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Abstract

I propose a method to estimate cyclical DSGE with unfiltered data. The approach links
the observables to the model conterparts via a flexible specification, in which the non-cyclical
component can take various time series patterns, and do not assume that the cyclical component
is solely located at business cycle frequencies. I show the fallacies of applying standard data
transformation for structural estimation and explain the reasons for distortions they produce.
The approach recovers the features of the cyclical component in selected experimental designs.
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1 Introduction

There has been considerable development in the specification and estimation of DSGE models

over the last 10 years. The original structure, featuring a single technological disturbance, has

been enriched with the addition of shocks and frictions and our understanding of the propagation

mechanism of important structural shocks considerably enhanced. Steps forward have also been

made in the estimation of such models. While a few years ago it was standard to informally calibrate

the structural parameters, now researchers routinely use limited and full information estimation

procedures and, perhaps more importantly, this trend is shared by applied economists in both

academic and policy circles (see, e.g., [23], [19], [25],[17], [22] among many others).

Despite recent developments, structural estimation of DSGE models is conceptually and prac-

tically difficult. For example, classical estimation is asymptotically justified only when the model

is assumed to be the DGP of the actual data, up to a set of serially uncorrelated measurement

errors, and standard validation exercises are meaningless without such an assumption (see [7] for an

approach that does not require it). Furthermore, identification problems appear to be widespread

(see [8]) and numerical difficulties often plague estimation exercises, making the outcomes of unre-

stricted analyses dubious. Finally, the vast majority of the models nowadays used in the literature

is intended to explain only the cyclical portion of the fluctuations in the observables, rather than

the observables themselves, and the latter contains many types of fluctuations, some of potentially

displaying non-stationarities of various sorts.

There are several reasons why researchers prefer to work with models designed to explain only

the cyclical fluctuations of the data. First, jointly accounting for cyclical and non-cyclical fluctua-

tions is still an ambitious task and there is still plenty to be learned by focusing attention on cyclical

fluctuations. Second, there are very few known theoretical mechanisms which are able to propagate

for a sufficiently long time temporary shocks (we need e.g. R&D as in [10] or Schumpeterian cre-

ative destruction process as in [11]). Third, from the computation and the interpretation point of

view, it is convenient to assume that the mechanism driving cyclical and non-cyclical fluctuations

are distinct and orthogonal.

The fact that models are designed to explain only cyclical fluctuations but that the data contains

much more than that seems to bother little developers of DSGE models but creates important

headaches to applied investigators. Leaving aside issues of model singularities - there are typically

less shocks than endogenous variables in the model - and of measurement errors - the variables

in the model do not typically have an exact counterpart in the actual data - applied researchers

typically proceed in one of the following two ways.
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Figure 1: Real Great Ratios in US and EU and their spectral density

• Filter actual data and fit the model to the filtered data. Such an approach leaves open the
questions of what are the cyclical features of the data, of whether univariate or multivariate

methods should be used in extracting the relevant fluctuations, and of whether all or only to a

subset of the variables should be filtered. In fact, many filters approximate what are typically

called business cycle fluctuations, i.e. fluctuations with, say, 8-32 quarters average periodicity

(see e.g. [4]). However, they all produce contaminated estimates of these fluctuations and

it is hard to design criteria which effectively discriminate ”good” from ”bad” approaches

in the samples macroeconomists typically work with. For example, empirical versions of

Band Pass and Hodrick and Prescott filters only approximately capture the power of the

spectrum at business cycle frequencies and taking growth rates greatly emphasize the high

frequency content. Similarly, while it is typically to filter each series separately, there are

both theoretical and empirical reasons to believe that the non-cyclical component should

be similar across series and that therefore some multivariate procedure should be used to

impose long run consistency. Along the same lines, one may wonder whether only real or

all variables should be filtered. There are arguments in favour of both approaches: many



1 INTRODUCTION 3

models imply cyclical fluctuations for e.g., inflation and the nominal rate, even when most of

the shocks are non-cyclical; however, not all actual fluctuations in nominal variables could be

safely considered as cyclical. Finally, while usually not appreciated, the cyclical component

produced by the majority of the filters can be represented as a symmetric, two-sided moving

average of the raw data. Hence, the timing of information is altered by filtering, making

standard dynamic analyses with structural parameter estimates difficult to interpret. In sum,

rather than resolving the issue, such an approach multiplies the number of difficulties applied

researchers face.
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Figure 2: Real and Nominal Great ratios, US and their spectral density

• Take into account the dynamics of the non-cyclical component and use data transformations
which are likely, at least in theory, to be void of non-cyclical components, e.g. consider the

ratios C/Y, I/Y in the estimation (this is the suggestion contained in [9] and [20]) or their

nominal counterpart, i.e. PcC/PyY or PiI/PyY , where Pj is the price of good j, if relative

prices matter (this is the suggestion contained in [27]). While very few have exploited this
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kind of properties in structural estimation, both transformations are unlikely to resolve the

mismatch issue because, as figures 1 and 2 shows, real and nominal ”Great ratios” show

visible trends over the last 30-40 years, both in the US and in the EU.

This paper shows that the data transformation one uses prior to estimation matters for esti-

mates of the structural parameters and the interpretation of the transmission of structural shocks.

Therefore, unless one takes a strong but unwarranted view of what the model is about, e.g. the

model is a representation of HP filtered data, or, simulated BP filtered data correspond to actual

BP filtered data, it is hard to select among various structural estimates and build knowledge on

the economic phenomena on solid ground. There are two main reasons why the preliminary data

transformation matters for estimation. First, as already mentioned, the data used in estimation is

only a contaminated estimate of the cyclical fluctuations having the required average periodicity.

Even an ideal band pass filter, once implemented on finite stretches of data, lead to considerable

leakage and compression of the power that the spectrum displays at business cycle frequencies.

