Unique Monetary Equilibria with Interest Rate Rules
Adão, Correia, and Teles

Discussion by Anton Nakov
Banco de España

February 2009
Unique monetary equilibrium with an interest rate rule
Goal of this paper

- Unique monetary equilibrium with an interest rate rule
- Unlike most of the literature, not a unique local equilibrium, but simply a unique equilibrium.
Main contribution

- Find a rule that ensures a unique monetary equilibrium
Main contribution

- Find a rule that ensures a unique monetary equilibrium
- Show how the rule works in a stripped-down cash-in-advance model with flexible prices
Main contribution

- Find a rule that ensures a unique monetary equilibrium
- Show how the rule works in a stripped-down cash-in-advance model with flexible prices
- Show how it works in two extensions:
Main contribution

- Find a rule that ensures a unique monetary equilibrium
- Show how the rule works in a stripped-down cash-in-advance model with flexible prices
- Show how it works in two extensions:
 - frictionless capital accumulation by households
Main contribution

- Find a rule that ensures a unique monetary equilibrium
- Show how the rule works in a stripped-down cash-in-advance model with flexible prices
- Show how it works in two extensions:
 - frictionless capital accumulation by households
 - prices set in advance (effective for one period)
Ambitious project of thinking about the big issues
Overall assessment

- Ambitious project of thinking about the big issues
- A very simple and ingenious solution to a vexing problem for rational expectations monetary policy models
Overall assessment

- Ambitious project of thinking about the big issues
- A very simple and ingenious solution to a vexing problem for rational expectations monetary policy models
- How comfortable can we be with the proposed solution?
Overall assessment

- Ambitious project of thinking about the big issues
- A very simple and ingenious solution to a vexing problem for rational expectations monetary policy models
- How comfortable can we be with the proposed solution?
 - How general is it?
Overall assessment

- Ambitious project of thinking about the big issues
- A very simple and ingenious solution to a vexing problem for rational expectations monetary policy models
- How comfortable can we be with the proposed solution?
 - How general is it?
 - How intuitive is it? How credible is the economics behind it?
Overall assessment

- Ambitious project of thinking about the big issues
- A very simple and ingenious solution to a vexing problem for rational expectations monetary policy models
- How comfortable can we be with the proposed solution?
 - How general is it?
 - How intuitive is it? How credible is the economics behind it?
- Alternatives
Criticisms

- The rule works in the specific model:
The rule works in the specific model:

- a single forward-looking equation—the consumption Euler equation (and a single forward-looking variable—consumption)
Criticisms

- The rule works in the specific model:
 - a single forward-looking equation—the consumption Euler equation (and a single forward-looking variable—consumption)
 - the policy instrument appears in the forward-looking equation
Criticisms

The rule works in the specific model:

- a single forward-looking equation—the consumption Euler equation (and a single forward-looking variable—consumption)
- the policy instrument appears in the forward-looking equation
- and the instrument appears contemporaneously

Would the results carry over to a more general setup? What if...
- there is more than one forward-looking equation (and variable)?
- the instrument does not appear in some forward-looking equation?
- the instrument appears with a lag?

Would the proposed rule work in standard extensions?
- forward-looking firm-investment dynamics (capital adjustment costs)
- forward-looking price-setting (Calvo or menu costs)
The rule works in the specific model:

- a single *forward-looking equation*—the consumption Euler equation (and a single forward-looking variable—consumption)
- the policy *instrument appears in the forward-looking equation*
- and the *instrument appears contemporaneously*

Would the results carry over to a more general setup? What if ...

... there is more than one forward-looking equation (and variable)?
... the instrument does not appear in some forward-looking equation?
... the instrument appears with a lag?
The rule works in the specific model:
- a single forward-looking equation—the consumption Euler equation (and a single forward-looking variable—consumption)
- the policy instrument appears in the forward-looking equation
- and the instrument appears contemporaneously

Would the results carry over to a more general setup? What if ...
- ... there is more than one forward-looking equation (and variable)?
Criticisms

The rule works in the specific model:

- a **single forward-looking equation**—the consumption Euler equation (and a single forward-looking variable—consumption)
- the policy **instrument appears in the forward-looking equation**
- and **the instrument appears contemporaneously**

Would the results carry over to a more general setup? What if ...

