Discussion of

Wealth Effects on Consumption: Microeconometric Estimates from a New Survey of Household Finances by Olympia Bover

Pedro Albarran Universidad Carlos III

Conference on *Household Finances and Housing Wealth*Banco de España, 24-25 April 2007

Summary

- Estimates of a causal effect of housing wealth on consumption
 - ▶ new *micro* data from Spain
 - results consistent with a precautionary component behind wealth effect
- IV techniques to control for endogeneity in wealth
 - lagged house prices at the municipality (or district) level
 - dummies indicating if real estates were inherited
- ► Flexible control for age, household composition, city size and household head (and partner's) characteristics.

$$C = \alpha(X) + \beta(X)W + U$$

$$E[U|X,Z]=0$$

Summary

- Estimates of a causal effect of housing wealth on consumption
 - ▶ new *micro* data from Spain
 - results consistent with a precautionary component behind wealth effect
- IV techniques to control for endogeneity in wealth
 - lagged house prices at the municipality (or district) level
 - dummies indicating if real estates were inherited
- ► Flexible control for age, household composition, city size and household head (and partner's) characteristics.

$$C = \alpha(X) + \beta(X)W + U$$

$$E[U|X,Z]=0$$

Summary

- Estimates of a causal effect of housing wealth on consumption
 - new micro data from Spain
 - results consistent with a precautionary component behind wealth effect
- IV techniques to control for endogeneity in wealth
 - lagged house prices at the municipality (or district) level
 - dummies indicating if real estates were inherited
- ► Flexible control for age, household composition, city size and household head (and partner's) characteristics.

$$C = \alpha(X) + \beta(X)W + U$$

$$E[U|X,Z]=0$$

1. Non-parametric Wald Estimator

- \triangleright allows a different wealth effect, $\beta(X)$, for each group
- flexible first stage, but
- using only a binary instrument

2. Linear IV

- estimates an overall wealth effect and effects for different age group
- a unique first stage prediction of wealth on instruments and controls

- ▶ identifies *only* an overall effect $\beta^* = E[\beta(X)]$
- ► *flexible* first stage (prediction of wealth specific to each *X*)

- 1. Non-parametric Wald Estimator
 - ▶ allows a different wealth effect, $\beta(X)$, for each group
 - flexible first stage, but
 - using only a binary instrument

2. Linear IV

- estimates an overall wealth effect and effects for different age group
- a unique first stage prediction of wealth on instruments and controls

- ▶ identifies *only* an overall effect $\beta^* = E[\beta(X)]$
- flexible first stage (prediction of wealth specific to each X)

1. Non-parametric Wald Estimator

- ▶ allows a different wealth effect, $\beta(X)$, for each group
- flexible first stage, but
- using only a binary instrument

2. Linear IV

- estimates an overall wealth effect and effects for different age group
- a unique first stage prediction of wealth on instruments and controls

- ▶ identifies *only* an overall effect $\beta^* = E[\beta(X)]$
- flexible first stage (prediction of wealth specific to each X)

1. Non-parametric Wald Estimator

- ▶ allows a different wealth effect, $\beta(X)$, for each group
- flexible first stage, but
- using only a binary instrument

2. Linear IV

- estimates an overall wealth effect and effects for different age group
- a unique first stage prediction of wealth on instruments and controls

- ▶ identifies *only* an overall effect $\beta^* = E[\beta(X)]$
- ► *flexible* first stage (prediction of wealth specific to each *X*)

Overall estimates: MPC out of housing wealth is 0.015

- ▶ for main residence: 0.02
- for other real estates: 0.01

Non-parametric Wald Estimator

- ▶ for young, high permanent income household: 0.02-0.04
- higher (up to 0.07) for older households (not precise) and in small towns

2. Linear IV

► Pattern by age (consistent with precautionary saving): largest effect (0.06) for 35-44

3. 2SLS matching estimator

Overall estimates: MPC out of housing wealth is 0.015

▶ for main residence: 0.02

for other real estates: 0.01

Non-parametric Wald Estimator

- ▶ for young, high permanent income household: 0.02-0.04
- higher (up to 0.07) for older households (not precise) and in small towns

2. Linear IV

► Pattern by age (consistent with precautionary saving): largest effect (0.06) for 35-44

3. 2SLS matching estimator

Overall estimates: MPC out of housing wealth is 0.015

- ▶ for main residence: 0.02
- for other real estates: 0.01

1. Non-parametric Wald Estimator

- ▶ for young, high permanent income household: 0.02-0.04
- higher (up to 0.07) for older households (not precise) and in small towns

2. Linear IV

► Pattern by age (consistent with precautionary saving): largest effect (0.06) for 35-44

3. 2SLS matching estimator

Overall estimates: MPC out of housing wealth is 0.015

- ▶ for main residence: 0.02
- for other real estates: 0.01

1. Non-parametric Wald Estimator

- ▶ for young, high permanent income household: 0.02-0.04
- higher (up to 0.07) for older households (not precise) and in small towns

