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Abstract

We estimate the effective reproduction number (Rt) of the current Covid-19 pandemic, 

with US daily infections data between February and September of 2020, at the county 

level. This is then used to estimate the effect of weather and mobility on the spread of 

the pandemic. We find a strong and significant effect of the weather: lower temperatures 

are associated with a higher Rt, and this effect is bigger at temperatures below 0ºC. At 

low temperatures, precipitations are also associated with a higher Rt. We also find that 

mobility reductions related to certain types of locations (retail and recreation, transit 

stations, and workplaces) are effective at reducing Rt, but it is an increase of the time 

spent in parks that helps reduce the spread of the pandemic. The negative effect of 

increased general mobility is bigger in counties with higher population density, worse 

numeracy and literacy PIAAC scores, or a lower share of employment in the services 

sector. Quantitatively, our estimates imply that a 20ºC fall in temperatures from summer 

to winter would increase Rt by +0.35, which can be the difference between a well-

controlled evolution and explosive behavior; and, if this can’t be neutralized through 

general improvements in the fight to stop the pandemic, the additional reduction in 

mobility that would be needed to compensate for this would be equivalent to returning, 

from the more relaxed levels observed in the summer, back to the strictest mobility 

reductions recorded in the US in April.

Keywords: pandemic, Covid-19, coronavirus, temperature, weather, mobility, panel data.

JEL classification: I18, C23, I12.



Resumen

Estimamos el coefi ciente de reproducción efectivo (Rt) de la pandemia de Covid-19, 

con datos de casos detectados en Estados Unidos, a nivel de condado, entre febrero y 

septiembre de 2020. Con esta información estimamos el efecto de la climatología y de 

la movilidad sobre el ritmo de expansión de la pandemia. Encontramos un efecto fuerte 

y signifi cativo de la meteorología: menores temperaturas están asociadas con mayores 

ritmos de expansión, y este efecto es mayor por debajo de 0ºC. Además, cuando las 

temperaturas son bajas, las precipitaciones están asociadas con un mayor Rt. En 

cuanto a la movilidad, encontramos que, en los casos de locales de comercio y recreo, 

estaciones de tránsito y lugares de trabajo, las reducciones de movilidad son efectivas 

en términos de frenar el ritmo de expansión de la pandemia, mientras que en el caso 

de los parques es un aumento de las visitas lo que ayuda a reducir el Rt. El efecto 

negativo de los aumentos de la movilidad general es mayor en condados con alta 

densidad de población, peores resultados en las pruebas PIAAC sobre comprensión 

lectora y de cálculo numérico, o una menor proporción de empleo en el sector 

servicios. Cuantitativamente, nuestras estimaciones implican que una reducción de 

20ºC en las temperaturas entre verano e invierno aumentaría el Rt en +0,35, que puede 

ser la diferencia entre una evolución bien controlada y un comportamiento explosivo; 

y si esto no se consigue neutralizar mediante mejoras generales en la estrategia de 

lucha contra la pandemia, la reducción adicional en la movilidad que sería necesaria 

para compensar ese efecto es equivalente a retornar, desde los niveles más relajados 

apreciados en verano, a los niveles más estrictos de reducción de la movilidad 

observados en Estados Unidos en abril.

Palabras clave: pandemia, Covid-19, coronavirus, temperatura, climatología, 

meteorología, movilidad, restricciones, datos de panel.

Códigos JEL: I18, C23, I12.



BANCO DE ESPAÑA 7 DOCUMENTO DE TRABAJO N.º 2109
BANCO DE ESPAÑA 9 DOCUMENTO DE TRABAJO N.º 20XX 

1 Introduction 

The Covid-19 pandemic is exacting a very heavy cost in human lives despite the extraordinary 

measures adopted to contain its spread. It has also caused far-reaching disruption to society 

and to the global economy throughout 2020. With the pandemic still ongoing, assessing the 

determinants of its evolution and evaluating the effects of containment measures is of major 

importance. 

In this paper we estimate the effective reproduction number (Rt) of the current Covid-19 

pandemic, with US data about the daily number of infections between February and September 

of 2020, at the county level. This is then used to estimate the effect on the spread of the 

pandemic of weather and mobility variables. The panel estimation uses county dummies and 

dummies for state-month interactions, so that the estimated effects capture the differential 

evolution of, say, warmer or cooler counties within a state and in the same month. Focusing on 

Rt instead of the cumulative number of cases or deaths allows us to assess the dynamic effects 

of time-varying determinants, and provides a more useful quantification of the effects of 

changes in the covariates. 

We find a strong and significant effect of the weather, which is troubling for the coming months 

in the Northern hemisphere: lower temperatures are associated with a higher effective 

reproduction number; this effect is bigger at temperatures below ºC, and, at low temperatures, 

precipitations are also associated with a higher Rt. These effects are sizeable: according to our 

preferred linear specification, a summer-to-winter decrease of 20ºC would imply an increase in 

the effective reproduction number by approximately 0.35, which can be the difference between 

a well-controlled evolution and explosive behavior. 

We also find that mobility reductions related to certain types of locations (retail and recreation, 

transit stations, and workplaces) are effective at reducing Rt. On the other hand, and in line with 

previous literature about the probability of infection in open and closed spaces, it is an increase 

of the time spent in parks that helps reduce the spread of the virus. The negative effect of 

increased mobility is bigger in counties with higher population density, worse numeracy and 

literacy PIAAC scores, or a lower share of employment in the services sector. 
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2 Previous studies 

A few papers have already studied the effect of weather and mobility on the spread of the 

Covid-19 pandemic. In the areas where they intersect, our results are in line with what these 

previous articles found, but, compared with them, we put together, in one estimation, the 

following important factors: (i) use Rt as the variable of interest, instead of cumulative number 

of cases or deaths, (ii) use data for an area and time period with high heterogeneity in all 

observed dimensions, (iii) use a big data panel with very granular time and spatial information, 

and (iv) include both weather and mobility information. 

Smith et al (2020) shares three of those factors (and also provides a detailed discussion of why 

they are important). The one where we differ is the granularity of the data: they run regressions 

with data for US states before and after lockdown, we use daily information at county level. In 

this sense, these studies complement each other nicely: they estimate the effect of temperature 

and mobility using big differences across states and comparing situations before and after stay-

at-home orders, whereas in our estimation those big differences go to the fixed effects (together 

with all unobserved differences in characteristics that differ across counties but not over time, 

or across months but not day-to-day) and the estimates capture the impact of temperature and 

mobility by looking at subtle differences within a state in a given month. With a bigger database, 

our regressions can simultaneously include a relatively high number of covariates and non-linear 

interactions between them; on the other hand, they also run estimates within a mechanistic 

epidemiological model, simultaneously identifying both Rt and the effects of temperature and 

mobility, instead of our two-step approach (first estimate Rt, then see how it relates to the 

covariates). And they focus more on R0 and the initial wave of the pandemic, whereas we use 

a longer time period extending until the end of august. Apart from the methodological 

differences, in terms of the estimation results, both studies are in line: mobility is a major factor 

in determining the speed of the spread of the pandemic, but temperature also matters, and 

further reductions in mobility may be needed to face the coming winter in the Northern 

hemisphere1. 