Since the both amount and the properties of the resulting measurement errors are filter dependent

and, as sample size grows, may vanish at different speeds, the association between the model and

the estimated business cycle fluctuations is very imperfect. An approach to deal with this type of

error which exploits ideas developed in [3]have been recently proposed in [6].

The second, and probably more important reason, is that the theoretical cyclical component

that a DSGE model produces does not correspond to the cyclical component extracted by existing

filters, even when the sample size is large. This is because the filters used by applied investigators

implicitly assume that different components of the data have power exclusively concentrated at

certain frequencies of the spectrum, e.g. the cyclical component has power only at business cycle

frequencies, while both the cyclical and the non-cyclical component a model generates have power

at all frequencies of the spectrum. This implies for example, that at the so-called business cycle

frequencies, both components may matter and it is not very difficult to build examples, where most

of the power at the business cycle frequencies is due to the former. Aguiar and Gopinath (2007)

have argued that for LDC countries this is an important concern. What I show here is that the

problem is general and is, in fact, relevant for the estimation of the structural parameters with the

data on any country. The only condition that needs to be met is that the variance of the shocks

driving the cyclical and the non-cyclical components are roughly of the same magnitude.

As an alternative, this paper proposes a methodology to estimate the structural parameters of

a ”cyclical” DSGE model using raw data by creating a flexible link between the two that allows

both the non-cyclical and the cyclical components to have power at all the frequencies of the

spectrum. Since the specification I use encompasses, as special cases, situations where the non-

cyclical component of the data displays deterministic, stochastic or smooth features, the approach

does not requires to take a stand on, for example, whether the raw data is trend-stationary or
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difference stationary (as is done e.g. in [9] and [14]) and therefore shields the empirical analysis

from specification errors. Finally, while for expositional reasons, drivers of the cyclical and the non-

cyclical components of the data are assumed to be orthogonal, there is no conceptual difficulties in

considering cases, where shocks driving the two components are partially or perfectly correlated.

The approach uses a setup similar to the one employed in the unobservable component time

series literature. In the specific case I consider, the cyclical component is what the DSGE model

produces, given a set of structural parameters; the non-cyclical component is arbitrarily but flexibly

modelled; high frequency noise is permitted; and the spectrum of the data is endogenously split in

various components. This means that the procedure jointly estimates structural and non-structural

parameters and this permits coherent inference and meaningful forecasts on both the components

and the raw data.

I show using a simple experimental design that the procedure can effectively capture the cyclical

components of the DGP when the data has more than cyclical fluctuations and lead to good

estimates of the structural parameters and of the transmission of shocks, using samples of the size

currently available in macroeconomics. I also show that the economic interpretation of the resulting

transmission of structural shocks is different from those obtained with standard methods.

Throughout the paper I make the important simplifying assumption that the model is correctly

specified; that is, there are no missing variables or omitted cyclical shocks. While this issue is

important in practice and semi-structural methods of the type suggested by [7] are likely to produce

more robust inference, I find it useful to keep this problem separate from the one of matching

cyclical models to the raw data since the latter occurs independently of whether the model correctly

represents the DGP of the data or not.

The rest of the paper is organized as follows. The next section presents a simple model, esti-

mates its structural parameters after a number of preliminary data transformations and discusses

why estimation and interpretation results differ. Section 3 presents the methodology. In section

4 experimental data is used to estimate the structural parameters with the proposed approach.

Section 5 shows estimates the model with US data and the proposed methodology and compares

estimates with those presented in section 2. Section 6 concludes. An appendix containz details

about the model used and the estimation approach.

2 Structural estimation with transformed data

To show how parameters estimates of a ”cyclical” DSGE model depend on the data transformation

employed, I consider a rather standard New-Keynesian model where agents face a labor-leisure

choice, there is external habit in consumption, production is carried out with labor, firms must

confront an exogenous probability of price adjustments and monetary policy is conducted with a



2 STRUCTURAL ESTIMATION WITH TRANSFORMED DATA 6

conventional Taylor rule. Details on the structure of the model are in the Appendix. The log

linearized equilibrium conditions are:

λt = χt −
σc
1− h

(yt − hyt−1) (1)

yt = zt + (1− α)nt (2)

mct = wt + nt − yt (3)

mrst = −λt + σnnt (4)

mrst = wt (5)

rt = ρrrt−1 + (1− ρr)(ρππt + ρyyt) + �rt (6)

λt = Et(λt+1 + rt − πt+1) (7)

πt = kp(mct + �μt ) + βEtπt+1 (8)

χt = ρχχt−1 + �χt (9)

zt = ρzzt−1 + �zt (10)

where kp =
(1−βζp)(1−ζp)

ζp
1−α

1−α+εα , λ is the Lagrangian on the consumer budget constraint, mct are

marginal costs, mrst is the marginal rate of substitution between consumption and leisure, zt is a

technology shock, χt a preference shock, �
r
t is an iid monetary policy shock and �μ an iid markup

shock. The structural parameters are: σc the risk aversion coefficient, σn the elasticity of labor

supply, h the coefficient of consumption habit, 1 − α the share of labor in production, ρr the

degree of interest rate smoothing, ζp the probability of not changing prices, ε the elasticity among

consumption varieties. The auxiliary parameters are: ρχ, ρz the autoregressive parameters, and the

standard deviations σi of the four structural shocks.

