Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Central bank's two-way communication with the public and inflation dynamics

Kosuke Aoki¹ Takeshi Kimura²

¹LSE

²Bank of Japan

26th February 2008

Kosuke Aoki, Takeshi Kimura

- Introduction
- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Motivation: Two-way communication between central bank and markets

- CB communicates to markets the future course of monetary policy
- Markets provide CB with information about aggregate state of the economy.
- Prices depend on market participants' view on future monetary policy — perceived inflation target.
- How does observability/credibility of IT affect this two-way communication?

Kosuke Aoki, Takeshi Kimura

- Introduction
- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

What we do

- Island economy where inflation target may not be observable to agents
- When IT observable, information about the state of the economy revealed to CB.
- When not observable, there are two equilibria
 - The same equilibrium as above
 - Equilibrium in which information revelation becomes less perfect.
 - Inflation becomes persistent.
 - Inflation becomes volatile because CB fails to estimate economic shocks accurately
- Information revealed to CB endogenously determined by policy
- Two-way communication is complementary

Kosuke Aoki, Takeshi Kimura

Introduction

- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Related Literature

- Literature on transparency (Morris and Shin ('02), Svensson, Eusepi and Preston)
 - Imperfect common knowledge and strategic interaction among agents
- MP under data uncertainty (Orphanides '01, '02, '03, Svensson-Woodford '03, Aoki '03)
 - Data uncertainty is taken as given
- Imperfect credibility (Erceg-Levin, '03)
 - Consider private-sector uncertainty. CB has perfect information
- Excess sensitivity of long rates in non-IT countries (Gurkaynak, Sack, Swanson, '05, Gurkaynak, Levin, Swanson, '06)

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Inflation targeting and information revelation intuition

Suppose nominal interest rate r_t increases

- Two possibilities ($r_t = \bar{r}_t + E_t \pi_{t+1}$)
 - inflation expectations increased
 - natural rate increased
- When CB uncertain about perceived IT, CB cannot distinguish those two.

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Structural Equation

Information

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural Equations

୬ <u>୦</u> ୦ 6/45

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Structural Equation

Information

Observable $\bar{\pi}$

- Unobservable $\bar{\pi}$
- Implications
- Conclusion

Appendix

Outline of the model

A simple model of inflation determination in an island economy

- stochastic endowment and flexible prices
- each island produces island-specific goods
- agents consume only a subset of goods
- assets: Lucas tree and nominal bond
- Monetary policy follows a simple rule (No optimisation. Focus on filtering and equilibrium)
- Information dispersed

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Structural Equation
- Information
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Model

- ▶ Continuum of island $i \in [0, 1]$
- ln island i,
 - Lucas tree with measure 1. Produces $y_t(i)$.
 - y_t(i) is stochastic (supply shock).
- nominal bond (zero net supply)

Kosuke Aoki, Takeshi Kimura

Introduction

- Model
- Structural Equation
- Information
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Preferences

Agent in island i (agent i) maximises

with the Cobb-Douglas aggregator

$$C_t^i = \frac{1}{n} \prod_{j \in J_i} C^i(j)^{1/n}.$$

(2)

(1)

- E_t^i : conditional on agent *i*'s info.
- *J_i*: consumption basket of agent *i*.
 Contains *n* goods.

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Structural Equation

Information

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Optimisation

► Agent *i* chooses consumption $C_t^i(j)$, holdings of trees $S_t^i(j)$, $j \in J_i$, and holdings of nominal bond B_t^i to maximise utility subject to:

budget constraint

=

$$\sum_{j \in J_i} p(j)c^i(j) + \sum_{j \in J_i} \underbrace{S_{t+1}^i(j)}_{\text{tree}} q_t(j) + \underbrace{B_{t+1}^i}_{\text{bond}}$$
$$= \sum_{j \in J_i} S_t^i(j) [q_t(j) + p_t(j)y_t(j)] + R_t B_t^i \equiv \underbrace{W_t^i}_{\text{total wealth}}$$
(3)

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Structural Equation

Information

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Linearised model

Linearised IS

$$r_t = E_t^i \pi_{t+1}(i) + \bar{r}_t(i), \tag{4}$$

where

$$\bar{r}_{t}(i) \equiv E_{t}^{i} [y_{t+1}(i) - y_{t}(i)] \equiv E_{t}^{i} \Delta y_{t+1}(i)$$
 (5)

represents the natural interest rate for island *i*.