A second paper that is very close to ours is Wilson (2020): he uses basically the same data (Rt, 

weather and mobility in the US at county level) and a very similar methodology, but with some 

important differences2. Coming from central bankers, both papers use a methodology that’s 

common in economics, but with emphasis in different directions. We skew the methodology in 

the direction of what is more common in epidemiology, using Rt, without further alterations, as 

our variable of interest. This is in line with the request of Smith et al (2020) who conclude that 

“the role of environment in transmission has become controversial, in part because of the 

application of models to case prevalence, rather than fundamental epidemiological parameters 

such as R”. One downside of our approach is that it leaves more space for statistical problems 

in the estimation, which is the reason Wilson (2020) skews his methodology towards the best 

                                                                            

1 There is one point where the results of these paper may seem to be in disagreement, but they really are not: they find 
that states with higher population density have a higher R0, whereas in our non-linear estimation specifications we find that 
mobility has a bigger effect on Rt in counties with high population density. These estimates are identifying different effects 
of population density: they are capturing a worse starting point for states with higher population density, we are finding, 
for high-density areas, a higher effectiveness of reductions in mobility at fighting that disadvantage. These counteracting 
forces mean that further analysis would be needed in order to identify whether high-density areas require bigger reductions 
in mobility to bring their local epidemic under control, but in both cases we conclude that a relaxation of control measures 
would be particularly problematic in high-density areas. 
2 We focus the discussion on the methodological differences. Wilson (2020) also looks at the impact on mobility (and not 
only on the spread of the virus) of both weather and non-pharmaceutical interventions. 
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practices in economics, producing sound estimates that should be more robust to possible 

issues of identification or endogeneity, at the cost of deviating slightly from the use of 

“fundamental epidemiological parameters”. His derivation of an empirical dynamic panel data 

model is clearly guided by the standard SIR model of disease spread, but in the end his object 

of interest is not strictly Rt, but an average of the rate of growth of cases over longer periods, 

which is a closely related concept but in a form that is less deeply rooted in epidemiology. 

Nevertheless, the fact that both papers reach similar conclusions is reassuring, because it 

provides robustness to the common results: he also finds that “holding mobility fixed, 

temperature reduces Covid-19 infections” and “holding weather fixed, mobility increases 

infections”. 

Glaeser et al (2020) looks at the effect of mobility on the spread of Covid-19 using data from 

New York and four other US cities, and Kapoor et al (2020) looks at the effect of social 

distancing in the initial spread of the pandemic, with differences in rainfall with respect to the 

local average as their instrument for social distancing. In terms of the previous discussion about 

best practices in epidemiology and economics, these two papers fall very close to the latter, 

using instrumental variables that ensure exogeneity of the regressors but also using cumulative 

numbers of cases and deaths as their variables of interest. 

Hamada et al (2020) uses data from 25 counties that had big Covid-19 outbreaks, and analyzes 

how mobility affected the rate of increase in the number of cases. They find a strong relationship 

between these variables, with Pearson correlation coefficients above 0·7 for 20 of the 25 

counties evaluated. Chang et al (2020) provide more nuanced results in terms of mobility than 

we can assess, but don’t investigate the effect of environmental variables such as temperature. 

They estimate a SEIR model with location data from millions of mobile phones in 10 US cities, 

and find that a small minority of “superspreader” points of interest account for a large majority 

of infections and that restricting maximum occupancy at each point of interest is more effective 

than uniformly reducing mobility. Their model also correctly predicts higher infection rates 

among disadvantaged racial and socioeconomic groups solely from differences in mobility: they 

find that disadvantaged groups have not been able to reduce mobility as sharply, and that they 

visit places that are more crowded and therefore higher-risk. Other recent papers that use very 

granular or even individual mobility data to study the spread of Covid-19 are Almagro et al 

(2020) and Couture et al (2020), both of which find that mobile phone data is suitable for 

quantifying movement and social contact, and is a useful tool for assessing and analyzing the 

evolution of the pandemic: out-of-home activity is strongly associated with Covid-19 infections. 

The OECD’s “Walking the tightrope: Avoiding a lockdown while containing the virus” looks at 

how containment measures (such as workplace or school closures) affect mobility, and how 

this in turn affects Rt. With a sample at the country level, they find that the biggest effect is for 

school closures, stay-at-home requirements and workplace closures, but it’s not easy to 

distinguish between these because they have often been imposed at the same time. 

Desmet and Wacziarg (2020) is also closely related to our research: they analyze the correlates 

of COVID-19 cases and deaths across US counties. They consider a wide range of correlates 

- population density, public transportation, age structure, nursing home residents, 

connectedness to source countries, etc. - finding that these variables are important predictors 

of variation in disease severity. Their results are in relation to the cumulative number of cases 

and deaths, which means they have to put a lot of effort into controlling for the different starting 

time of the epidemic on each region. By using Rt as our main variable of interest, we can avoid 

this problem, we can focus on the dynamic effect of time-varying variables such as temperature 
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and mobility, and we also get a more useful quantification of the effects of our covariates, since 

keeping Rt<1 is the main target for a policymaker trying to keep the spread of the pandemic 

under control. 

Baker et al (2020) use a climate-dependent epidemic model to simulate the Covid-19 

pandemic, testing different scenarios of climate dependence based on known coronavirus 

biology. They find that weather matters but is not enough to substantially limit pandemic growth, 

as levels of susceptibility among the population remain the driving factor for the pandemic. 

Poirier et al (2020) examine the spatial variability of (a proxy to) the basic reproductive numbers 

of Covid-19 across provinces and cities in China, and assess the effect of mobility, and of 

environmental factors such as temperature and humidity. Because of the limited size of their 

database (just a few dozen observations), they evaluate the effect of each factor in an 

independent regression. By using a much more granular database, with daily data for the US 

at the county level, we can run much more detailed estimations, with many covariates under 

the same specification, including non-linear interactions, plus time and space fixed effects that 

allow for a very robust assessment of the effects of our covariates. 

Rosario et al (2020) evaluate the relationship between weather factors (temperature, humidity, 

solar radiation, wind speed, and rainfall) and Covid-19 infection, using data from six cities in the 

State of Rio de Janeiro, Brazil. Their database only spans 47 days, and doesn’t offer much 

geographical heterogeneity, but they still, they find significant effects from several weather 

factors. But Sharma et al (2020) use a similar methodology with data for India and find opposite 

results for important variables such as temperature. 

Hamidi, Sabouri and Ewing (2020) find that denser areas are hotspots to spread infections and 

increase mortality rates. 
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3 Data 

We have constructed a big database of USA data at the county level, from February 

through September of 2020, combining information from several sources. 

 Epidemiological data: we use the daily number of new confirmed Covid-19 cases in 

the United States at the county level. This data can be accessed through the American 

Center for Disease Control and Prevention (CDC) website, but is actually elaborated by 

the usafacts initiative, which compiles information published by different official local 

sources. 

 Effective reproduction number: we estimate it following the approach of Cori et al. 

(2013), as implemented in the EpiEstim software package. As discussed by Gostic et al 

(2020), this method avoids biases induced by other alternatives, doesn’t rely on 

assumptions that may not always apply, and is also particularly suited for real-time 

estimation of the evolution of an epidemic. Following Soucy et al (2020), we use rolling 

windows of 14 days of the number of confirmed Covid-19 cases (longer than the 

common windows of 7 days, in order to smooth out noise from the county data). The 

serial interval is specified as a full non-parametric distribution, following the results of 

Tindale et al (2020) with data from Singapore, which implies an approximately-

symmetric distribution with an average serial interval of 4.5 days. When an outbreak is 

discovered, estimates for Rt can be artificially high; to prevent this from affecting the 

results, the estimated values are capped at 4 (any values higher than 4, which are 

typically found in the first days with data on some counties, are substituted by 4, which 

is a conservative estimate of the basic reproduction number R0). 