I assume that there are four observable variables: output, the real wage, the inflation rate and

the nominal interest rate (yt, wt, πt, rt), and I examine a variety of filtering approaches, applied

to all or a subset of the variables. In the search, I have considered (i) a case where only real

variables are independently filtered and nominal variables demeaned; (as in [21], [22] or [25]) (ii)

a case where all variables are independently filtered (as in [17]); (iii) a case where all variables

are jointly filtered with a multivariate deterministic approach, which takes into account potential

commonalities in the non-cyclical component, and (iv) a case where real variables appear as ratios

- log yt − lognt, logwt − lognt, where h is hours worked - - and all variables are demeaned. This
transformation of real variables is selected because, according to the model, it should be void of

non-cyclical fluctuations no matter what the time series properties of the shocks are. For the first

two cases, I consider three different filtering approaches, which cover pretty much the range of

filters used in the empirical DSGE literature and, as shown in [4]), produce cyclical components

whose average periodicity is different (linear filtering (LT), HP filtering, and first difference (FOD)
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filtering). Since the first two approaches belong to the class of two-sided moving averages and

may therefore alter the timing of the information of the data, I have also experimented with either

recursive or one-sided versions of these filters. None of the results I report below are due to this

nevertheless important problem.

Estimation is conducted using Bayesian methods. Details on the approach are in the Appendix.

Posterior estimates are obtained with a Random Walk Metropolis algorithm, where the vector of

jumping variables is t-distributed with 5 degrees of freedom, and the variance tuned to have an

acceptance rate of roughly 30-35 percent for each data transformation considered. One million draws

are made for each case-filter combination and convergence was checked using standard CUMSUM

graphs. Since convergence to the erogodic distribution is rather slow in all cases and draws are

highly serially correlated, I keep one every hundred of the last 100,000 draws to compute posterior

statistics. The priors for the parameters are kept fixed in the exercise and are reported in the

Appendix.

Filter LT HP FOD Ratio

Median (s.e.) Median (s.e.) Median (s.e.) Median (s.e.)

σc 2.19 ( 0.10) 2.24 ( 0.13) 2.56 ( 0.14) 1.69 ( 0.11)
σn 1.81 ( 0.07) 1.59 ( 0.10) 1.93 ( 0.18) 2.16 ( 0.10)
h 0.67 ( 0.01) 0.60 ( 0.02) 0.43 ( 0.03) 0.64 ( 0.02)
α 0.18 ( 0.02) 0.12 ( 0.02) 0.11 ( 0.02) 0.13 ( 0.02)
ε 4.84 ( 0.16) 4.19 ( 0.11) 3.26 ( 0.06) 4.09 ( 0.12)
ρr 0.16 ( 0.04) 0.50 ( 0.03) 0.26 ( 0.04) 0.22 ( 0.04)
ρπ 1.27 ( 0.04) 1.66 ( 0.09) 1.86 ( 0.06) 1.71 ( 0.05)
ρy -0.15 ( 0.02) 0.15 ( 0.04) 0.12 ( 0.05) -0.02 ( 0.01)
ζp 0.77 ( 0.01) 0.60 ( 0.03) 0.35 ( 0.03) 0.81 ( 0.01)
ρχ 0.73 ( 0.02) 0.58 ( 0.04) 0.28 ( 0.04) 0.81 ( 0.02)
ρz 0.95 ( 0.01) 0.59 ( 0.03) 0.86 ( 0.04) 0.92 ( 0.01)
σχ 0.22 ( 0.03) 0.34 ( 0.05) 0.23 ( 0.04) 0.95 ( 0.16)
σz 0.12 ( 0.02) 0.08 ( 0.01) 0.09 ( 0.01) 0.08 ( 0.01)
σr 0.11 ( 0.01) 0.08 ( 0.01) 0.12 ( 0.02) 0.12 ( 0.01)
σμ 18.88 ( 0.82) 1.15 ( 0.30) 0.17 ( 0.03) 34.70 ( 1.04)

Table 1: Posterior estimates using different filters. For LT, HP, FOD real variables detrended,
nominal demeaned. For Ratio, real variables are in terms of hours and all variables demeaned.

Table 1 reports a summary of the estimation results. Here I report the median and the standard

deviation of the posterior distributions for cases (i) and (iv). Results for cases (ii) -(iii) are similar

and available on request from the author. Clearly, there are parameters whose posterior distribution

is considerably affected by the preliminary data transformation (see e.g. ζp, the persistence and

the volatility of the shocks, and the parameters of the monetary policy rule). Also, since posterior
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standard errors are relatively tight, small differences in the medians are a-posteriori significant.

Posterior differences are not only statistically but also economically relevant and the environment

where the agents live is quite different in different columns: for example, the volatility of markup

shocks in the LT and Ratio economies is of an order of magnitude larger than in the other two and

price stickiness much more relevant.5 10 15
0

0.05

0.1

0.15

0.2

0.25

y
t
     

5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

ω
t

5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

π
t
   

5 10 15
0

0.05

0.1

0.15

0.2

r
t
     

LT
HP
FOD
Ratio

Figure 3: Responses to preference shocks, different filtering

The importance of the preliminary data transformations is not only limited to parameter es-

timates but also concerns functions of crucial interest in the literature. To illustrate this I have

examined the transmission of structural shocks using the median estimates obtained in the four

columns of table 1. Figures 3 and 4 present responses to preference and technology shocks. Clearly,

not only the magnitude of the impact coefficients but also the persistence of the responses depend

on the preliminary data transformation employed. Furthermore, at least in the case of technol-

ogy shocks, responses have different signs depending on the preliminary data transformation used.
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Responses obtained with other data transformations are similar. Differences in the responses to

monetary and markup shocks are less dramatic because shocks are assumed to be iid. Nevertheless,

they are statistically significant and economically important, at least on impact.5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y
t
     

5 10 15
−1

−0.5

0

0.5

1

ω
t

5 10 15
−0.6

−0.4

−0.2

0

0.2

π
t
   

5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

r
t
     

LT
HP
FOD
Ratio

Figure 4: Responses to technology shocks, different filtering

Differences in estimation results should be expected; the growth rate of GDP is a very different

object and has very different time series properties than, for example, a linearly detrended GDP.

These differences would be inconsequential, if researchers would have a good reason to prefer one

approach over the other. However, as emphasized in [4]), a good reason is hard to find since

economists know little about the properties and the features of the non-cyclical component.

