is the optimal level of tax smoothing?
 - Does the answer depend on the optimal level of exchange rate volatility?
- From a positive perspective, transmission mechanism of fiscal shocks might depend on exchange rate fluctuations.

Motivation (2):

Complementing the literature

- Neoclassical literature on optimal fiscal policy has focused mainly on closed economy models
 - when taxes are distortionary, taxes should be smoothed over time and across states of nature
 - If possible, taxes would be essentially invariant (see Lucas and Stokey, 1983 and Chari, Christiano and Kehoe, 1991) or would follow a random walk (see Barro, 1979, Aiyagari et al. 2002).

Motivation (2):

Complementing the literature

- Neoclassical literature on optimal fiscal policy has focused mainly on closed economy models
 - when taxes are distortionary, taxes should be smoothed over time and across states of nature
 - If possible, taxes would be essentially invariant (see Lucas and Stokey, 1983 and Chari, Christiano and Kehoe, 1991) or would follow a random walk (see Barro, 1979, Aiyagari et al. 2002).
- Open economy models have concentrated in the analysis of monetary policy
 - Obstfeld and Rogoff (2002), Gali and Monacelli (2005) isomorphism result between optimal policy in open and closed economy
 - Corsetti&Pesenti (2001)/Benigno&Benigno (2003)/De Paoli (2008)-presence of terms of trade externality eliminates the result

Motivation (2):

Complementing the literature

- Neoclassical literature on optimal fiscal policy has focused mainly on closed economy models
 - when taxes are distortionary, taxes should be smoothed over time and across states of nature
 - If possible, taxes would be essentially invariant (see Lucas and Stokey, 1983 and Chari, Christiano and Kehoe, 1991) or would follow a random walk (see Barro, 1979, Aiyagari et al. 2002).
- Open economy models have concentrated in the analysis of monetary policy
 - Obstfeld and Rogoff (2002), Gali and Monacelli (2005) isomorphism result between optimal policy in open and closed economy
 - Corsetti&Pesenti (2001)/Benigno&Benigno (2003)/De Paoli (2008)-presence of terms of trade externality eliminates the result
- Bridging the gap...

Approach

- Theoretical, normative analysis of fiscal policy
- Formalize a small open economy with endogenous fiscal policy
- Characterize a utility based loss function each specification
- Derive the optimal fiscal policy (also look at the planner's problem)
- Analyse the implication for tax and exchange rate volatility

Anticipating the results

. .

- Our analysis shows that in a small open economy optimal policy departs from tax smoothing.
- As emphasised in the optimal monetary policy literature policymakers in open economies are influenced by a "terms of trade externality".
 - E.g. In an open economy that is a monopolist producer of its own goods, a real exchange rate appreciation can lead to higher welfare by allowing domestic agents to consume more for lower levels of domestic production.
 - Thus, policymakers have an incentive to use fiscal policy to exploit this externality.
 - As a result, distortionary taxes vary over time and across states of nature.
- When we consider the joint fiscal and monetary policy problem, there is a trade-off between price stability and tax-smoothing that arises from the terms of trade externality. Quantitatively cost of inflation are high and optimal inflation volatility is low.

The Model:

overview

- 2-country DSGE model \Rightarrow small open economy
- Home bias ⇒ deviations from PPP
- Monopolistic competition and nominal rigidities a la Calvo ⇒ Role for monetary policy
- Preferences ⇒ allow for trade imbalances
- Fiscal authority issues nominal debt and set income taxes (extension includes the case of indexed linked debt)
- Stochastic environment: domestic and foreign productivity shocks, markup and fiscal shocks

Preferences

Utility (country H – measure n)

$$U_t = E_t \sum_{s=t}^{\infty} \beta^{s-t} \left[U(C_s) - V \left(y(h)_s, \varepsilon_{Y,s} \right) \right]$$

$$U_t = E_t \sum_{s=t}^{\infty} \beta^{s-t} \left[\log C_s - \frac{1}{n} \int_0^n \frac{\varepsilon_{Y,s}^{-\eta} y(h)_s^{1+\eta}}{1+\eta} \right]$$