 Weather data: the variables of interest are the average temperature (degrees Celsius) 

and precipitations (mm). This is in line with several papers that include weather variables 

to explain COVID-19 propagation (see Xu et al, 2020; Carson et al, 2020). We use daily 

observations by weather station and geographical counties’ information, which can be 

accessed through the NOAA's National Centers for Environmental Information (NCEI) 

and the National Weather Service website. The data at weather station level is assigned 

to every county by combining the measurements from the ten stations that are closest 

to the coordinates of the center of the county, with a weighted average where the weight 

is the inverse of that distance (1/d). This ensures that counties where there is no weather 

station get a measurement based on several nearby stations, and that stations close to 

the center of the county receive a disproportionately high weight in the average. 

 Mobility data: we have collected these data from Google Global Mobility Reports which 

is a database to analyze how people move in their everyday life during the pandemic. 

Google elaborates this data using information from mobile phones, collected through 

their applications such as Google Maps, which allows the company to record changes 

in the locations of phones anonymously. It is defined as the change with respect to 

baseline days before the pandemic outbreak (the median between January 3rd and 

February 6th). The information is sorted into different location categories: grocery and 

pharmacy, retail and recreation, public stations, parks, workspaces, and homes; in our 

estimations, we use both the indicator for parks, and, as an indicator of general mobility, 

an average of the indicators for retail and recreation, transit stations, and workplaces. 

 PIAAC: the literacy and numeracy indicator comes from the Program for the 

International Assessment of Adult Competencies (PIAAC), which can be accessed 

through the National Center for Education Statistics. The PIAAC is a survey which 
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collects data about the adult’s performance in literacy, numeracy and problem solving. 

In general terms, it is able to assess the cognitive and workplace skills and allows to 

sort population into three main categories: people with low (P1), intermediate (P2) and 

high (P3) information-processing level. We use the share of the population that only 

attains low scores (P1); we use the average of the shares for literacy and numeracy.  

 Density: inhabitants per squared kilometer, as found in the US census. 

 Services: share the services sector in employment in 2014-2018, as found in US 

census. 

The timing assumptions are as follows: (i) temperature and mobility today affect contagions 

today (they have an effect on how many contacts there are and how many of them end up in 

contagion), and (ii) contagions at t become identified cases at t+7 (the lag would probably be 

slightly shorter for cases found through contact tracing, and slightly longer for the rest). 

Following these assumptions, since Rt is estimated with a 14-day window of cases data, we 

apply the analogous transformation to temperature and mobility data, calculating a 14-day 

moving average, that then enters the estimations with a lag of one week. Therefore, average 

temperatures and mobility between t and t+13 affect the Rt estimated with cases data from t+7 

to t+20. 

Since the data is only available at county level, some of the observations refer to relatively big 

population groups (the Los Angeles county is home to almost 10 million people), whereas many 

counties with low population have to be left out of the estimation because they have too few 

cases and Rt can’t be estimated, or because Google didn’t publish mobility data because of 

privacy concerns; this is very common in counties with low population (almost no counties with 

less than 32,000 people have all the necessary data). Graph 1 represents, first, the histogram 

of counties by population, for all counties and for the ones that could be used in the estimation 

because of data availability, and, second, the evolution of the number of counties used in the 

estimation across time (some counties disappear from the sample, typically because Google 

didn’t publish mobility data for them during the summer because of increased privacy concerns, 

or because the number of cases became too small to provide an estimate of Rt). 

  
Graph 1: counties used in the estimation 

The estimation sample ends on the 31st of August of 2020 because Google drastically reduced 

the coverage of the mobility indicators for the second half of August, providing data only for a 

much smaller number of counties. Since this indicator enters the estimation as a two-week 

average lagged one week, the estimation could still be extended until the end of the month. 
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The map in Graph 2 represents the counties that appear at least once in the estimation. They 

are mainly populous areas that have had significant Covid-19 outbreaks. They are 

approximately 18% of the counties but they represent 49% of the population of the United 

States. 

 
Graph 2: counties used in the estimation 

As implied by this map, there is a lot of variability in the weather data used in the estimation. 

That is also the case for the epidemiological data; graph 3 presents all the values of Rt that 

were used in the estimation, compared with the national average. This diversity of observations 

helps identify the effect of the weather on the evolution of the pandemic without having to rely 

on broad North-vs-South or spring-vs-summer comparisons, where comparability of the 

situations would be more questionable. 

 
Graph 3: Rt for the US and for all counties used in the estimation 
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collects data about the adult’s performance in literacy, numeracy and problem solving. 

In general terms, it is able to assess the cognitive and workplace skills and allows to 

sort population into three main categories: people with low (P1), intermediate (P2) and 

high (P3) information-processing level. We use the share of the population that only 

attains low scores (P1); we use the average of the shares for literacy and numeracy.  

 Density: inhabitants per squared kilometer, as found in the US census. 

 Services: share the services sector in employment in 2014-2018, as found in US 

census. 

The timing assumptions are as follows: (i) temperature and mobility today affect contagions 

today (they have an effect on how many contacts there are and how many of them end up in 

contagion), and (ii) contagions at t become identified cases at t+7 (the lag would probably be 

slightly shorter for cases found through contact tracing, and slightly longer for the rest). 

Following these assumptions, since Rt is estimated with a 14-day window of cases data, we 

apply the analogous transformation to temperature and mobility data, calculating a 14-day 

moving average, that then enters the estimations with a lag of one week. Therefore, average 

temperatures and mobility between t and t+13 affect the Rt estimated with cases data from t+7 

to t+20. 

Since the data is only available at county level, some of the observations refer to relatively big 

population groups (the Los Angeles county is home to almost 10 million people), whereas many 

counties with low population have to be left out of the estimation because they have too few 

cases and Rt can’t be estimated, or because Google didn’t publish mobility data because of 

privacy concerns; this is very common in counties with low population (almost no counties with 

less than 32,000 people have all the necessary data). Graph 1 represents, first, the histogram 

of counties by population, for all counties and for the ones that could be used in the estimation 

because of data availability, and, second, the evolution of the number of counties used in the 

estimation across time (some counties disappear from the sample, typically because Google 

didn’t publish mobility data for them during the summer because of increased privacy concerns, 

or because the number of cases became too small to provide an estimate of Rt). 

  
Graph 1: counties used in the estimation 

The estimation sample ends on the 31st of August of 2020 because Google drastically reduced 

the coverage of the mobility indicators for the second half of August, providing data only for a 

much smaller number of counties. Since this indicator enters the estimation as a two-week 

average lagged one week, the estimation could still be extended until the end of the month. 
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4 Econometric framework 

We rely on a typical fixed effects model, specified as follows:  

𝑅𝑅𝑡𝑡𝑐𝑐 = 𝑎𝑎𝑐𝑐 + 𝑏𝑏1𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡−7
𝑐𝑐 + +𝑏𝑏2𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡−7𝑐𝑐 + 𝑏𝑏3𝑀𝑀𝑀𝑀𝑏𝑏𝑡𝑡−7𝑐𝑐 + 𝑏𝑏4𝑃𝑃𝑎𝑎𝑃𝑃𝑡𝑡−7𝑐𝑐 + ∑ 𝑇𝑇𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑡𝑡𝑐𝑐           (1) 

Where:  

 Superscript “c” refers to counties and subscript “t” refers to days, so that the 

units of observations varies at the county and day level.  