The solution favoured in the literature is to define the length of the cycles the model is assumed

to explain, i.e. interesting fluctuations are those with an average periodicity between 8 and 32

quarters, and design procedures which allow to extract the information present at these frequencies

in the actual data. It is not particularly difficult to show that the approaches I considered only
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approximately isolate cycles with the required periodicities: the linear trend specification leaves

both long and short cycles in the filtered data; the HP filter has the features of a high pass filter

and therefore leaves high frequencies variability unchanged; the growth transformation emphasizes

high frequency noise and downweights the importance of cycles with a business cycle periodicity;

great ratios leave important low frequency fluctuations in the data (see figures 1 and 2).

The ideal band pass filter is capable of isolating fluctuations at the frequencies of interest, but

finite samples induce significant approximation errors also in this case (see e.g. [5], ch.3). Since

the cyclical components extracted with different filters are, at best, contaminated estimates of the

fluctuations with 8-32 quarters average periodicity and measurement errors play a different role at

different frequencies, choosing the length of the cycles the model is assumed to explain does not solve

the problem of which of the columns of table 1 one should use for inference. In [6] the fact that all

filtered data represents a noisy measure of the fluctuations the literature in interested in analyzing

is exploited to suggest an estimation approach which may reduce or eliminate measurement errors.

There is an additional and perhaps more important reason for why estimation results are trans-

formation dependent. All the filters used in the estimation literature assume that, say, the cyclical

and the non-cyclical fluctuations produced by a DSGE model are located at different frequencies of

the spectrum and that the economic mechanism generating the two is distinct. Such an assumption

is crucial to identify the frequencies corresponding to fluctuations with 8 to 32 quarters periodic-

ity with the theoretical cycle and frequencies corresponding to fluctuations with periodicity larger

than 32 quarters to the theoretical trend. However, such an association is problematic: the cyclical

component of a DSGE model may have power at frequencies other than those corresponding to 8

to 32 quarters and the non-cyclical component may induce important fluctuations at the so-called

business cycle frequencies. Time series econometricians have known this for a long time. For ex-

ample, [24], [13] and [15] have all emphasized the fallacy of trying to estimate structural models

using seasonally adjusted data, precisely for this reason. However, this fact is not well known or

it is simply disregarded among applied macroeconomists. Therefore, it is worthwhile to illustrate

the problem using the model represented by (1)-(10) assuming, for the sake of presentation, that

the preference disturbance has unitary autoregressive coefficient. In this case, the theoretical non-

cyclical component of the four observable variables corresponds to the fluctuations generated by

this shock and the theoretical cyclical component corresponds to the fluctuations induced by the

other three shocks. Using the parameter values reported in the last column of table 3, I have

simulated a long sample (11,000 data points), discarded 1000 initial observations and passed the

experimental data through LT, HP, FOD and BP filters. Figures 5 and 6 show the spectrum of

the filtered output data, the contribution of the two theoretical components at each frequency, and

their contribution to the autocorrelation function of filtered output.
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Figure 5: Model based output spectra, different filtering. Vertical bars indicate the frequencies

where cycles with 8-32 quarters periodicities are located

Three features are clear from these figures. First, the two components have power at all frequen-

cies of the spectrum of output. Second, at the so-called business cycle frequencies, the theoretical

non-cyclical component plays an important role. This fact is apparent from the plot of the au-

tocorrelation function - the autocorrelation induced by the two components is very similar - and

becomes obvious when the BP filter is used - here the sample is sufficiently large that leakage and

compression effects are minor. [1] and [2] have claimed that for LDC countries the trend is the

cycle. Figures 5 and 6 show is that the problem potentially applies to the transformed data of any

country. It is only required that the variability of the shock driving the two components is roughly

of similar magnitude. The HP filter assumes that the variability of the two components is different

with the trend beeing much smoother, but other filters, e.g. a Beveridge and Nelson one, imply

similar variability of the shocks driving the two components and estimates reported in [4] tend to

favour the latter assumption. Third, the noise induced by various filtering approaches is generalized

and certain transformations (e.g. LT and FOD) produce cyclical components in which the role of

the theoretical non-cyclical component is emphasized. In sum, if one is interested in estimating
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structural parameters and in conducting policy analyses, the use of filtered data is problematic.

Biases in parameter estimates may be severe because the cyclical fluctuations produced by a DSGE

model do not correspond with the business cycle fluctuations extracted by standard filters.
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Figure 6: Autocorrelation function of filtered cyclical and non-cyclical component

To understand why biases appear and the direction they will take, consider the following de-

composition. Using the Bayes theorem, it is easy to show that the posterior distribution of the

structural parameters is proportional to log-likelihood of the parameters, given the data, multi-

plied by the prior. In turn, following [15], the log-likelihood of the parameters can be represented

as the sum of three terms L(θ|yt) = A1(θ) + A2(θ) + A3(θ) where A1(θ) =
1
π

P
ωj log detGθ(ωj),

A2(θ) =
1
π

P
ωj trace [Gθ(ωj)]

−1F (ωj), A3(θ) = (E(y) − μ(θ))Gθ(ω0)
−1(E(y) − μ(θ)), and where

ωj =
πj
T , j = 0, 1, . . . , T − 1,, Gθ(ωj) is the model based spectral density matrix of yt, μ(θ) the

model based mean of yt, F (ωj) is the data based spectral density of yt and E(y) the unconditional

mean of the data. The first term is the sum of the one-step ahead forecast error matrix across

frequencies; the second a penalty function, which emphasizes deviations of the model-based from

the data-based spectral density at various frequencies, and the third another penalty function,
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weighting deviations of model-based from data-based means, with the spectral density matrix of

the model at frequency zero.