Asset price

$$\Delta q_t = \pi_t(i) + \Delta y_t(i), \quad \forall i, \tag{6}$$

where $\Delta q_t \equiv \log(Q_{t+1}/Q_t)$.

IS equation can be written as

$$r_t = E_t^i \Delta q_{t+1}, \quad \forall i.$$

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Structural Equation
- Information
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Assumptions

Output in each island consists of aggregate and idiosyncratic components:

$$\mathbf{y}_t(i) = \mathbf{y}_t + \boldsymbol{\varepsilon}_t(i). \tag{8}$$

- ► *y_t*: aggregate supply shock; *i.i.d.* normal
- $\varepsilon_t(i)$: idiosyncratic supply shock in island *i*.
- *i.i.d.* normal across islands and across time, so that $\int_{0}^{1} \varepsilon_t(i) di = 0.$
- Then we have

$$y_t = \int_0^1 y_t(i) di, \quad \pi_t = \int_0^1 \pi_t(i) di.$$

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Structural Equation
- Information
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Monetary policy

► CB follows a simple rule:

$$r_t = \phi(E_t^c \pi_t - \bar{\pi}_t) + \bar{\pi}_t + E_t^c \bar{r}_t, \quad \phi > 1, \quad (9)$$

- $\bar{\pi}_t$: inflation target
 - $\bar{\pi}_t \equiv \bar{\pi} + e_t$
 - $\bar{\pi}$: long-run inflation target
 - e_t : transitory deviation from $\bar{\pi}$; *i.i.d* normal
- $E_t^c \pi_t$: estimate of aggregate inflation
- $E_t^c \bar{r}_t$: estimate of the aggregate natural rate

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Structural Equation

Information

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Information set of agent *i*

Agent observes

- prices and quantities of goods he consumes
- interest rate r_t and asset price q_t
- $E_t^c \pi_t$ (this implies $E_t^c \bar{r}_t$ observable)
- Agent may not observe $\bar{\pi}$ and e_t separately

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Structural Equation

Information

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Information set of CB

 Bank visits *m* islands and constructs noisy data on aggregate output and prices

$$y_t^o \equiv \frac{1}{m} \sum_{i \in J_c} y_t(i) = y_t + \varepsilon_t^o$$

r_t and *q_t*: observable

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Benchmark: When $\bar{\pi}$ is observable Information fully revealed to CB and agents

 From IS and monetary policy rule, equilibrium is given by

$$\pi_t = \bar{\pi} + (1 - \phi^{-1})e_t.$$

- CB fully offsets the effects of \bar{r}_t on π_t
- Inflation expectations anchored by $\bar{\pi}$
- By looking at Δq_t, CB can identify y_t even if y_t not directly observable.
- This is because

$$\Delta q_t = \pi_t + \Delta y_t$$

$$\Delta q_t - \bar{\pi} - (1 - \phi^{-1})e_t = \Delta y_t$$

Two-way communication works well

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Fully-revealing Partially revealing Equilibrium Given Belief PS Filtering CB Filtering Inflation Dynamics

Conclusion

Appendix

Equilibrium under unobservable $\bar{\pi}$

୬ < ୍ 17/45

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Fully-revealing Partially revealing Equilibrium Given Belief PS Filtering CB Filtering