 The dependent variable is the effective reproduction number.  

 The main regressors are temperature (Tem), precipitations (Pre), average 

mobility towards locations in retail and recreation, train stations, and work 

places (Mob), and mobility in parks (Par). These are all time-varying. All 

regressors are lagged by one week to reduce endogeneity and correctly 

incorporate the lag with which contacts become infections and then cases. 

 𝑇𝑇𝑖𝑖 are monthly fixed effects that we add in the equation to control for all 

unobservable common factors affecting all counties over time. 

 𝑎𝑎𝑐𝑐 are county fixed effects that account for all county-specific characteristics 

that are constant. To deal with it we implement the fixed effect estimator 

(within estimator). 

 𝑢𝑢𝑡𝑡𝑐𝑐 is the error term.  

In all cases, standard errors are clustered at the county level, to account for the fact that the 

observations are correlated over time. A standard OLS estimation would assume that residuals 

are uncorrelated across both space and time; clustering by county relaxes this assumption, 

allowing for correlation in the residuals across time in each country (but not across counties). 

This results in bigger adjusted standard errors (which we present in the estimation tables below) 

and stricter requirements for inference in terms of coefficient significance. 

Controlling for county fixed effects allows to control for all county-specific characteristics that 

are constant over time. To deal with it we implement the fixed effect estimator (within estimator). 

In addition, in our preferred specification we add to Eq. (1) interactions between time and state 
fixed effects (∑ ∑ 𝑇𝑇𝑖𝑖 ∗ 𝑠𝑠𝑗𝑗𝑗𝑗𝑖𝑖 ),3 which take into account all unobservable factors that change over 

time at the state level, such as the regional economic situation and state-level policies 

implemented to cope with the spread of the virus.  

The inclusion of these detailed fixed effects ensures that the estimated coefficients reflect subtle 

changes that are not correlated with major changes in circumstances or behavior. For example, 

the estimated effect of temperature is not the result of comparing the summer with the spring 

(when schools were open and people didn’t have a lot of information about the pandemic), or 

comparing Arizona with Alaska; instead, it captures the much subtler fact that counties with 

higher temperatures than other counties in the same state and in the same month observed a 

more negative deviation of their Rt with respect to the usual level for that county, and to the 

evolution that was common to the whole state in that month. 

                                                                            

3 Letter “m” and subscript “i” refer to month fixed effects. Letter “s” and subscript “j” refer to state fixed effects. 
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 The dependent variable is the effective reproduction number.  

 The main regressors are temperature (Tem), precipitations (Pre), average 

mobility towards locations in retail and recreation, train stations, and work 

places (Mob), and mobility in parks (Par). These are all time-varying. All 

regressors are lagged by one week to reduce endogeneity and correctly 

incorporate the lag with which contacts become infections and then cases. 

 𝑇𝑇𝑖𝑖 are monthly fixed effects that we add in the equation to control for all 

unobservable common factors affecting all counties over time. 

 𝑎𝑎𝑐𝑐 are county fixed effects that account for all county-specific characteristics 

that are constant. To deal with it we implement the fixed effect estimator 

(within estimator). 

 𝑢𝑢𝑡𝑡𝑐𝑐 is the error term.  

In all cases, standard errors are clustered at the county level, to account for the fact that the 

observations are correlated over time. A standard OLS estimation would assume that residuals 
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This results in bigger adjusted standard errors (which we present in the estimation tables below) 
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are constant over time. To deal with it we implement the fixed effect estimator (within estimator). 
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fixed effects (∑ ∑ 𝑇𝑇𝑖𝑖 ∗ 𝑠𝑠𝑗𝑗𝑗𝑗𝑖𝑖 ),3 which take into account all unobservable factors that change over 

time at the state level, such as the regional economic situation and state-level policies 

implemented to cope with the spread of the virus.  

The inclusion of these detailed fixed effects ensures that the estimated coefficients reflect subtle 

changes that are not correlated with major changes in circumstances or behavior. For example, 

the estimated effect of temperature is not the result of comparing the summer with the spring 

(when schools were open and people didn’t have a lot of information about the pandemic), or 

comparing Arizona with Alaska; instead, it captures the much subtler fact that counties with 

higher temperatures than other counties in the same state and in the same month observed a 

more negative deviation of their Rt with respect to the usual level for that county, and to the 
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3 Letter “m” and subscript “i” refer to month fixed effects. Letter “s” and subscript “j” refer to state fixed effects. 
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The issue of possible reverse causality or variable endogeneity also needs to be discussed: if 

mobility responds to Rt, our estimates could be biased and the conclusions could be wrong. It 

is certain that when the situation worsens and the news are full of reports about the carnage of 

the pandemic, people reduce their visits to restaurants and shops, and try to work from home 

if possible. But this is expected in relation to the number of cases and, even more so, of deaths 

caused by the virus, in levels instead of rate of growth. In terms of our estimation, there would 

be an endogeneity problem if mobility today responded to the effective reproductive coefficient 

calculated with the following week’s data on identified Covid-19 cases. This is not completely 

implausible, because Rt can have strong autocorrelation, so it is a good idea to run a formal 

test. 

We run a panel version of the Granger causality test, using the daily data about Rt and mobility 

at the county level, with a specification that allows up to 28 lags of both variables with respect 

to our estimation specification. The test is ran for the unbalanced panel of used observations 

and, following Holtz-Eakin et al (1988), includes county fixed effects: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−7𝑐𝑐 = 𝑎𝑎𝑐𝑐 +∑ 𝑀𝑀1𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡−7−𝑘𝑘𝑐𝑐
28

𝑘𝑘=1
+∑ 𝑀𝑀2𝑘𝑘𝑅𝑅𝑡𝑡−𝑘𝑘𝑐𝑐

28

𝑘𝑘=𝑡𝑡
+ 𝑢𝑢𝑡𝑡𝑐𝑐 

We find that no 𝑀𝑀2𝑘𝑘 is statistically different from zero, for any k between 1 and 28, meaning that 

the effective reproduction coefficient does not Granger-cause mobility in our county-level 

database. Based on this result, we can dismiss reverse causality or covariate endogeneity 

issues in our estimation. 

With a higher number of lags in the test (e.g. 35), some remote lags of Rt can be significant in 

the Granger-causality test. We don’t think this is indicative of an endogeneity problem, though: 

as stated above, it is expected that mobility today will respond to cases and deaths today, and 

this does not depend on the effective reproduction number today, but it does depend on long-

past values of the effective reproduction number. In order to illustrate this claim, Graph 4 shows 

the distribution across counties of the correlation coefficients between the number of cases in 

the week leading to t, and the Rt calculated with two weeks of data until t, or t-14, or t-28. 

When Rt is lagged four weeks, there’s a positive correlation in most cases, but when it is 

contemporaneous, the correlation is negative in 49.3% of the cases (even in this case where Rt 

is calculated with two weeks of data and the number of cases used is the average of the second 

of those two weeks). 