Suppose that the actual data is filtered so that frequency zero is eliminated and low frequencies

deemphasized. Then the log-likelihood of the parameters is composed of A1(θ) and of A2 ∗ (θ) =
1
π

P
ωj trace [Gθ(ωj)]

−1F (ωj)∗, where F (ωj)∗ = F (ωj)Iω and Iω is an indicator function describing

the effect of the filter at various frequencies. Suppose that Iω = I[ω1,ω2], an indicator function for

the business cycle frequencies, as in an ideal BP filter. Then the penalty A2 ∗ (θ) bites only at
these frequencies and since here [Gθ(ωj)] < F (ωj)∗ (see figure 5), the penalty exceeds one. Since
A2 ∗ (θ) and A1(θ) enter additively in the log-likelihood function, two types of biases are present in
estimates of θ. First, estimates Fθ ∗ (ωj) only approximately capture the features of F (ωj)∗ at the
required frequencies - the sample version of A2∗(θ) has a smaller values at business cycle frequencies
and a nonzero value at non-business cycle ones. Second, in order to reduce the contribution of the

penalty function to the log-likelihood, parameters are adjusted to make [Gθ(ωj)] as close as possible

to F (ωj)∗ at those frequencies where F (ωj)∗ is not zero. This is done by allowing fitting errors in
A1(θ) large at frequencies F (ωj)∗ is zero - in particular the low frequencies. Hence, the volatility
of the structural shocks will be overestimated - this makes [Gθ(ωj)] close to F (ωj)∗ at the relevant
frequencies - in exchange for underestimating their persistence - this makes Gθ(ωj) small and the

fitting error large at low frequencies. This distortion implies that the economy agents perceive has

different features than the true economy and their decision rules will be altered. Higher perceived

volatility, for example, implies distortions in the aversion to risk and a reduction in the internal

amplification features of the model. Lower persistence, on the other hand, implies that perceived

substitution and income effects are distorted with the latter typically underestimated relative to

the former.

If we take for granted that estimates of F (ωj)∗ are imprecise, even when T is large, there are

only two situations when estimation distortions will be minor. First, the non-cyclical component

has low power at the business cycle frequencies - in this case the distortions produced by the penalty

function are limited. This occurs when the volatility of the non-cyclical component is considerably

smaller than the volatility of the cyclical one. Second, the prior eliminates the distortions induced

by the penalty function. While priors for DSGE parameters are typically tight and this reduces

somewhat the distortions, it is very unlikely that the bias is entirely wiped out since priors are not

designed with such a scope in mind.

While not so popular in the DSGE estimation literature, one could also conceive to fit the filtered

version of the model to the filtered data. To understand what such an approach does to parameter

estimates, note that now the log-likelihood is composed of A1 ∗ (θ) = 1
π

P
ωj log detGθ(ωj)Iω and

A2(θ). Suppose that Iω = I[ω1,ω2]. Then A1 ∗ (θ) matters only at business cycle frequencies while
the penalty function is present at all frequencies. Therefore, parameter estimates will be adjusted
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until misspecification is reduced at all frequencies of the spectrum. If the penalty function is more

important in the low frequencies of the spectrum, parameters are adjusted to make [Gθ(ωj)] close

to F (ωj) at those frequencies. Hence, the log-likelihood is willing to incur in large fitting errors in

A1(θ) at frequencies where F (ωj) does not differ much from Gθ(ωj) - in particular, the medium and

high frequencies. Hence, the volatility of the shocks will be generally underestimated in exchange

for overestimating their persistence - this will make differences between Gθ(ωj) and F (ωj) small at

low frequencies. Hence, contrary to what it is commonly thought, this procedure implies that the

model is fitted to the low frequencies components of the data. If the low frequencies components

are poorly measured, biases could be larger than in the previous case. Also here, cross frequencies

distortions imply that agents think they are living in an economy with quite different features

than the true one. For example, since less noise is perceived, agents decision rules will imply a

higher degree of predictability of simulated time series and higher perceived persistence implies

that perceived substitution and income effects are distorted with the latter overestimated.

3 The idea of the paper

One solution to the problems I have highlighted in section 2 is to build a non-cyclical component

directly into the model. I have mentioned both theoretical and practical reasons for why researchers

may be reluctant to do so. To these one can also add statistical concerns (What time series features

should it have? Should it be deterministic or stochastic? Should it be correlated with the cyclical

component or not? What economic mechanism may drive its fluctuations?) and specification issues

(what happens to estimates if the structure of the non-cyclical component is misspecified? What if

there are breaks?). Such issues have been recently addressed in [?] and [?] and will not be discussed

here.

Rather than conditioning the analysis on an essentially arbitrary specification for the non-

cyclical component, a choice which will make the analysis vulnerable to specification errors, I will

use a flexible setup, in the spirit of [16], which allows the data to endogenously split the spectrum

of the observables into cyclical and non-cyclical components and permits the two components to

jointly appear at business cycle frequencies.

Let the linearized solution of a DSGE model be of the form:

yt = RR(θ)xt−1 + SS(θ)zt (11)

xt = PP (θ)xt−1 +QQ(θ)zt (12)

zt+1 = NN(θ)zt + �t+1 (13)

where PP (θ), QQ(θ), RR(θ), SS(θ) are functions of the vector of structural parameters θ = (θ1, . . . , θk),

xt = x̃t − x̄ includes the states and the predetermined variables, yt = ỹt − ȳ all other endogenous
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variables and zt the disturbances of the model and ȳ, x̄ are the steady states of ỹt and x̃t

Let ymt (θ) = S[yt, xt]
0, where S is a selection matrix picking out of yt and xt those variables

which are observable and/or interesting from the point of view of the researcher. Let ydt = ỹdt−E(ỹdt )
be the log demeaned vector of observables. I assume that ydt can be decomposed as

ydt = c+ yTt + ymt (θ) + ut (14)

where c = ȳ−E(ỹdt ), yTt is the non-cyclical component of the data, ut is a iid (0,Σu) (measurement)
noise and yTt , y

m
t and ut are assumed to be mutually orthogonal. Without further restrictions θ

would not be identifiable from ydt . Therefore, I assume that y
T
t can be represented as

yTt = yTt−1 + ȳt−1 + et et ∼ iid (0,Σ2e) (15)

ȳt = ȳt−1 + vt vt ∼ iid (0,Σ2v) (16)

The specification in 16 is flexible and can account for several time series specification for yTt . For

example, if Σ2v > 0 and Σ
2
e = 0, y

T
t is a vector of I(2) processes while if Σ

2
v = 0, and Σ

2
e > 0, y

T
t is

a vector of I(1) processes. Finally, if Σ2v = Σ
2
e = 0, y

T
t is deterministic, while if both Σ

2
v > 0 and

Σ2e > 0 and σ
2
vσ
2
e is large, y

t
t is ”smooth” and nonlinear. Hence, in (16) are nested, as special cases,

the structures which are typically thought to motivate the use of the three filters considered in the

previous section.