Inflation

Dynamics

Implications

Conclusion

Appendix

Fully-revealing is one of the equilibria

Equilibrium is given by

$$\pi_t = \bar{\pi} + (1 - \phi^{-1})e_t.$$

- By looking at Δq_t, CB can identify y_t even if y_t not directly observable.
- Now agents also can identify \$\overline{\pi}\$ even if it is not directly observable

$$\Delta q_t - \Delta y_t = -\bar{\pi} + (1 - \phi^{-1})e_t$$
$$\bar{\pi}_t = \bar{\pi} + e_t$$

▶ But this is not the unique equilibrium even if $\phi > 1$

Kosuke Aoki, Takeshi Kimura

Introduction

- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Fully-revealing
- Partially revealing Equilibrium Given Belief PS Filtering CB Filtering Inflation
- Dynamics
- Implications
- Conclusion
- Appendix

Partially revealing equilibrium

- There is an equilibrium in which:
 - $\bar{\pi}$ is not revealed to agents immediately
 - yt is not revealed to CB immediately.
- Multiple equilibria even if the Taylor principle is satisfied
- Two-way communication does not work well

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

```
Unobservable \bar{\pi}
```

```
Fully-revealing
Partially
revealing
Equilibrium
Given Belief
PS Filtering
CB Filtering
Inflation
Dynamics
```

- Implications
- Conclusion

Appendix

Equilibrium given belief

From IS and monetary policy rule,

$$\pi_{t} = \bar{\pi} + (1 - \phi^{-1})e_{t} + \phi^{-1}(\tilde{\pi}_{t} - \bar{\pi}) + \phi^{-1}(E_{t}^{c}\tilde{\pi}_{t} - \tilde{\pi}_{t}) + (E_{t}^{c}\Delta y_{t} - \Delta y_{t}).$$
(10)

- $\tilde{\pi}_t$: perceived target
- $\tilde{\pi}_t \bar{\pi}$: PA estimation error of IT
- $E_t^c \tilde{\pi}_t \tilde{\pi}_t$: CB estimation error of perceived IT
- $E_t^c \Delta y_t \Delta y_t$: CB estimation error of Δy_t
- 2nd order belief matters

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$ Fully-revealing Partially revealing Equilibrium Given Belief **PS Filtering** Inflation Dynamics

Implications

Conclusion

Appendix

Private-sector filtering

Observation equation identical to all agents:

$$\bar{\pi}_t = \bar{\pi} + e_t$$

- Consider the case in which the initial perceived target identical for all agents
 - Perceived inflation target after t observations:

$$\tilde{\pi}_t - \bar{\pi} = b_t (\tilde{\pi}_{t-1} - \bar{\pi}) + (1 - b_t) e_t, \quad (11)$$

- $b_t \rightarrow 1$ as $t \rightarrow \infty$
- Agents eventually learn $\bar{\pi}$

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Fully-revealing Partially revealing

Equilibrium Given Belief

PS Filtering

CB Filtering

Dynamics

Implications

Conclusion

Appendix

CB-filtering about y_t and $\tilde{\pi}_t$

- Endogenous variables are determined simultaneously with CB filtering. Solve by the method of undetermined coefficients.
- Estimated perceived inflation target

$$E_{t}^{c}\tilde{\pi}_{t} - \tilde{\pi}_{t} = d_{t}b_{t}\left(E_{t-1}^{c}\tilde{\pi}_{t-1} - \tilde{\pi}_{t-1}\right) + (1 - d_{t})\frac{a_{t}}{B_{t}}(y_{t}^{o} - y_{t}). \quad (12)$$

Estimated output

$$y_{t} - E_{t}^{c} y_{t} = d_{t} \frac{B_{t}}{B_{t-1}} \left(y_{t-1} - E_{t-1}^{c} y_{t-1} \right) - (1 - d_{t})(y_{t}^{o} - y_{t}), \quad (13)$$

• B_t , d_t : time-varying deterministic coefficients

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Fully-revealing Partially revealing Equilibrium Given Belief PS Filtering CB Filtering