 
Graph 4: distribution of correlation coefficients of cases and past Rt In the counties used in 

the estimation 
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Part of the explanation for this is that the number of cases depends on a very long sequence 

of Rt values, and at the county level these don’t show strong autocorrelation. Graph 5 shows 

the distribution of autocorrelation values at the county level, for a lag of one, two or four weeks. 

Autocorrelation is clearly positive when looking at a one-week lag (where one week of data is 

actually common to both estimation windows in the comparison), but it’s centered on zero for 

both two-week and four-week lags. 

 
Graph 5: distribution of autocorrelation coefficients of Rt In the counties used in the estimation 
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5 Estimation results 

5.1 Linear specifications 

 

Table 1 reports the estimation results of our baseline model. We move from a less demanding 

specification (1) in which we use state fixed effects instead of county fixed effects, to the more 

demanding specification (4), in which we control for county fixed effects (our units of 

observations) and also for interactions between time and state fixed effects, as explained in the 

previous section. 

Overall, the estimated coefficients show the expected sign: temperature and mobility in parks 

are negatively associated with the Rt, while higher precipitations and higher mobility towards 

recreational, train stations and work related locations increase the spread of the virus. 

Results are robust across specifications, although there are some interesting differences. In 

particular, the effect of temperature is larger whenever the estimation controls for state-level 

policies against the spread of the Covid-19 virus (column 2 and 4), which suggests that part of 

the effect of the temperature would be biased by the omission of state policy responses to 

Covid-19, if the latter happen to have been implemented in periods when the temperature was 

high. The opposite holds for rainfalls, i.e. the effect of precipitation is reduced when policies are 

taken into account. The effects of mobility variables are stable across all specifications. 

In the rest of this subsection we discuss the estimated coefficients of the specification reported 

in Column 4, the most demanding one, which is our preferred linear specification. The estimated 

effect for temperature (when it increases by one degree Celsius, the effective reproduction 

number decreases by 0.0173 units) is sizeable. According to this, and since our estimation 

assumes linearity, a summer-to-winter decrease of 20ºC (the national average difference 

between July and January) would imply an increase in the effective reproduction number by 

approximately 0.35, which can be the difference between a well-controlled evolution and 

explosive behavior4. The estimation of this effect is also strongly statistically significant. By 

contrast, the estimate for precipitations shows the expected sign but the coefficient is small 

and not significant once we control for interactions between state and month fixed effects. 

The first mobility variable measures number of visits to three specific categories of locations: 

retail and recreation, train stations, and workplaces. According to the estimation results, if 

mobility increases by one percentage point (pp) the effective reproduction number increases 

by 0.017 units. To contextualize this figure: for one week in April, mobility decreased to around 

-49% in the US as a whole - the lowest point in the period we consider (from February to August 

2020); our estimated coefficient implies that this led to a decrease in the effective reproduction 

number of 0.83 units. A comparison with the estimated effect of temperature is interesting: 

compared with the situation in the summer, an additional fall in mobility of 21 points would be 

needed in order to compensate the increase in Rt associated with a 20ºC fall in temperature; 

since the average mobility indicator was already at around -25% during the summer, this would 

bring it close to the maximum recorded in April. 

                                                                            

4 The very slow reduction in daily cases in the US as a whole during May produced estimates of Rt of approximately 0.97, 
and the increase of the so-called second wave implied a maximum Rt of 1.18 at the beginning of July. 
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Table 1: Main specifications. 

  (1) (2) (3) (4) 
VARIABLES Rt Rt Rt Rt 
     
Temperature -0.0047*** -0.0154*** -0.0052*** -0.0173*** 

  (0.0016) (0.0016) (0.0017) (0.0017) 

     
Precipitations 0.0004*** 0.0001 0.0004*** 0.0001 
  (0.0001) (0.0001) (0.0001) (0.0001) 

     
Mobility (recreation, stations, work) 0.0145*** 0.0138*** 0.0167*** 0.0169*** 
  (0.0006) (0.0006) (0.0007) (0.0008) 

     
Mobility parks -0.0012*** -0.0009*** -0.0014*** -0.0012*** 
  (0.0002) (0.0001) (0.0002) (0.0002) 

Fixed effects state dummies & 
month dummies 

state dummies 
interacted with 

month dummies 

county dummies 
& month 
dummies 

county dummies 
& state dummies 
interacted with 

month dummies 

Observations 89,669 89,669 89,669 89,669 
R-squared 0.302 0.365 0.3028 0.3664 
Clusters county county County county 

Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
          

 

On the other hand, mobility in parks is negatively associated with the rate of contagiousness. 

The magnitude of the effect is much smaller than the aforementioned measure of mobility (for 

a one pp increase in park mobility, the spread of the virus decreases by 0.0012 units), but the 

effect is still highly statistically significant, and quantitatively sizeable: a reduction of the mobility 

indicator about parks from its level over the summer (around +60%) to what was already 

observed in November (approximately zero) is associated with an increase of Rt of 

approximately 0.07, which means it would explain almost a third of the increase over this period. 

Overall, these results are in line with what previous studies have found about the virus and its 

transmission. It has been known since early spring that the virus survives much longer at low 

temperatures: Chin et al (2020) found that the SARS-CoV-2 virus that causes Covid-19 is highly 

stable at 4ºC, but is sensitive to heat, as it deteriorates approximately ten times faster at 22ºC 

than at 4ºC, and six times faster at 37ºC than at 22ºC. On the other hand, many studies, and 

most notably Shen et al (2020), have found that the transmission of the virus is much more 

likely indoors than outdoors. Our results show that these results from laboratory experiments 

and contact-tracing studies also translate to the evolution of the epidemic at the macro level. 

In order to illustrate the quantitative effect associated to each explaining variable, Graph 6 

presents a decomposition of the nation-wide evolution of Rt. For most of the variables, the 

aggregate national data is used, but temperature and rainfall are population-weighted averages 

of the county data. The size of each contribution is calculated using the coefficients estimated 

in column 4 of Table 1. 
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effect for temperature (when it increases by one degree Celsius, the effective reproduction 

number decreases by 0.0173 units) is sizeable. According to this, and since our estimation 

assumes linearity, a summer-to-winter decrease of 20ºC (the national average difference 

between July and January) would imply an increase in the effective reproduction number by 

approximately 0.35, which can be the difference between a well-controlled evolution and 

explosive behavior4. The estimation of this effect is also strongly statistically significant. By 

contrast, the estimate for precipitations shows the expected sign but the coefficient is small 

and not significant once we control for interactions between state and month fixed effects. 

The first mobility variable measures number of visits to three specific categories of locations: 

retail and recreation, train stations, and workplaces. According to the estimation results, if 

mobility increases by one percentage point (pp) the effective reproduction number increases 

by 0.017 units. To contextualize this figure: for one week in April, mobility decreased to around 

-49% in the US as a whole - the lowest point in the period we consider (from February to August 

2020); our estimated coefficient implies that this led to a decrease in the effective reproduction 

number of 0.83 units. A comparison with the estimated effect of temperature is interesting: 

compared with the situation in the summer, an additional fall in mobility of 21 points would be 

needed in order to compensate the increase in Rt associated with a 20ºC fall in temperature; 

since the average mobility indicator was already at around -25% during the summer, this would 

bring it close to the maximum recorded in April. 