Given this setup, I let the data endogenously select the specification for the non-cyclical com-

ponent which is more appropriate for each series and this is done jointly with the estimation of

the structural parameters of the model. While in (16) I have assumed that Σ2v and Σ
2
e that are

general matrices one can impose some structure assuming that they are either diagonal (so that the

non-cyclical component is series specific) or that they are of reduced rank (so that the non-cyclical

component is common across series) and test various specifications using marginal likelihood com-

parisons (see [12]).

There are at least two advantages that the suggested specification has. First, it is not necessary

to take a stand on the time series properties of the non-cyclical component and on the choice of filter

to tone down its importance - such a choice may create distortions in the estimates of the structural

parameters if specification errors are made. Second, as I will show below using experimental, the

cyclical component extracted with the proposed approach is not localized at particular frequencies

of the spectrum. In fact, at each frequency, all the three components may have power.

The specification I have assumed implies that cyclical, non-cyclical and measurement error

fluctuations are driven by different shocks, a subset of which are structural, in the sense that they

have economic interpretation and create cross equation restrictions. While such an assumption

may appear restrictive, it is not for two reasons. First, if the non-cyclical component is driven by

unmodelled structural shocks, it makes sense to assume that they these shocks are uncorrelated with
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structural shocks driving in the model. Second, the specification is observationally equivalent one

where, for example, the non-cyclical and the cyclical components are correlated. Straightforward

calculations in fact indicate that the specification

ydt = yT∗t + yM∗t (θ) + ut (17)

yT∗t = yTt + ȳt + yM (θ) (18)

yTt = yt−1 + et (19)

ȳt = ȳt−1 + vt (20)

yM∗t (θ) = yM†
t (θ) +A(θ)C(θ)ȳt (21)

yM†
t (θ) ≡ ỹMT (θ)− yM (θ)−A(θ)C(θ)ȳt =

C(θ)xM†
t (θ) ≡ C(θ)(x̃MT (θ)− xM (θ)−A(θ)ȳt) (22)

xM†
t (θ) = A(θ)xM†

t−1(θ) +B(θ)�t (23)

which induces correlation in yT∗t and yM∗t (θ), is indistinguishable from the point of view of the

observed data from the specification I suggest.

3.1 A comparison with existing literature

The empirical literature has mostly avoided to deal with the issue of the mismatch of DSGE models

and the data. In a seminal paper, [9] considers estimating structural parameters when the data

is trending and the model has little or nothing to say about the properties of the trends. He

builds a useful taxonomy of cases, shows the distortions that incorrect assumptions have on the

estimates of the parameters and investigates the properties of various estimation methods which

can downsize the importance of specification errors. I share with Cogley the concern that economic

theory has little to say about modelling non-cyclical components. However, rather than simply

distinguishing between trend stationary or difference stationary fluctuations, and attempting to

robustify inference, I am concerned with the generic mismatch between the empirical and the

model-based concept of cyclical fluctuations and in designing a procedure which can be applied

without taking a stand on whether the data is trend or difference stationary.

[14] extend Cogley study suggesting a particular transformation delivering robust estimates

of the structural parameters when the trend specification one arbitrarily build into the model,

is potentially misspecified. The suggested approach shares with Gorodnichenko and Ng the idea

of joint estimating structural and auxiliary parameters without specifying the DGP of the data.

Their study however differs from the one of this paper is several respect. First, they use minimum

distance estimators of the structural and non-structural parameters while I use likelihood based

estimators. Minimum distance estimators in DSGE models are subject to severe identification
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problems which limits the credibility of the estimation results and of the inferential conclusions (see

[8]). Second, rather than assuming an arbitrary trend for the technology, I assume that the model

is built to explain only the cyclical component of the data - a much more common assumption in

macroeconomics - and link model and observables through a flexible specification. Third, while with

minimum distance estimators, data needs to stationary for estimates of the structural parameters

to enjoy standard asymptotic properties, my approach does require stationary data.

[1] and [2] have recently pointed out that in emerging market economies variations in trend

growth are as important as cyclical fluctuations in explaining the dynamics of macroeconomic vari-

ables. While the first is primarily interested in characterizing the difference between emerging and

developing economies and find a common mechanism to explain the evidence, the latter explicitly

suggests to build trends into the model to limit the distortions caused in policy analyses because of

misspecified structural estimates. This paper shows that the problems they highlight are generic

and that there is a way to link models to the data which does not require to take a stand on the

time series properties of the non-cyclical component.

Finally, [18] investigate the distortions introduced by infrequent switches in trend growth on

the estimated parameters of a DSGE model and propose an estimation approach which can deal

with these breaks within a standard state space formulation.

3.2 An experiment

To show the properties of the approach, I simulated data from the model of section 2 assuming that

the preference shock has two components, a nonstationary one and a stationary one (the properties

of the other three shocks are unchanged), using the same parameters described in the first column

of table 3 for two specifications of the variance of the non-cyclical shock relative to the variance of

the other shocks: a large one and a small one.