Inflation Dynamics

Implications

Conclusion

Appendix

Summary of Equilibrium

Equilibrium is given by

Τ

$$\pi_{t} = \bar{\pi} + (1 - \phi^{-1})e_{t} + \phi^{-1}(\tilde{\pi}_{t} - \bar{\pi}) + \phi^{-1}(E_{t}^{c}\tilde{\pi}_{t} - \tilde{\pi}_{t}) + (E_{t}^{c}\Delta y_{t} - \Delta y_{t}).$$
(14)

- Inflation fluctuations due to miscommunication
 - Private-sector uncertainty about IT
 - CB uncertainty about perceived IT and aggregate output (natural rate)
 - Both learning has recursive representation

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Implications: Endogenous data uncertainty and inflation dynamics

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Information revelation

- To central bank
 - y_t and $\tilde{\pi}_t$ not revealed immediately
 - Estimation error of perceived IT and aggregate output closely related:

$$\Xi_t^c \tilde{\pi}_t - \tilde{\pi}_t = -\frac{a_t}{B_t} \left(E_t^c y_t - y_t \right).$$
 (15)

To agents

• $\bar{\pi}$ is not revealed immediately.

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Inflation dynamics

Inflation is persistent and volatile

- persistence: recursive nature of learning.
- volatility:
 - volatile inflation expectations due to uncertain IT
 - policy mistakes due to unobservability of the natural rate

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Unobservable $\bar{\pi}$ and data uncertainty

- Unobservable inflation target creates uncertainty about perceived inflation target
- ► → identification of shocks difficult. → source of natural rate mis-measurement
- this causes policy mistakes, generating inflation volatility and persistence.

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Policy implications

- Two-way communication is complementary
- If monetary policy becomes credible, CB uncertainty becomes smaller.

Kosuke Aoki, Takeshi Kimura

- Introduction
- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix

Time-varying stochastic process of inflation

Our model implies

- $\pi_t \rightarrow \bar{\pi} + (1 \phi^{-1})e_t$ as $t \rightarrow \infty$.
- π_t becomes less persistent over time
- π_t becomes less volatile over time
- Consistent with Benati ('08, QJE)
- Changes in stochastic process due to changes in expectations — Bernanke (2004)'s view on Great Moderation

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Summary

Two-way communication is complementary

 Mis-measurement of the states of the economy endogenously determined

 Change in stochastic process of inflation driven by changes in expectations

Future work

add real effects of monetary policy

heterogeneity in perceived inflation target

yield curve analysis

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

APPENDIX

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Optimisation

Consumption for each good

$$P_t(j)C_t^i(j) = \frac{1}{n}P_t^i C_t^i, \quad P_t^i \equiv \prod_{j \in J_i} P_t(j)^{1/n}, \quad (16)$$

Euler equation for bond

$$\frac{1}{C_t^i} = \beta E_t^i \left[\frac{1}{C_{t+1}^i} R_t \frac{P_t^i}{P_{t+1}^i} \right], \qquad (17)$$

• Euler equation for tree: for all $j \in J_i$,

$$\frac{1}{C_t^i} = \beta E_t^i \left[\frac{1}{C_{t+1}^i} \frac{Q_{t+1}(j) + P_{t+1}(j)Y_{t+1}(j)}{Q_t(j)} \right]$$
(18)

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Market equilibrium

Market for each tree

$$\sum_{j \in I_i} S_t^j(i) = 1 \quad \text{for each } i, t \tag{19}$$

Market for bond

 $\int_0^1 B_t^i dt = 0 \tag{20}$

Market for each good

$$P_t(i)Y_t(i) = \sum_{j \in I_i} \frac{1}{n} P_t^j C_t^j \quad \forall i, t.$$
 (21)

 I_i : set of islands that consume good produced in *i*.