- ... there is more than one forward-looking equation (and variable)?
- ... the instrument does not appear in some forward-looking equation?
Criticisms

- The rule works in the specific model:
 - a single forward-looking equation—the consumption Euler equation (and a single forward-looking variable—consumption)
 - the policy instrument appears in the forward-looking equation
 - and the instrument appears contemporaneously

- Would the results carry over to a more general setup? What if ...
 - ... there is more than one forward-looking equation (and variable)?
 - ... the instrument does not appear in some forward-looking equation?
 - ... the instrument appears with a lag?
Criticisms

- The rule works in the specific model:
 - a **single forward-looking equation**—the consumption Euler equation (and a single forward-looking variable—consumption)
 - the policy **instrument appears in the forward-looking equation**
 - and **the instrument appears contemporaneously**

- Would the results carry over to a more general setup? What if ...
 - ... there is more than one forward-looking equation (and variable)?
 - ... the instrument does not appear in some forward-looking equation?
 - ... the instrument appears with a lag?

- Would the proposed rule work in standard extensions?
Criticisms

- The rule works in the specific model:
 - a single forward-looking equation—the consumption Euler equation (and a single forward-looking variable—consumption)
 - the policy instrument appears in the forward-looking equation
 - and the instrument appears contemporaneously
- Would the results carry over to a more general setup? What if ...
 - ... there is more than one forward-looking equation (and variable)?
 - ... the instrument does not appear in some forward-looking equation?
 - ... the instrument appears with a lag?
- Would the proposed rule work in standard extensions?
 - forward-looking firm-investment dynamics (capital adjustment costs)
The rule works in the specific model:

- a single forward-looking equation—the consumption Euler equation (and a single forward-looking variable—consumption)
- the policy instrument appears in the forward-looking equation
- and the instrument appears contemporaneously

Would the results carry over to a more general setup? What if ...

- ... there is more than one forward-looking equation (and variable)?
- ... the instrument does not appear in some forward-looking equation?
- ... the instrument appears with a lag?

Would the proposed rule work in standard extensions?

- forward-looking firm-investment dynamics (capital adjustment costs)
- forward-looking price-setting (Calvo or menu costs)
Criticisms

- Prices set in advance vs. forward-looking price-setting

\[p_t = \theta_1 E_t p_{t+1} + \theta_{MC} t_i \]

Inflation is not a forward-looking variable in this case. So even if the rule pins down MC uniquely, this does not pin down \(\pi_t \).

In general, only by chance could the proposed rule exactly cancel out all expectation terms from a richer model with more forward-looking equations.
Criticisms

- Prices set in advance vs. forward-looking price-setting
 - Prices set in advance: today’s price depends on past expectations of today’s cost and demand

\[p_{t,j} = \frac{\theta}{\theta - 1} E_{t-j} \left[\eta_{t,j} MC_t \right] \]
Criticisms

- Prices set in advance vs. forward-looking price-setting
 - prices set in advance: today’s price depends on past expectations of today's cost and demand
 \[p_{t,j} = \frac{\theta}{\theta - 1} E_{t-j} \left[\eta_{t,j} MC_t \right] \]
 - inflation is not a forward-looking variable
Prices set in advance vs. forward-looking price-setting

- prices set in advance: today’s price depends on past expectations of today’s cost and demand

\[p_{t,j} = \frac{\theta}{\theta - 1} E_{t-j} \left[\eta_{t,j} MC_t \right] \]

- inflation is not a forward-looking variable
- staggered price-setting (e.g. Calvo): firms lock into a price for several periods. Today’s price depends on current and expected future costs

\[\pi_t = \beta E_t \pi_{t+1} + \kappa mc_t \]
Prices set in advance vs. forward-looking price-setting

prices set in advance: today’s price depends on past expectations of today’s cost and demand

\[p_{t,j} = \frac{\theta}{\theta - 1} E_{t-j} [\eta_{t,j} MC_t] \]

inflation is not a forward-looking variable

staggered price-setting (e.g. Calvo): firms lock into a price for several periods. Today’s price depends on current and expected future costs

\[\pi_t = \beta E_t \pi_{t+1} + \kappa MC_t \]

inflation is a forward-looking variable in this case. So even if the rule pins down \(MC_t \) uniquely, this does not pin down \(\pi_t \).
Criticisms