2. Linear IV

► Pattern by age (consistent with precautionary saving): largest effect (0.06) for 35-44

3. 2SLS matching estimator

Overall estimates: MPC out of housing wealth is 0.015

- ▶ for main residence: 0.02
- ▶ for other real estates: 0.01

1. Non-parametric Wald Estimator

- for young, high permanent income household: 0.02-0.04
- higher (up to 0.07) for older households (not precise) and in small towns

2. Linear IV

► Pattern by age (consistent with precautionary saving): largest effect (0.06) for 35-44

3. 2SLS matching estimator

- Average MPC can be estimated using a linear especification $C = \alpha(X) + \beta(X)W + U$
- Alternatively, logarithmic specification allows to estimate wealth elasticity
- Polinomial specification can be used to reveal interesting patterns.
- In particular, as long as wealth dispersion varies with age, it is important not to focus only on the effect for "average" wealth.

- Average MPC can be estimated using a linear especification $C = \alpha(X) + \beta(X)W + U$
- Alternatively, logarithmic specification allows to estimate wealth elasticity
- Polinomial specification can be used to reveal interesting patterns.
- In particular, as long as wealth dispersion varies with age, it is important not to focus only on the effect for "average" wealth.

- Average MPC can be estimated using a linear especification $C = \alpha(X) + \beta(X)W + U$
- Alternatively, logarithmic specification allows to estimate wealth elasticity
- Polinomial specification can be used to reveal interesting patterns.
- In particular, as long as wealth dispersion varies with age, it is important not to focus only on the effect for "average" wealth.

- Average MPC can be estimated using a linear especification $C = \alpha(X) + \beta(X)W + U$
- Alternatively, logarithmic specification allows to estimate wealth elasticity
- Polinomial specification can be used to reveal interesting patterns.
- In particular, as long as wealth dispersion varies with age, it is important not to focus only on the effect for "average" wealth.

- First stage regressions and cross-sectional variability show that, even without exploiting time series variation
- Potential endogeneity of (lagged) house prices due to selection of area: not important the longer the household live in the area
- but could this explain the high value of MPC just for the group of 35-44 years old?
- alternative story: young households use mortgage to buy the households and some other (nondurable) goods
- Suggestions:
 - check the results using only inheritance dummies as instruments
 - check the impact of wealth on sepatare components of consumption

- First stage regressions and cross-sectional variability show that, even without exploiting time series variation
- Potential endogeneity of (lagged) house prices due to selection of area: not important the longer the household live in the area
- but could this explain the high value of MPC just for the group of 35-44 years old?
- ⇒ alternative story: young households use mortgage to buy the households and some other (nondurable) goods
 - Suggestions:
 - check the results using only inheritance dummies as instruments
 - check the impact of wealth on sepatare components of consumption

- First stage regressions and cross-sectional variability show that, even without exploiting time series variation
- Potential endogeneity of (lagged) house prices due to selection of area: not important the longer the household live in the area
- but could this explain the high value of MPC just for the group of 35-44 years old?
- alternative story: young households use mortgage to buy the households and some other (nondurable) goods
 - ▶ Suggestions:
 - check the results using only inheritance dummies as instruments
 - check the impact of wealth on sepatare components of consumption

- First stage regressions and cross-sectional variability show that, even without exploiting time series variation
- Potential endogeneity of (lagged) house prices due to selection of area: not important the longer the household live in the area
- but could this explain the high value of MPC just for the group of 35-44 years old?
- alternative story: young households use mortgage to buy the households and some other (nondurable) goods
- ▶ Suggestions:
 - check the results using only inheritance dummies as instruments
 - check the impact of wealth on sepatare components of consumption

- First stage regressions and cross-sectional variability show that, even without exploiting time series variation
- Potential endogeneity of (lagged) house prices due to selection of area: not important the longer the household live in the area
- but could this explain the high value of MPC just for the group of 35-44 years old?
- ⇒ alternative story: young households use mortgage to buy the households and some other (nondurable) goods
 - ▶ Suggestions:
 - check the results using only inheritance dummies as instruments
 - check the impact of wealth on sepatare components of consumption

- First stage regressions and cross-sectional variability show that, even without exploiting time series variation
- Potential endogeneity of (lagged) house prices due to selection of area: not important the longer the household live in the area
- but could this explain the high value of MPC just for the group of 35-44 years old?
- ⇒ alternative story: young households use mortgage to buy the households and some other (nondurable) goods
 - Suggestions:
 - check the results using only inheritance dummies as instruments
 - check the impact of wealth on sepatare components of consumption

3. Insignificance of financial wealth effects

Is the financial wealth effect on consumption lower even for those Spanish households participating in financial markets (compared to participants in other countries?)