                                                                            

4 The very slow reduction in daily cases in the US as a whole during May produced estimates of Rt of approximately 0.97, 
and the increase of the so-called second wave implied a maximum Rt of 1.18 at the beginning of July. 
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Fixed effects state dummies & 
month dummies 
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interacted with 

month dummies 

county dummies 
& month 
dummies 

county dummies 
& state dummies 
interacted with 

month dummies 
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R-squared 0.302 0.365 0.3028 0.3664 
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Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
          

 

On the other hand, mobility in parks is negatively associated with the rate of contagiousness. 

The magnitude of the effect is much smaller than the aforementioned measure of mobility (for 

a one pp increase in park mobility, the spread of the virus decreases by 0.0012 units), but the 

effect is still highly statistically significant, and quantitatively sizeable: a reduction of the mobility 

indicator about parks from its level over the summer (around +60%) to what was already 

observed in November (approximately zero) is associated with an increase of Rt of 

approximately 0.07, which means it would explain almost a third of the increase over this period. 

Overall, these results are in line with what previous studies have found about the virus and its 

transmission. It has been known since early spring that the virus survives much longer at low 

temperatures: Chin et al (2020) found that the SARS-CoV-2 virus that causes Covid-19 is highly 

stable at 4ºC, but is sensitive to heat, as it deteriorates approximately ten times faster at 22ºC 

than at 4ºC, and six times faster at 37ºC than at 22ºC. On the other hand, many studies, and 

most notably Shen et al (2020), have found that the transmission of the virus is much more 

likely indoors than outdoors. Our results show that these results from laboratory experiments 

and contact-tracing studies also translate to the evolution of the epidemic at the macro level. 

In order to illustrate the quantitative effect associated to each explaining variable, Graph 6 

presents a decomposition of the nation-wide evolution of Rt. For most of the variables, the 

aggregate national data is used, but temperature and rainfall are population-weighted averages 

of the county data. The size of each contribution is calculated using the coefficients estimated 

in column 4 of Table 1. 
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As graph 6 shows, according to these estimates, the increase of Rt above one in the second 

wave of infections, at the end of June, was mainly caused by an increase of mobility. The third  

that started in October, on the other hand, happened without an increase in visits to locations 

of retail and recreation, transit stations, and workplaces, and was associated, instead, to a 

reduction in park visits and, above all, to the fall in temperatures. 

Graph 7 presents a counterfactual scenario where we assess, according to the estimates from 

specification (4), the evolution of Rt by state that would have been observed if temperatures 

had remained constant on their levels of January. The difference implied by this exercise is very 

big, both in terms of levels (with an average of 1.43 in July instead of the observed 1.09, the 

second wave of Covid-19 in USA would have implied doubling the number of deaths 

approximately every 9 days instead of every 37 days) and in terms of evolution (with constant 

temperature, Rt would have been flat or falling from August to November, instead of increasing). 

By applying the coefficients of specification (4) to the state-wide data, the results presented in 

detail in Appendix 1 show how much of the regional variability in Rt can be explained by 

differences in weather and mobility. According to these results, regional differences in mobility 

explain approximately half of the state-level variability in Rt, whereas temperature and 

precipitations explain another 20%, and the unexplained part is just 29%. Further research 

could try to relate these residuals at the state level –or, even better, the estimated county and 

state-by-month fixed effects– to observable variables such as population density, income, 

educational levels, political views, etc.5; but, because it is a pressing matter to disclose our 

current results, we leave this for future work. 

                                                                            

5 Note that the effects we analyze for some of these variables in the section about non-linear specifications refer to how 
they alter the impact of mobility or temperature. It is not their direct impact on Rt, which can’t be captured in our 
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5.2 Nonlinear specifications 

 

Adding to specification (4) some interactions between variables allows us to assess nonlinear 

dynamics in their effects. Table 2 summarizes these results. All specifications retain the general 

characteristics of (4): county fixed effects, state-month interacted fixed effects, and clustering 

by county. 

Specification (5) adds an interaction of temperature and precipitations, which allows us to 

decompose the non-statistically-significant coefficient of estimation (4) into two statistically 

significant ones: the effect of precipitations on Rt is approximately null at high temperatures 

(when the average is around 25ºC), but it is negative at lower temperatures. Additionally, a non-

linearity is allowed at freezing point, and this shows that cold weather is much more negative 

in terms of the spread of the virus when average temperatures falls below 0ºC. 

Table 2: non-linear specifications 
 (5) (6) (7) (8) 

VARIABLES Rt Rt Rt Rt 

Temperature -0.0158*** -0.0327*** -0.0167*** -0.0336*** 
 (0.0018) (0.0023) (0.0017) (0.0024) 

Temperature-negative (<0ºC) -0.0210**   -0.0127 
 (0.0103)   (0.0100) 

Precipitations 0.0010*** 0.0007* 0.0010*** 0.0008** 
 (0.0004) (0.0004) (0.0004) (0.0004) 

Temperature x Precipitations -0.00004** -0.00003* -0.00004*** -0.00004** 
 (0.0000) (0.0000) (0.0000) (0.0000) 

Mobility (recreation, stations, work) 0.0168*** 0.0251*** 0.0210*** 0.0260*** 
 (0.0008) (0.0009) (0.0017) (0.0018) 

Mobility x Temperature  -0.0005***  -0.0005*** 
  (0.0000)  (0.0000) 

MobilityParks -0.0011*** -0.0028*** -0.0010*** -0.0028*** 
 (0.0002) (0.0004) (0.0001) (0.0004) 

MobilityParks x Temperature  0.0001***  0.0001*** 
  (0.0000)  (0.0000) 

Mobility x Density   0.1820* 0.0619 
   (0.0000) (0.0000) 

Mobility x PIAAC   0.0153*** 0.0249*** 
   (0.0052) (0.0048) 

Mobility x Services   -0.0004*** -0.0003*** 

   (0.0001) (0.0001) 

Fixed effects 

county dummies & 
state dummies 
interacted with 

month dummies 

county dummies & 
state dummies 
interacted with 

month dummies 

county dummies & 
state dummies 
interacted with 

month dummies 

county dummies 
& state dummies 
interacted with 

month dummies 
Observations 89,669 89,669 89,669 89,669 
R-squared 0.3668 0.3729 0.3681 0.3750 
Cluster county county county county 

Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
 

Specification (6) introduces an interaction of temperature and mobility, and finds that the effect 

of mobility is reduced in warm weather, both for parks and for general mobility. The implications 

of these nonlinearities for the coming winter in the Northern hemisphere are complex: a given 

reduction of mobility generates a bigger fall in Rt, but a mobility relaxation also has bigger 

negative effects. If we move from a summer situation with an average temperature of 25ºC, 

general mobility of -25% and parks mobility of +60%, to a winter situation with average 

temperature of 5ºC and the same -25% and +60% mobility, this estimation indicates an 

                                                                            

specifications because of the use of fixed effects to control for these and all other (possibly unobserved) characteristics of 
the counties that are constant over time. 
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month dummies 
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interacted with 
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specifications because of the use of fixed effects to control for these and all other (possibly unobserved) characteristics of 
the counties that are constant over time. 
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specifications because of the use of fixed effects to control for these and all other (possibly unobserved) characteristics of 
the counties that are constant over time. 
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Graph 7: counterfactual scenario for Rt in the USA with constant January temperature 

As graph 6 shows, according to these estimates, the increase of Rt above one in the second 

wave of infections, at the end of June, was mainly caused by an increase of mobility. The third  

that started in October, on the other hand, happened without an increase in visits to locations 

of retail and recreation, transit stations, and workplaces, and was associated, instead, to a 

reduction in park visits and, above all, to the fall in temperatures. 

