Fiscal Multipliers and the Labour Market in the Open Economy

Ester Faia*, Wolfgang Lechthaler**, Christian Merkl***

* Goethe University Frankfurt, Kiel IfW and CEPREMAP, ** Kiel IfW, *** Kiel IfW and CAU

February 2010
Bank of Spain conference on "Interaction between monetary and fiscal policies"
Fiscal interventions in times of crisis

- Romer and Berensten optimistic estimates of fiscal multipliers for US
- Less favorable scenarios in NK models: Cogan, Cwik, Taylor and Wieland 2009, Cwik and Wieland 2009
- Negative multipliers with distortionary taxation in RBC models: Uhlig 2009
- When monetary policy is at zero lower bound fiscal policy becomes effective: Christiano, Eichenbaum and Rebelo 2009
Does raising unemployment call for fiscal expansion?

- Previous studies have neglected unemployment
- Despite that many fiscal interventions are directed toward the labour market
- Measures directed toward labour market institutions have short run and long run effects
- Open economy spillovers and free-riding on foreign fiscal expansions
Our analysis

- Currency area model with labour turnover costs (hiring and firing costs), workers’ heterogeneity, right to manage bargaining
- Consider: *pure demand stimulus, consumption tax cut, income tax cut, hiring subsidies, short-time work* (German "Kurzarbeit")
- Compute short run and long run output and employment multipliers
Our results

- Multipliers are:
  1. Nearly zero for cuts in the consumption tax,
  2. Small but positive for government spending
  3. Large for hiring subsidies and cuts in the income tax (for the latter only in the long-run)
  4. Extension of short-time work (kurzarbeit) delivers negative output multipliers: reduces productivity

- We find small spillover effects

- Results are confirmed under: a) announced versus unannounced policies, b) recession scenario.
Model features

- Standard open economy assumptions
- Operating cost of firm/workers relation: follow logistic distribution
- Hiring and Firing cost
- Sticky prices
- Right to manage bargaining
- Timing of events: operating costs realizes, the median insider bargains the wage, firms determine hiring and firing threshold
Domestic economy: household

- **Utility function:**

  \[ U_t = \sum_{j=t}^{\infty} \beta^{j-t} E_t \frac{c_j^{1-\sigma}}{1-\sigma}, \]

- **Budget constraint:**

  \[
  (1 + \tau^c_t)c_t + \frac{b^*_t}{p_t} \leq (1 - \tau^n_t)w_t(1 - u_t) + ubu_t + (1 - \tau^p_t)\frac{\Pi_{a,t}}{p_t} \\
  - \frac{\tau_t}{p_t} + (1 + i^*_t)\frac{b^*_{t-1}}{p_t}.
  \]

- **Open economy relations:**

  \[
  \frac{p_t}{p_{h,t}} = [(1 - \alpha) + \alpha s_t^{1-\eta}]^{\frac{1}{1-\eta}} \equiv g(s_t),
  \]
The labor market: hiring and firing

- Firms’ profits:

\[ \tilde{\Pi}_{l,t}(\varepsilon_t) = (1 - \tau_t^p)(a_t mc_t - w_t g(s_t) - \varepsilon_t) + E_t(\Delta_{t,t+1} \tilde{\Pi}_{l,t+1}(\varepsilon_{t+1})) \]

where:

\[ E_t(\tilde{\Pi}_{l,t+1}(\varepsilon_{t+1})) = E_t \left\{ \left(1 - \phi_{t+1}\right)(a_{t+1} mc_{t+1} - w_{t+1} - a_{t+1} E_t(\varepsilon_{t+1}) \left| 1 - \phi_{t+1}\right) - \phi_{t+1} a_{t+1} f_{t+1} + E_{t+1}(\Delta_{t,t+1}(1 - \phi_{t+1}) \tilde{\Pi}_{l,t+2}) \right\} \]

- Hiring and firing conditions:

\[ (1 - \tau_t^p) h_t = (1 - \tau_t^p)(a_t mc_t - w_t g(s_t) - v_{h,t}) + E_t(\Delta_{t,t+1} \tilde{\Pi}_{l,t+1}(\varepsilon_{t+1}) \right) \]

\[ -f_t (1 - \tau_t^p) = (1 - \tau_t^p)(a_t mc_t - g(s_t) w_t - v_{f,t}) + E_t(\Delta_{t,t+1} \tilde{\Pi}_{l,t+1}(\varepsilon_{t+1})) \]
The labor market: wage determination

- Under bargaining agreement, the insider receives the real wage $w_t$ and the firm receives the expected profit $(1 - \tau^p_t) (a_t mc_t - g(s_t) w_t)$.
- Under disagreement, the insider’s fallback income is $g(s_t) ub_t$.
- The firm’s fallback profit is zero as during disagreement there is no production.

Assuming that disagreement in the current period does not affect future surpluses, workers’ surplus is $(1 - \tau^n_t) g(s_t) w_t - g(s_t) ub_t$ while the firm’s surplus is $(1 - \tau^p_t) (a'_t mc_t - g(s_t) w_t - \varepsilon'_t) + s$ where $\varepsilon'_t$ are the operating costs of the median insider.