I then estimate the parameters of the model and those of the flexible non-cyclical part of the

data using the suggested specification and the same Bayesian approach I have used in section 2. The

priors for the non-structural parameters are given in the appendix. With the true and the estimated

parameters I then compute the model-based cyclical component, and calculate the autocorrelation

function and the log spectrum of output after I have passed it through the same 4 filters employed

in figures 5 and 6. The true and the estimated parameters are reported in table 2. The filtered log

spectrum and the cyclical autocorrelation functions are in figures 7 and 8.

Three features of table 2 are interesting. First, regardless of the variance of the non-cyclical

component estimates of the structural parameters are roughly unchanged. Hence, the flexible

link I have specified can adapt to capture different features of the non-cyclical component of the

data. Second, parameter estimates are precise but the median is not necessarily on top of the

true parameter value. This is particularly evident for those parameters are weakly identified from
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Small variance Large variance
True Median (s.e) True Median (s.e)

σc 3.00 2.77 ( 0.34) 3.00 2.60 (0.34)
σn 0.70 0.39 ( 0.08) 0.70 0.30 (0.06)
h 0.70 0.70 ( 0.03) 0.70 0.53 (0.03)
α 0.60 0.14 ( 0.02) 0.60 0.24 (0.02)
� 7.00 5.95 ( 0.19) 7.00 6.03 (0.19)
ρr 0.20 0.24 ( 0.01) 0.20 0.26 (0.02)
ρπ 1.30 1.58 ( 0.06) 1.30 1.52 (0.06)
ρy 0.05 0.31 ( 0.05) 0.05 0.30 (0.02)
ζp 0.80 0.79 ( 0.04) 0.80 0.73 (0.04)
ρχ 0.50 0.63 ( 0.04) 0.50 0.60 (0.02)
ρz 0.80 0.73 ( 0.04) 0.80 0.61 (0.02)
σχ 0.01 0.01 ( 0.001) 0.01 0.01 (0.001)
σz 0.01 0.01 ( 0.002) 0.01 0.01 (0.002)
σmp 0.006 0.01 ( 0.001) 0.006 0.01 (0.001)
σμ 0.21 0.13 ( 0.002) 0.21 0.12 (0.002)
σncχ 0.02 0.12

Table 2: Parameters estimates using flexible trend specification, σncχ is the standard error of the
shock to the non-cyclical component.

the data (such as α or σn). Third, both the relative magnitude of the various shocks and their

persistence is well estimated. Hence, the estimated economy does not differ much from the true

one and, as a consequence, decision rules are similar in the two cases.

This is quite evident from figures 7 and 8. The log spectrum and the autocorrelation function

of the model-based cyclical component obtained with the true and estimated parameters are close

regardless of the filter one applies to the data. Note also, as previously discussed, that both the

true and the estimated cyclical components have power at all frequencies of the spectrum, contrary

to what standard approaches imply.
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Figure 7: Model based output spectra, true and estimated, different filtering. Vertical bars

indicate the frequencies where cycles with 8-32 quarters periodicities are located
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Figure 8: Autocorrelation function of filtered cyclical component, true and estimated

4 An application
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Appendix

The baseline model

The model is rather standard. Therefore, it is only briefly summarized.

The bundle of goods consumed by the representative household is

Ct =

µZ 1

0
Ct(j)

�t−1
�t dj

¶ �t
�t−1

(24)

where Ct(j) is the consumption of the good produced by firm j and �t the elasticity of substitution

between varieties. Maximization of the consumption bundle, given total expenditure, leads to

Ct(j) =

µ
Pt(j)

Pt

¶−�t
Ct (25)

where Pt(j) is the price of the good produced by firm j. Consequently, the price deflator is

Pt =
³R 1
0 Pt(j)

1−�tdj
´ 1
1−�t and PtCt = [

R 1
0 Pt(j)Ct(j)dj].

The representative household chooses sequences for consumption and leisure to maximize

E0

∞X
t=0

βt
∙
Xt

1

1− σc
(Ct − hCt−1)

1−σc − 1

1 + σn
N1+σn
t

¸
(26)

where Xt is an exogenous utility shifter following an AR(1) in logs:

χt = ρχχt−1 + �χt (27)

where χt = lnXt and �χt ∼ N(0, σ2χ). The household budget constraint is

PtCt + btBt = Bt−1 +WtNt (28)

where Bt are one period bonds with price bt, Wt is nominal wage and Nt is hours worked.

There is a continuum of firms, indexed by j ∈ [0, 1], each of which produces a differentiated
good. The common technology is:

Yt(j) = ZtNt(j)
1−α (29)

where Zt is an exogenous productivity disturbance following an AR(1) in log,

zt = ρzzt−1 + �zt (30)

where zt = lnZt and �zt ∼ N(0, σ2z). Each firm resets its price with probability 1 − ζp in any t,

independently of time elapsed since last adjustment. Therefore, aggregate price dynamics are

Π1−�tt = ζp + (1− ζp)(P
∗
t /Pt−1)

1−�t (31)
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A reoptimizing firm chooses the P ∗t that maximizes the current market value of discounted profits

max
P∗t

∞X
k=0

ζkpEtQt,t+k

h
P ∗t Yt+k|t − TCt+k(Yt+k|t)

i
(32)

subject to the sequence of demand constraints

Yt+k|t =
µ

P ∗t
Pt+k

¶−�t+k
Yt+k (33)

k = 0, 1, 2, ... where Qt,t+k ≡ βk(Ct+k/Ct)(Pt/Pt+k), TC(.) is the total cost function, and Yt+k|t
denotes output in period t+ k for a firm that reset its price at t.

Finally, the monetary authority set the nominal interest rate according to

rt = ρrrt−1 + (1− ρr)(ρππt + ρygdpt) + �ms
t (34)

where �ms
t ∼ N(0, σ2ms).