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Equilibrium prices

relative price of good i and j

$$\frac{P_t(i)}{P_t(j)} = \frac{Y_t(j)}{Y_t(i)},$$

price of tree i

$$Q_t(i) = \frac{\beta}{1-\beta} P_t(i) Y_t(i)$$
(23)

► (22) and (23) imply $Q_t(i) = Q_t(j)$, $\forall i, j$. Portfolio decision is indeterminate as long as it satisfies

$$\sum_{j \in I_i} S_t^j(i) = 1 \tag{24}$$

Kosuke Aoki, Takeshi Kimura

Introduction

- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Expectational IS equation

▶ BC, (22) and (24) imply that

$$P_t^i C_t^i = P_t(i) Y_t(i).$$
(25)

Substituting (25) into the Euler equation (17), we obtain

$$E_{t}^{i}\beta\left[\frac{P_{t}(i)Y_{t}(i)}{P_{t+1}(i)Y_{t+1}(i)}\right]R_{t} = 1.$$
 (IS)

Equation (IS) represents the expectational IS equation for island *i*.

Kosuke Aoki, Takeshi Kimura

Introduction

Model

- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix
- Structural equations
- Numerical example
- Equilibrium and CB Filtering
- Equilibrium Properties

Stochastic simulation

- Each simulation generates inflation of 50 periods
- Split to the first and second 25 periods
- Compute 1st order serial correlation and standard deviation
- 1000 replication

Kosuke Aoki, Takeshi Kimura

Introduction

- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix
- Structural equations
- Numerical example
- Equilibrium and CB Filtering
- Equilibrium Properties

Calibration

- $\bar{\pi} = 2\%$
- $\tilde{\pi}_{-1} = 10\%$: Kozicki and Tinsley ('01)
- ► $E_{-1}^c \tilde{\pi}_{-1} = 12\%$: within the difference in the empirical estimates of perceived target

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Time-varying persistence and volatility of inflation under imperfect two-way communication

	А	В	С	D
$\bar{\pi}$	2	2	2	2
$\tilde{\pi}_{-1}$	10	20	10	10
Ŷu	1	1	1	4
γ_{ε^o}	1.26	1.26	1.26	1.26
φ	1.5	1.5	1.3	1.5
τ_{-1}^{p}	1	1	1	1
τ_{-1}^{c}	1	1	1	1
$E_{-1}^{c} \tilde{\pi}_{-1}$	12	12	12	12
$\rho_1(\pi_t)$	0.30	0.67	0.48	0.21
$\rho_2(\pi_t)$	-0.020	0.030	0.026	-0.028
$\sigma_1(\pi_t)$	0.89	1.36	1.20	0.42
$\sigma_2(\pi_t)$	0.68	0.70	0.82	0.34

A: Benchmark; B: higher perceived target; C: less aggressive MP; D: smaller MP shock

Persistence and volatility become smaller over time

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Time-varying persistence and volatility of inflation under imperfect two-way communication

	E	F	G	Н
$\bar{\pi}$	2	2	2	2
$\tilde{\pi}_{-1}$	10	10	10	10
Υu	1	1	1	1
$\gamma_{arepsilon^o}$	0.32	1.26	1.26	1.26
ϕ	1.5	1.5	1.5	1.5
τ_{-1}^{p}	1	10	1	1
τ_{-1}^{c}	1	1	10	1
$E_{-1}^{c} \tilde{\pi}_{-1}$	12	12	12	14
$\rho_1(\pi_t)$	0.34	0.38	0.35	0.36
$\rho_2(\pi_t)$	-0.020	0.08	-0.021	-0.012
$\sigma_1(\pi_t)$	0.91	0.91	0.92	0.94
$\sigma_2(\pi_t)$	0.68	0.71	0.68	0.69

E: large measurement error; F: stubborn agents' belief;

G: stubborn CB belief; H: imprecise CB estimate of perceived target

Kosuke Aoki, Takeshi Kimura

- Introduction
- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix
- Structural equations Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

CB-filtering about perceived IT

Constructing observation equations

Evolution of perceived IT

$$\tilde{\pi}_t = a_t \tilde{\pi}_{-1} + (1 - a_t) \left(\frac{1}{t} \sum_{s=1}^t \bar{\pi}_s \right),$$