Consequently, the Nash-wage is:

$$w_t = \frac{\gamma}{g(s_t)} \left( a_t mc_t - \varepsilon'_t + \frac{s}{1 - \tau^p_t} \right) + (1 - \gamma) \frac{ub}{1 - \tau^n_t}.$$
Phillips curve and resource constraint

**Phillips curve**

\[
0 = (1 - \varepsilon) \beta c_t^{-\sigma} + \varepsilon \beta c_t^{-\sigma} mc_t - \beta c_t^{-\sigma} \Psi (\pi_t - \bar{\pi}) \pi_t \\
+ \beta E_t \{ c_{t+1}^{-\sigma} \Psi (\pi_{t+1} - \bar{\pi}) \frac{y_{t+1}}{y_t} \pi_{t+1} \}.
\]

Resource constraint:

\[
c_t = y_t - n_t \phi f_t a_t -(1-n_t) \eta_t h_t -(1-\phi_t) n_t \Xi^i_t -
\]

\[
(1-n_t) \eta_t \Xi^e_t - \frac{\Psi}{2} (\pi_t - \bar{\pi})^2 y_t
\]
Euro area monetary policy:

\[ i_t = \exp \left( \frac{1 - \chi}{\beta} \right) \left( V_H \pi_t + V_F \pi_t^* \right)^{b_\pi} \]
Fiscal regimes

\[ g_t + ubu_t - \tau_t + (1 + r^n_{t-1})b_{t-1} - \tau_t^c(c_{h,t} + c_{f,t}) - \tilde{\Pi}_{a,t}\tau_p^t \]
\[ = \tau^n_tw_tn_t + b_t. \]

1. **A pure demand stimulus and tax cuts:**

\[ \frac{g_t}{g} = \left(\frac{g_{t-1}}{g}\right)^{\rho_g} + \varepsilon_t^g, \quad \frac{\tau^n_t}{\tau^n} = \left(\frac{\tau^n_{t-1}}{\tau^n}\right)^{\rho_{\tau^n}} + \varepsilon_t^{\tau^n} \]

2. **Hiring subsidies:**

\[ (1 - \tau^p_t)(h_t - hs_t) \]
\[ = (1 - \tau^p_t)(a_tmc_t - wtg(s_t) - v_{h,t}) + E_t(\Delta_{t,t+1}\tilde{\Pi}_{l,t+1}(\varepsilon_{t+1})) \]

3. **Short-time work** ("Kurzarbeit" in Germany): firm is allowed to reduce the working time of this worker by a share \((1 - \Upsilon)\), which is set by the government

\[ \frac{\Upsilon_t}{\Upsilon} = \left(\frac{\Upsilon_{t-1}}{\Upsilon}\right)^{\rho_{\Upsilon}} + \varepsilon_t^{\Upsilon}. \]
Fiscal multipliers: pure demand stimuli

Figure: Model comparison
Overview of fiscal multipliers

Table: Summary of fiscal multipliers and spillovers across countries for different fiscal packages.

<table>
<thead>
<tr>
<th></th>
<th>Demand</th>
<th>VAT cut</th>
<th>Inc. tax cut</th>
<th>Hiring subs.</th>
<th>STW</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, short-run</td>
<td>0.23</td>
<td>0.01</td>
<td>0.50</td>
<td>1.85</td>
<td>-0.76</td>
</tr>
<tr>
<td>H, long-run</td>
<td>0.31</td>
<td>0.00</td>
<td>1.62</td>
<td>4.83</td>
<td>1.04</td>
</tr>
<tr>
<td>F, short-run</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.13</td>
<td>0.53</td>
<td>0.20</td>
</tr>
<tr>
<td>F, long-run</td>
<td>0.04</td>
<td>0.01</td>
<td>0.06</td>
<td>0.27</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Overview of fiscal multipliers

Figure: Employment and output effects for different programmes (all normalised to 0.5% of GDP)
Announcement effect

Figure: Response of output under four fiscal packages (pure demand stimulus, income tax cut, hiring subsidy and short time work). Announced (dashed line) versus announced (solid line) policy.
Starting from a recession scenario

Figure:
Response of output under four fiscal packages (pure demand stimulus, income tax cut, hiring subsidy and short time work) and starting from a recession scenario. Case with fiscal intervention (dashed line) versus case with no fiscal intervention (solid line).

Ester Faia*, Wolfgang Lechthaler**, Christian Merkl (Kiel IfW) Fiscal Multipliers and the Labour Market in the Open Economy February 2010 Bank of Spain conference on “Interaction between monetary and fiscal policies” 17/18
Conclusions

- Measures directed toward reducing labour market distortions are associated with large multipliers
- Mixed results emerge under an extension of short-time work
- Novel dimension through which fiscal stimuli can operate, namely a supply side channel that boosts labour demand