- Prices set in advance vs. forward-looking price-setting
 - Prices set in advance: today’s price depends on past expectations of today's cost and demand
 \[p_{t,j} = \frac{\theta}{\theta - 1} E_{t-j} \left[\eta_{t,j} MC_t \right] \]
 - Inflation is not a forward-looking variable
 - Staggered price-setting (e.g. Calvo): firms lock into a price for several periods. Today’s price depends on current and expected future costs
 \[\pi_t = \beta E_t \pi_{t+1} + \kappa mc_t \]
 - Inflation is a forward-looking variable in this case. So even if the rule pins down \(mc_t \) uniquely, this does not pin down \(\pi_t \).
 - In general, only by chance could the proposed rule exactly cancel out all expectation terms from a richer model with more forward-looking equations
A slightly different approach

Loisel’s (*JET, forthcoming*) proposal

\[i_t = r + E_t \pi_{t+1} + \phi(\pi_t - \xi_t) \]

\[i_t = r + E_t \pi_{t+1} \]

\[\pi_t = \xi_t \]

Disadvantage: rule works only in linearized models

Advantage: generic framework for rules designed to work with more forward-looking equations

Advantage: the rule works even if the central bank has imperfect knowledge of some structural parameters
A slightly different approach

- Loisel’s (JET, forthcoming) proposal

\[
i_t = r + E_t \pi_{t+1} + \phi(\pi_t - \bar{\pi}_t) \\
\]

\[
i_t = r + E_t \pi_{t+1} \\
\pi_t = \bar{\pi}_t
\]

- Disadvantage: rule works only in linearized models
A slightly different approach

Loisel’s \textit{(JET, forthcoming)} proposal

\begin{align*}
i_t &= r + E_t \pi_{t+1} + \phi (\pi_t - \bar{\zeta}_t) \\
i_t &= r + E_t \pi_{t+1} \\
\pi_t &= \bar{\zeta}_t
\end{align*}

Disadvantage: rule works only in linearized models

Advantage: generic framework for rules designed to work with more forward-looking equations
Loisel’s (*JET, forthcoming*) proposal

\[
i_t = r + E_t \pi_{t+1} + \phi (\pi_t - \xi_t) \\
i_t = r + E_t \pi_{t+1} \\
\pi_t = \xi_t
\]

- Disadvantage: rule works only in linearized models
- Advantage: generic framework for rules designed to work with more forward-looking equations
- Advantage: the rule works even if the central bank has imperfect knowledge of some structural parameters
The economic intuition for how the rule works is not stressed much in the paper. Cochrane: uniqueness is achieved by a threat by the central bank to set the economy on an explosive path of infinite speed

\[i_t = r + \phi E_t p_{t+1} - \zeta_t; \quad \phi \to 1 \]

\[i_t = r + E_t (p_{t+1} - p_t) \]

\[E_t p_{t+1} = \frac{1}{1 - \phi} p_t - \frac{1}{1 - \phi} \zeta_t \]
The economic intuition for how the rule works is not stressed much in the paper. Cochrane: uniqueness is achieved by a threat by the central bank to set the economy on an explosive path of infinite speed

\[i_t = r + \phi E_t p_{t+1} - \zeta_t; \quad \phi \to 1 \]

\[i_t = r + E_t (p_{t+1} - p_t) \]

\[E_t p_{t+1} = \frac{1}{1 - \phi} p_t - \frac{1}{1 - \phi} \zeta_t \]