Graph 7 presents a counterfactual scenario where we assess, according to the estimates from 

specification (4), the evolution of Rt by state that would have been observed if temperatures 

had remained constant on their levels of January. The difference implied by this exercise is very 

big, both in terms of levels (with an average of 1.43 in July instead of the observed 1.09, the 

second wave of Covid-19 in USA would have implied doubling the number of deaths 

approximately every 9 days instead of every 37 days) and in terms of evolution (with constant 

temperature, Rt would have been flat or falling from August to November, instead of increasing). 

By applying the coefficients of specification (4) to the state-wide data, the results presented in 

detail in Appendix 1 show how much of the regional variability in Rt can be explained by 

differences in weather and mobility. According to these results, regional differences in mobility 

explain approximately half of the state-level variability in Rt, whereas temperature and 

precipitations explain another 20%, and the unexplained part is just 29%. Further research 

could try to relate these residuals at the state level –or, even better, the estimated county and 

state-by-month fixed effects– to observable variables such as population density, income, 

educational levels, political views, etc.5; but, because it is a pressing matter to disclose our 

current results, we leave this for future work. 

                                                                            

5 Note that the effects we analyze for some of these variables in the section about non-linear specifications refer to how 
they alter the impact of mobility or temperature. It is not their direct impact on Rt, which can’t be captured in our 
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increase of Rt of +0.33, which is very similar to the +0.35 that the linear estimation would imply. 

And with this change in temperature, the effective coefficient for general mobility goes from 

0.013 to 0.023. This makes it easier to compensate, via additional reductions of mobility, for 

the effect of colder weather, but also increases the repercussions of any relaxation in mobility. 

Therefore, it is now more important to keep restricting visits to locations related to retail and 

recreation, transit stations and workplaces; and also to spend more time in parks. And all of 

this, not only because they have an effect on the effective reproduction number, but because 

this effect is bigger when it’s cold. 

Specification (7) adds interactions with characteristics of the counties, and finds that the effect 

of mobility is enhanced in counties with high population density, where a larger share of the 

population attained the lowest scores (P1) in the adult numeracy and literacy tests of OECD’s 

Programme for the International Assessment of Adult Competencies (PIAAC), and where the 

services sector represents a lower percentage of employment (possibly because firms in the 

industry sector have more workers in bigger spaces)6. 

All the coefficients presented in specifications (5) through (7) are statistically significant, including 

the ones that identify non-linear effects. 

Specification (8) puts all of these elements together and checks that the sign of the estimated 

coefficients is robust to the simultaneous inclusion of all covariates; the quantification does 

change in some cases, though, and a few become statistically non-significant. 

                                                                            

6 We also tried specifications including interactions with median income. This turns out to be significant only when mobility 
data is not included in the estimation, which is in line with the results from Chang et al (2020), who find that higher infection 
rates among disadvantaged racial and socioeconomic groups are due to differences in mobility. 
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reduction of mobility generates a bigger fall in Rt, but a mobility relaxation also has bigger 

negative effects. If we move from a summer situation with an average temperature of 25ºC, 

general mobility of -25% and parks mobility of +60%, to a winter situation with average 

temperature of 5ºC and the same -25% and +60% mobility, this estimation indicates an 

                                                                            

specifications because of the use of fixed effects to control for these and all other (possibly unobserved) characteristics of 
the counties that are constant over time. 
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increase of Rt of +0.33, which is very similar to the +0.35 that the linear estimation would imply. 

And with this change in temperature, the effective coefficient for general mobility goes from 

0.013 to 0.023. This makes it easier to compensate, via additional reductions of mobility, for 

the effect of colder weather, but also increases the repercussions of any relaxation in mobility. 

Therefore, it is now more important to keep restricting visits to locations related to retail and 

recreation, transit stations and workplaces; and also to spend more time in parks. And all of 

this, not only because they have an effect on the effective reproduction number, but because 

this effect is bigger when it’s cold. 

Specification (7) adds interactions with characteristics of the counties, and finds that the effect 

of mobility is enhanced in counties with high population density, where a larger share of the 

population attained the lowest scores (P1) in the adult numeracy and literacy tests of OECD’s 

Programme for the International Assessment of Adult Competencies (PIAAC), and where the 

services sector represents a lower percentage of employment (possibly because firms in the 

industry sector have more workers in bigger spaces)6. 

All the coefficients presented in specifications (5) through (7) are statistically significant, including 

the ones that identify non-linear effects. 

Specification (8) puts all of these elements together and checks that the sign of the estimated 

coefficients is robust to the simultaneous inclusion of all covariates; the quantification does 

change in some cases, though, and a few become statistically non-significant. 

                                                                            

6 We also tried specifications including interactions with median income. This turns out to be significant only when mobility 
data is not included in the estimation, which is in line with the results from Chang et al (2020), who find that higher infection 
rates among disadvantaged racial and socioeconomic groups are due to differences in mobility. 
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6 Robustness 

We provide two sets of robustness checks. First, we re-estimate our preferred specification 

(column 4 in Table 1, which is reported in column 1 of table 3 to ease comparisons) by replacing 

monthly dummies to dummies of two-week periods. That is, we specify time fixed effects at a 

higher frequency. This allows us to control in a finer way for state-level policy changes, in 

particular accounting for policies that may have been implemented within the month. Results 

for this specification (9) are reported in column 2 of Table 3. Overall, results are consistent with 

our main specification, and the effect of mobility towards the other locations is quite stable. On 

the other hand, the size of the effect of temperature and mobility in parks is reduced; however, 

this is expected, since we are now estimating twice as many time fixed effects, i.e. our 

specification is more demanding. 

In a second robustness check, we check that our results are not affected by the serial 

correlation induced by the specific construction of our variables. Note that, since Rt, has to be 

estimated by construction using a window7 and refers to a lengthy period of time; for 

consistency, we apply an analogous procedure to all time-varying regressors on the right-hand 

side of the equation, calculating 14-day moving averages. This use of moving averages 

generates serial correlation in our sample, since the values of two consecutive days are based 

on a lot of common information. To control for this, all estimations in Table 1 allow for serial 

correlation of the residuals by means of clustering at the county level. But still, one may worry 

that our results are affected by our construction procedure. Therefore, as a robustness check, 

in specification (10) we estimate a version of our preferred specification that now uses only one 

set of observations every two weeks. This way, each observation corresponds to a two-weeks 

average, without overlapping with the previous or later observations. Note, some serial 

correlation may still be in place because of the nature of the variables, not not, this time, 

because of the data-compilation procedure. Results are reported in the last two columns of 

Table 3, defining time fixed effects each month in specification (10), and each two-weeks in 

specification (11). Overall, results are robust, although the coefficients are slightly smaller in 

magnitude and less significant. This is reasonable, since the number of observations drops 

considerably and the specification is very demanding (again, we are estimating a very large 

number of fixed effects). 

 

  

                                                                            

7 In our case the rolling window is of 14-days: instead of the 7-days window that is common in the literature, we extended 
it to 14 in order to avoid noise when using county data about Covid-19 cases. 
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7 In our case the rolling window is of 14-days: instead of the 7-days window that is common in the literature, we extended 
it to 14 in order to avoid noise when using county data about Covid-19 cases. 
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7 In our case the rolling window is of 14-days: instead of the 7-days window that is common in the literature, we extended 
it to 14 in order to avoid noise when using county data about Covid-19 cases. 
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Table 3. Robustness: frequency and time fixed effects. 
 