The first order conditions of the optimization problems are:

0 = Xt(Ct − hCt−1)
−σc − Lt (35)

0 = −N−σn
t − Lt

Wt

Pt
(36)

1 = Et

∙
β
Lt+1
Lt

Pt+1
Pt

Rt

¸
(37)

0 =
∞X
k=0

ζkpEtQt,t+kYt+k|t
h
P ∗t −Mt+kMCn

t+k|t)
i

(38)

where Lt is the Lagrangian multiplier associated with the consumer budget constraint, Rt ≡ 1+it =
1/bt is the gross nominal rate of return on bonds, MCn(.) are nominal marginal cost; and

Mt = μe�
μ
t (39)

where �μt ∼ N(0, σ2μ) and μ is the steady state markup.

Market clearing requires

Yt(j) = Ct(j) (40)

Nt =

Z 1

0
Nt(j)dj (41)

and letting the aggregate output be defined as GDPt ≡
µR 1

0 Yt(j)
�t−1
�t dj

¶ �t
�t−1

we have Ct = GDPt.



REFERENCES 25

Estimation methodology

I assume that a researcher observes a vector of times series yt, some of which display non-cyclical

fluctuations, which the model is interested in explaining. Here ydt = [gdpt, wt, πt, rt] where gdpt is

the logarithm of demeaned real gdp, wt the log of demeaned real wages, πt the log of demeaned

inflation and rt the log of demeaned nominal interest rate. I assume that the model is intended to

explain the cyclical properties of ydt and let the model’s observable variables be y
m
t (θ), where θ are

the structural parameters. The link between the model and the data is given in (14), which is the

measurement equation and by (16) and(12)-(11)-(??) which represent the transition equations.

The vector of structural parameters θ is composed of

θ = [σc, σn, h, α, �, ρr, ρπ, ρy, ζp, ρχ, ρz, σχ, σz, σmp, σμ] (42)

and the vector of non-structural parameters is ν = (vec(Σe),�(Σv),�(Σu)).Let ϑ = (θ, ν).

xt is the vector of endogenous states, which includes

xt = [λt, gdpt, nt,mct,mrst, rt]. (43)

gdpt, nt and rt enter the endogenous state because the algorithm in [26] recognizes as endogenous

states all the variables dated at t and t − 1 that appear in the expectation equations. To include
output and the nominal interest rate in the vector of observables, I add to the equilibrium conditions,

gdpt = ggdpt (44)

rt = ert (45)

Hence the vector of observable variables is

yt = [ggdpt, ωt, πt, ert] (46)

The vector of exogenous processes and exogenous innovations are

zt = [χt, zt, �
ms
t , �μt ] (47)

�t = [�
χ
t , �

z
t , �

ms
t , �μt ]. (48)

Equations (12)-(13), (16) and (??) can be cast into the state space system

st+1 = Fst +Gωt+1 (49)

yt = Hst + ut (50)
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where F =

⎛⎜⎜⎜⎝
1 1 0 0
0 1 0 0
0 0 PP QQ
0 0 0 NN

⎞⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎠ , H =
³
1 0 RR SS

´
,

st+1 =
³
yTt μt ymt−1(θ) zt

´
, ωt+1 = (et, vt, 0, �t+1) and Σω is block diagonal. The likelihood

of the system can be computed with the Kalman filter. The Kalman filter returns the optimal

(latent) states estimates and the likelihood for the system for a given ϑ.

To obtain the non-normalized posterior distribution of (ϑ), I use a standard Random Walk

Metropolis algorithm (RWM). The algorithm proceeds as follows. Given initial value ϑl−1, given a

Ω, and a prior g(θ):

1. Draw a shock vector υ from t(0, κ ∗ Ω, 5) and construct a candidate ϑ∗ = ϑc−1 + υ.

2. Solve the model system given θ∗; if the solution is indeterminate or no solution is found set

L(ϑ∗|y) = 0

3. Otherwise, evaluate the likelihood at ϑ∗ with the Kalman filter, L(y|ϑ∗)

4. Calculate ğ(ϑ∗|y) = g(ϑ∗)L(y|ϑ∗) and the ratio χ∗ = ğ(ϑ∗|y)
ğ(ϑc−1|y)

5. Draw u from U [0, 1]; if χ∗ > u set ϑc = ϑ∗, otherwise set ϑc = ϑc−1

Iterated a large number of times, for κ appropriately chosen, the algorithm ensures that the

limiting distribution of the chain is the target distribution (see e.g. [5], Ch. 9).

The priors

Priors distributions for the structural and the non-structural parameters are in Table 3 For the

non-structural parameters I assume inverted gamma distributions with large standard deviations

to explore a wide region for the parameters without being downweighted by the prior.
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Structural Parameters

Parameters Distribution Mean Standard Deviation Calibration

σc Γ(20, 0.1) 2.00 0.45 3.0
σn Γ(20, 0.1) 2.00 0.45 0.7
h B(6, 8) 0.43 0.13 0.7
α B(3, 8) 0.27 0.13 0.3
� N(6, 0.1) 6.00 0.10 7.0
ρr B(6, 6) 0.50 0.14 0.2
ρπ N(1.5, 0.1) 1.50 0.10 1.30
ρy N(0.4, 0.1) 0.40 0.10 0.05
ζp B(6, 6) 0.50 0.14 0.8
ρχ B(18, 8) 0.69 0.09 0.5
ρz B(18, 8) 0.69 0.09 1.0
σχ Γ−1(10, 20) 0.0056 0.0020 0.0051
σz Γ−1(10, 20) 0.0056 0.0020 0.0312
σmp Γ−1(10, 20) 0.0055 0.0020 0.0010
σμ Γ−1(10, 20) 0.0056 0.0020 0.2060

Non-Structural Parameters

σei Γ−1(10, 20) 0.0056 0.0020
σvi Γ−1(10, 20) 0.0056 0.0020
σui Γ−1(10, 20) 0.0055 0.0020

Table 3: Prior Distribution for the parameters and calibrated values