For any \(\phi \to 1 \) (\(\phi < 1 \)) there is a continuum of explosive solutions:

\[p_{t+1} = \frac{1}{1 - \phi} p_t - \frac{1}{1 - \phi} \zeta_t + \delta_{t+1}; \quad E_t (\delta_{t+1}) = 0 \]

\[p_t = \left(\frac{1}{1 - \phi} \right)^t p_0 - \sum_{j=1}^{t} \left(\frac{1}{1 - \phi} \right)^{j-1} \zeta_{t-j} + \sum_{j=0}^{t-1} \left(\frac{1}{1 - \phi} \right)^{j} \delta_{t-j} \]

The Fed threatens an explosive path of inflation. For \(\phi = 1 \) the explosion is instantaneous.
Criticism

There are no *economic* reasons to rule out the explosive paths for inflation. It’s "rational expectations" combined with an "extreme (incredible?) threat".
There are no *economic* reasons to rule out the explosive paths for inflation. It’s "rational expectations" combined with an "extreme (incredible?) threat".

Cannot apply the "old Keynesian" *economic logic* for stabilization: inflation above target \rightarrow the Fed raises the real interest rate \rightarrow this lowers demand and inflation.
Criticism

- There are no *economic* reasons to rule out the explosive paths for inflation. It’s "rational expectations" combined with an "extreme (incredible?) threat".
- Cannot apply the "old Keynesian" *economic logic* for stabilization: inflation above target → the Fed raises the real interest rate → this lowers demand and inflation
- The argument: if the threat is credible, then the private sector will never misbehave, and so the Fed will never have to act on the threat.
Criticism

- There are no *economic* reasons to rule out the explosive paths for inflation. It’s "rational expectations" combined with an "extreme (incredible?) threat".

- Cannot apply the "old Keynesian" *economic logic* for stabilization: inflation above target → the Fed raises the real interest rate → this lowers demand and inflation.

- The argument: if the threat is credible, then the private sector will never misbehave, and so the Fed will never have to act on the threat.

- Can the Fed make such a credible threat? Why would rational agents believe that the Fed would "blow up the banks" unless agents coordinate their expectations on the right path for inflation?
There are no *economic* reasons to rule out the explosive paths for inflation. It’s "rational expectations" combined with an "extreme (incredible?) threat".

Cannot apply the "old Keynesian" *economic logic* for stabilization: inflation above target → the Fed raises the real interest rate → this lowers demand and inflation

The argument: if the threat is credible, then the private sector will never misbehave, and so the Fed will never have to act on the threat.

Can the Fed make such a credible threat? Why would rational agents believe that the Fed would "blow up the banks" unless agents coordinate their expectations on the right path for inflation?

A threat can in principle be credible even if it sounds crazy: game of chicken. What is a real-life counterpart of "throwing out the wheel"?
Criticism

- There are no *economic* reasons to rule out the explosive paths for inflation. It’s "rational expectations" combined with an "extreme (incredible?) threat".

- Cannot apply the "old Keynesian" *economic logic* for stabilization: inflation above target → the Fed raises the real interest rate → this lowers demand and inflation.

- The argument: if the threat is credible, then the private sector will never misbehave, and so the Fed will never have to act on the threat.

- Can the Fed make such a credible threat? Why would rational agents believe that the Fed would "blow up the banks" unless agents coordinate their expectations on the right path for inflation?

- A threat can in principle be credible even if it sounds crazy: game of chicken. What is a real-life counterpart of "throwing out the wheel"?

- Or suppose that the Fed is going to be worse-off not acting on it. But what could be worse for the Fed than explosive inflation or deflation?
If extreme threats are not a plausible device for ensuring a unique equilibrium, then what?
Alternatives

- If extreme threats are not a plausible device for ensuring a unique equilibrium, then what?
 - "Escape clause": the Fed switches from an interest rate rule to a money targeting rule
Alternatives

- If extreme threats are not a plausible device for ensuring a unique equilibrium, then what?
 - "Escape clause": the Fed switches from an interest rate rule to a money targeting rule
 - McCallum: "learnability" as a refinement
Alternatives

If extreme threats are not a plausible device for ensuring a unique equilibrium, then what?