• equilibrium Δq_t

IS

$$\Delta q_t = (1 - \phi^{-1})\bar{\pi}_t + \phi^{-1}E_t^c\tilde{\pi}_t + E_t^c\Delta y_t.$$

$$r_t = E_t^i \Delta q_{t+1}$$

Noisy output data

$$y_t^o = y_t + \varepsilon_t^o$$

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Observation equation

From those equation, we obtain

$$X_{t} = (a_{t} - \phi^{-1}a_{t+1}) \tilde{\pi}_{-1} + \phi^{-1}a_{t+1}E_{t}^{i}E_{t+1}^{c}\tilde{\pi}_{-1} + E_{t}^{i}E_{t+1}^{c}\Delta y_{t+1},$$

• where X_t is observable to CB:

$$X \equiv r_t - (1 - a_t) \frac{1}{t} \sum_{s=0}^t \bar{\pi}_s$$

- $E_t^i E_{t+1}^c \tilde{\pi}_{-1}$ and $E_t^i E_{t+1}^c \Delta y_{t+1}$ are determined simultaneously with filtering
- Solve by the method of undetermined coefficients

Kosuke Aoki, Takeshi Kimura

- Introduction
- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix
- Structural equations Numerical
- example
- Equilibrium and CB Filtering
- Equilibrium Properties

Equilibrium and CB filtering (1)

Guess:

$$A_t X_t = -y_t + B_t \tilde{\pi}_{-1} + C_t E_{t-1|c} \tilde{\pi}_{-1} + D_t y_t^o$$
, (guess)

 A_t , B_t , C_t , D_t to be determined jointly with Kalman filtering about y_t and $\tilde{\pi}_{-1}$.

• B_t represents the effects of initial perceived target $(\tilde{\pi}_{-1})$ on current equilibrium

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations Numerical

example

Equilibrium and CB Filtering

Equilibrium Properties

Equilibrium and CB filtering (2)

- Derive Kalman filter based on (guess), and substitute it back to (guess).
- Then solve for A_t , B_t , C_t , D_t .
- ► Then B_t satisfies

$$B_t = -(B_{t+1} - B_t + \phi^{-1}a_{t+1})d_{t+1} + a_t$$

2

where

$$d_{t} \equiv \frac{\frac{B_{t-1}^{2}}{B_{t}^{2}}\tau_{t-1}^{c}}{\frac{B_{t-1}^{2}}{B_{t}^{2}}\tau_{t-1}^{c} + \gamma_{\varepsilon^{o}}}$$
$$\tau_{t}^{c} = \frac{B_{t-1}^{2}}{B_{t}^{2}}\tau_{t-1}^{c} + \gamma_{\varepsilon^{o}}.$$

• Once B_t is determined, A_t , C_t , D_t are determined.

43/45

Kosuke Aoki, Takeshi Kimura

- Introduction
- Model
- Observable $\bar{\pi}$
- Unobservable $\bar{\pi}$
- Implications
- Conclusion
- Appendix
- Structural equations
- Numerical example
- Equilibrium and CB Filtering

Equilibrium Properties

Equilibrium properties (1)

- Simultaneity of equilibrium and CB filtering
- PS expectations about future CB filtering matters to π_t
- Current CB filtering depends on PS expectations about future CB filtering
- Intuition:
 - Forward-looking nature of inflation
 - Inflation determined by expectations about future MP
 - Future MP depends on future CB filtering

Kosuke Aoki, Takeshi Kimura

Introduction

Model

Observable $\bar{\pi}$

Unobservable $\bar{\pi}$

Implications

Conclusion

Appendix

Structural equations

Numerical example

Equilibrium and CB Filtering

Equilibrium Properties

Equilibrium property (2)

Bt depends on:

- ► B_{t-1}: recursive nature of filtering
- B_{t+1} : forward-looking nature of inflation
 - π_t depends on PS expectations about future MP
 - future MP depends on filtering d_{t+1}
 - current filtering depends on PS expectations