Home bias (Sutherland 2001)

$$C = \left[v^{rac{1}{ heta}} C_H^{rac{ heta-1}{ heta}} + (1-v)^{rac{1}{ heta}} C_F^{rac{ heta-1}{ heta-1}}
ight]^{rac{ heta}{ heta-1}}$$

$$(1-v)=(1-n)\lambda$$
 and $v^*=n\lambda$

$$C_{H} = \left[\left(\frac{1}{n} \right)^{\frac{1}{\sigma}} \int_{0}^{n} c \left(z \right)^{\frac{\sigma - 1}{\sigma}} dz \right]^{\frac{\sigma}{\sigma - 1}}$$

Relative prices and demand

Law of one price: $p(z) = S \cdot p^*(z)$. Home bias \Rightarrow PPP does not hold: $Q_t \equiv S_t P_t^*/P_t$ SOE demand

$$y_{t}\left(h\right) = \left(\frac{p_{t}\left(h\right)}{P_{H,t}}\right)^{-\sigma} \left(\frac{P_{H,t}}{P_{t}}\right)^{-\theta} \left(\left(1 - \lambda\right) C_{t} + \lambda \left(\frac{1}{Q_{t}}\right) C_{t}^{*}\right)$$

RoW demand

$$y_t(f) = \left(\frac{p_t^*(f)}{P_t^*}\right)^{-\sigma} C_t^*$$

Asset markets

Complete markets

$$\frac{U_{C}\left(C_{t+1}^{*}\right)}{U_{C}\left(C_{t}^{*}\right)} = \frac{U_{C}\left(C_{t+1}\right)}{U_{C}\left(C_{t}\right)} \frac{Q_{t+1}}{Q_{t}}$$

Fiscal Policy

Government issues one period nominal risk free bonds expressed in local currency units, collects taxes and faces exogenous expenditure streams. Government debt D_t^n , expressed in nominal terms, follows the law of motion:

$$D_t^n = D_{t-1}^n (1 + i_{t-1}) - P_{H,t} s_t$$

where s_t is the real primary budget surplus:

$$s_t \equiv \tau_t Y_t - G_t - Tr_t$$

The case real bonds:

$$D_t^r = D_{t-1}^r (1 + i_{t-1}^r) + \frac{P_{H,t}}{P_t} s_t$$
 (1)

Monopolistic competitive firms

Firms' behavior (flexible prices)
Set prices as a markup over marginal costs

$$p_{H,t} = \frac{\sigma m u_t}{(1 - \tau_t)(\sigma - 1)} \frac{V_y\left(Y_t, \varepsilon_{Y,t}\right)}{U_c(C_T)}$$

Social planner vs. competitive allocation

Understanding the policy incentive:

 Planner problem (maximizes agents' utility subject to resourse constraint and complete markets assumption):

$$p_{H,t}U_c(C_t) = Q(RS_t)V_y(Y_t, \varepsilon_{Y,t})$$

Competitive equilibrium:

$$p_{H,t}U_c(C_t) = \frac{\sigma m u_t}{(1 - \tau_t)(\sigma - 1)} V_y(Y_t, \varepsilon_{Y,t})$$

Efficiency condition

$$rac{\sigma m u_t}{(1- au_t)(\sigma-1)}Q(\mathit{RS}_t)=1$$

 Movements in the tax rate, in the real exchange rate, and markup shocks generate inefficiencies (i.e. competitive equilibrium departs from planner's problem)

Social planner vs. competitive allocation (2)

Efficiency condition

$$rac{\sigma m u_t}{(1- au_t)(\sigma-1)}Q(\mathit{RS}_t)=1$$

Closed economy

$$\frac{\sigma m u_t}{(1-\tau_t)(\sigma-1)} = 1$$

Tax smoothing is optimal when there are no markup shocks

• Steady state tax subsidy eliminates steady-state distortion

$$ar{ au} = -rac{1}{\sigma - 1}$$

(assuming $\overline{mu} = 1$)

- Open economy tax smoothing no longer optimal
- Steady state optimal tax depends on degree of openness and substitutability between goods