- "Escape clause": the Fed switches from an interest rate rule to a money targeting rule
- McCallum: "learnability" as a refinement
- Cochrane: fiscal theory of the price level
Two more issues

- To implement the rule, the central bank must have *perfect knowledge* of structural parameters (time preference, CRRA). Otherwise the rule will not cancel out the expected future terms. Is this realistic?
Two more issues

- To implement the rule, the central bank must have *perfect knowledge* of structural parameters (time preference, CRRA). Otherwise the rule will not cancel out the expected future terms. Is this realistic?

- Zero lower bound: *if money always exists*, then $R \geq 1$.

Anton Nakov (BdE)
Discussion of Adão-Correia-Teles
02/09 11 / 12
Two more issues

- To implement the rule, the central bank must have *perfect knowledge* of structural parameters (time preference, CRRA). Otherwise the rule will not cancel out the expected future terms. Is this realistic?

- Zero lower bound: *if money always exists*, then $R \geq 1$.

- But this introduces an additional steady-state and multiple equilibrium paths even with the proposed rule (Benhabib-Schmitt-Grohe-Uribe, 2001)
Two more issues

- To implement the rule, the central bank must have *perfect knowledge* of structural parameters (time preference, CRRA). Otherwise the rule will not cancel out the expected future terms. Is this realistic?

- Zero lower bound: *if money always exists*, then $R \geq 1$.

- But this introduces an additional steady-state and multiple equilibrium paths even with the proposed rule (Benhabib-Schmitt-Grohe-Uribe, 2001)

- Standard reply: "*if money can vanish*", then the ZLB can be treated as a restriction which hold only in equilibrium and not as a constraint on policy (Bassetto, 2004).
Two more issues

- To implement the rule, the central bank must have *perfect knowledge* of structural parameters (time preference, CRRA). Otherwise the rule will not cancel out the expected future terms. Is this realistic?

- Zero lower bound: *if money always exists*, then $R \geq 1$.

- But this introduces an additional steady-state and multiple equilibrium paths even with the proposed rule (Benhabib-Schmitt-Grohe-Uribe, 2001)

- Standard reply: "*if money can vanish*", then the ZLB can be treated as a restriction which hold only in equilibrium and not as a constraint on policy (Bassetto, 2004).

- The Fed threatens to make money useless as a store of value (by supplying an *infinite* amount when the interest rate is negative)
Two more issues

- To implement the rule, the central bank must have *perfect knowledge* of structural parameters (time preference, CRRA). Otherwise the rule will not cancel out the expected future terms. Is this realistic?

- Zero lower bound: *if money always exists*, then $R \geq 1$.

- But this introduces an additional steady-state and multiple equilibrium paths even with the proposed rule (Benhabib-Schmitt-Grohe-Uribe, 2001)

- Standard reply: "*if money can vanish*", then the ZLB can be treated as a restriction which hold only in equilibrium and not as a constraint on policy (Bassetto, 2004).

- The Fed threatens to make money useless as a store of value (by supplying an *infinite* amount when the interest rate is negative)

- Again, is this credible? One might conjecture that long before the Fed has managed to implement such a confiscation of nominal wealth, people would switch to alternative money, e.g. gold or cigarettes.
Final comments

- Important topic
Important topic

Very creative, constructive, paper
Final comments

- Important topic
- Very creative, constructive, paper
- Offers some comfort: to users of the simple CIA model with flexible prices (or prices set in advance)
Important topic

Very creative, constructive, paper

Offers some comfort: to users of the simple CIA model with flexible prices (or prices set in advance)

Seems less comfortable to those who work with richer models, with more forward-looking behaviour than just the consumption Euler equation

More research on this important topic is needed
Important topic

Very creative, constructive, paper

Offers some comfort: to users of the simple CIA model with flexible prices (or prices set in advance)

Seems less comfortable to those who work with richer models, with more forward-looking behaviour than just the consumption Euler equation

Even less comfortable to those who feel uneasy with a description of expectations that reflects incredible threats by the Fed
Important topic

Very creative, constructive, paper

Offers some confort: to users of the simple CIA model with flexible prices (or prices set in advance)

Seems less confortable to those who work with richer models, with more forward-looking behaviour than just the consumption Euler equation

Even less confortable to those who feel uneasy with a description of expectations that reflects incredible threats by the Fed

More research on this important topic is needed