 $ar{Q}(\lambda,
ho, heta)$

Understanding the ToT externality

- $\theta
 ho > 1$: real exchange rate appreciation (or ToT improvement) increases welfare/ reduces loss
- Substitute goods: appreciation decreases C_H but increases C_F -reduction in U(C) smaller than in V(Y)
- Complement goods: appreciation cannot divert consumption towards foreign goods (decrease in C_H accompanied by decrease in C_F)
- $\theta \rho < 1$: depreciation improve welfare \Rightarrow leads to higher C_H that increases marginal utility of C_F : $U(C) \uparrow > V(Y) \uparrow$
- Externality only eliminated only when the economy is closed ($\lambda=0$) or when $\theta \rho=1$ in this case marginal utility of \mathcal{C}_H independent of \mathcal{C}_F , and vice-versa

Linear Quadratic Approach:

- Efficiency condition can pin down the optimal level of taxes in the case of nominal bonds
 - \Rightarrow Set taxes to eliminate difference between social planner and competitive equilibrium
 - \Rightarrow Government solvency condition satisfied given inflation can replicate state contingent debt
- But in the case of real bonds this is not the case
- Have to solve system of non-linear equations
- Linear quadratic loss function can also help policy implementation

Linear Quadratic Approach:

Loss function

- Agent´s Utility ⇒ Welfare metric
- Method of Benigno&Woodford (2003), Sutherland (2002)

$$\min \ \ U_c \bar{\zeta} E_{t_0} \sum \beta^t \left[\frac{1}{2} \Phi_\tau (\widehat{\boldsymbol{\tau}}_t - \widehat{\boldsymbol{\tau}}_t^T)^2 + \frac{1}{2} \Phi_{RS} \widehat{\mathit{rs}}_t^2 \right] + t.i.p + O(||\xi||^3),$$

Closed economy

$$\min \ \ U_c \bar{C} E_{t_0} \sum \beta^t \left[\frac{1}{2} \Phi_\tau (\widehat{\tau}_t - \widehat{\tau}_t^T)^2 \right] + t.i.p + O(||\xi||^3),$$

- ullet Open economy: $\Phi_{RS} \hat{rs}_t^2$ arises given the terms of trade externality
- Corsetti and Pesenti (2001): improvements in ToT ⇒ allow larger consumption for a given level of labour effort (or domestic production)

The case of nominal debt

Optimal targeting rule

$$\Phi_{RS}\widehat{rs}_t + \frac{(1+I)}{\rho(1-\lambda)}\Phi_{\tau}(\widehat{\tau}_t - \widehat{\tau}_t^{T'}) = 0.$$

Closed economy:

$$\widehat{\tau}_t - \widehat{\tau}_t^{T'} = 0.$$

Taxes are constant when $\widehat{\tau}_t^{T'}=0 \Rightarrow$ when there are no markup shocks and the steady state is efficient

Closed economy with nominal debt

With Markup Shocks

Open economy with nominal debt

Open economy with nominal debt (efficient steady state and no markup shocks)

Open economy with real debt (efficient steady state and no markup shocks)

Optimal Policy: Sticky prices targeting rules

Firms set prices following partial adjustment rule a la Calvo Loss function now depends also on domestic producer inflation General forms of targeting rules

$$\begin{split} \left[\frac{(1+l)\Phi_{y}}{(1-\lambda)\rho}\right]\Delta\widehat{y}_{t} + \Phi_{RS}\Delta\widehat{rs}_{t} + \left[\frac{k\Phi_{\pi}}{(1-\overline{\tau}) + bd_{ss}k}\right](\gamma\widehat{\pi}_{t}^{H} + d_{ss}(a+1)\widehat{\pi}_{t-1}^{H}) = 0 \\ E_{t}\widehat{\pi}_{t+1}^{H} = 0, \end{split}$$

Optimal Policy: Sticky prices targeting rules

Concluding remarks

- Simple framework for fiscal policy in open economy
- ullet Normative analysis: Fiscal policy problem in an open economy eq closed economy
 - ullet Optimal tax variability in an open economy eq closed economy
 - ullet Optimal steady state tax in an open economy eq closed economy
- Reason: incentive to use taxes to affect the terms of trade
- Fiscal policy efficiency depends on the type of debt.