  (4) (9) (10) (11) 

  

sample frequency: daily (each obs is 
14-days moving average) 

sample frequency: two-weeks (simple 
average) 

VARIABLES Rt Rt Rt Rt 
Temperature -0.0173*** -0.00528*** -0.00644** -0.00662* 
  (0.0017) (0.00191) (0.00295) (0.00383) 

     
Precipitations 0.0001 0.00005 -0.00012 0.00010 
  (0.0001) (0.00009) (0.00014) (0.00018) 

     
Mobility 0.0169*** 0.01216*** 0.00649*** 0.00335*** 
  (0.0008) (0.00076) (0.00138) (0.00119) 

     
Mobility in parks -0.0012*** -0.00078*** -0.00050*** -0.00033* 

  (0.0002) (0.00015) (0.00017) (0.00017) 

Fixed effects 
county dummies 
& state dummies 
interacted with     

month dummies 

county dummies 
& state dummies 
interacted with        

two-week 
dummies 

county dummies 
& state dummies 
interacted with     

month dummies 

county dummies 
& state dummies 
interacted with        

two-week 
dummies 

Observations 89,669 89,669 6,612 6,612 
R-squared 0.36644 0.43024 0.43232 0.51951 
Clusters county county county county 
Note. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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7 In our case the rolling window is of 14-days: instead of the 7-days window that is common in the literature, we extended 
it to 14 in order to avoid noise when using county data about Covid-19 cases. 
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A third exercise, presented in Table 4, checks that extending the sample period beyond the 

period of low data availability in September doesn’t alter the results. The first column, once 

again, restates for convenience the results from the main specification (4). The second column, 

identified as (12), uses the same specification but extends the sample until the end of October, 

finding estimates that are qualitatively similar, but obviously with some numerical differences. 

The coefficient for temperature is slightly lower and the one for mobility is slightly higher, but 

these differences are not statistically significant (and they wouldn’t be either if the exercise was 

done with two non-overlapping samples, one until July and one starting in August). 

The last two columns in this table repeat the estimations of (4) and (12) but limiting the sample 

to the few counties for which Google provides mobility data at the beginning of September. As 

this is a non-random subsample of counties, biased towards those with higher population, the 

estimates change visibly (to some extent, in the direction of the results from the non-linear 

estimations, that already told us that mobility had a bigger impact in counties with higher 

population density). As in the comparison of (4) and (12), the difference between the estimation 

(13) that ends in August and the one (14) that ends in October is relatively small. 

We interpret the results from specifications (12) through (14) as indicative that ending the main 

estimation in August is not biasing the results. 

 
Table 4. Robustness: sample extended until the end of October. 
 

  
(4) 

March-August 
(12) 

March-October 
(13) 

March-August 
(14) 

March-October 

  

Using all counties for which there is 
data at each point in time 

Limiting the sample to the few 
counties that have mobility data at 

the beginning of September 

VARIABLES Rt Rt Rt Rt 
Temperature -0.0173*** -0.0145*** -0.0146*** -0.0128*** 
  (0.0017) (0.0013) (0.0025) (0.0018) 

     
Precipitations 0.0001 0.0001* 0.0001 0.0001 
  (0.0001) (0.0001) (0.0001) (0.0001) 

     
Mobility 0.0169*** 0.0147*** 0.0246*** 0.0237*** 
  (0.0008) (0.0007) (0.0016) (0.0014) 

     
Mobility in parks -0.0012*** -0.000913*** -0.0014*** -0.0014*** 

  (0.0002) (0.0001) (0.0004) (0.0003) 

Fixed effects 

county dummies 
& state dummies 
interacted with     

month dummies 

county dummies 
& state dummies 
interacted with     

month dummies 

county dummies 
& state dummies 
interacted with     

month dummies 

county dummies 
& state dummies 
interacted with     

month dummies 
Observations 89,669 106,239 18,061 22,549 
R-squared 0.3663 0.3525 0.6671 0.6599 
Clusters county county county county 
Note. Cluster-robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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7 Conclusions 

In this paper we estimate the effective reproduction number (Rt) of the current Covid-19 

pandemic, with US daily infections data between February and September of 2020, at the 

county level. This is then used to estimate the effect on the spread of the pandemic of weather 

and mobility. Focusing on Rt instead of the cumulative number of cases or deaths allows us to 

assess the dynamic effects of time-varying determinants, and provides a more useful 

quantification of the effects of changes in the covariates. The panel estimation uses county 

dummies, plus dummies for state-month interactions, so that the estimated effects capture the 

differential evolution of, say, warmer or cooler counties within a state and in the same month. 

We find a strong and significant effect of the weather, which is troubling for the coming months 

in the Northern hemisphere: lower temperatures are associated with a higher effective 

reproduction number; this effect is bigger at temperatures below ºC, and, at low temperatures, 

precipitations are also associated with a higher Rt. These effects are sizeable: according to our 

preferred linear specification, a summer-to-winter average decrease of 20ºC would imply an 

increase in the effective reproduction number by approximately 0.35, which can be the 

difference between a well-controlled evolution and explosive behavior. 

We also find that mobility reductions related to certain locations (retail and recreation, transit 

stations, and workplaces) are effective at reducing Rt, an effect that also becomes bigger at 

low temperatures. On the other hand, and in line with previous literature about the probability 

of infection in open and closed spaces, it is an increase of the time spent in parks that helps 

reduce the spread of the epidemic. The negative effect of increased mobility is bigger in 

counties with higher population density, worse numeracy and literacy PIAAC scores, or a lower 

share of the services sector on employment. 
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Appendix 1. Decomposition of Rt at the state level 

In this appendix we apply the estimated coefficients from specification (4) to the state-level data, 

and analyze the contributions of the different factors to the regional evolution and to the 

variability at this level. 

Graph 8 presents contribution charts, similar to those in Graph 6 but now for each state and 

only with averaged monthly information. The unexplained residual is divided here into two 

different parts: a common one calculated at the national level (in grey, common to all the panels 

in the graph) and an idiosyncratic one (in blue) that reflects differences in the regional evolution 

that are not related to mobility or weather. These blue bars are, in general terms, small. 

This is also reflected in table 4, which calculates the contribution of each group of factors to 

the regional variability in Rt: on average, mobility explains approximately half, weather explains 

20%, and just 29% of the (state-level) variability is not explained by the model. 

Finally, Graph 9 presents counterfactual scenarios similar to the one in Graph 7 but with regional 

detail: we assess, according to our estimates, the evolution of Rt that would have been 

observed in each state if temperatures had remained constant on their regional levels of 

January. The difference is small in Florida and almost non-existent in Hawaii, but very big in 

most states and in the national average. 
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Graph 8: contributions to the evolution of Rt on each state 
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Graph 8 (cont.): contributions to the evolution of Rt on each state 
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Graph 8 (cont.): contributions to the evolution of Rt on each state 
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Table 4: contribution of the different factors to the regional variability in Rt

weather mobility
others

(unexplained) weather mobility
others

(unexplained)
AK Alaska 20 44 36 0.09 -0.38 -0.26
AL Alabama 31 51 18 -0.20 -0.30 -0.07
AR Arkansas 22 61 18 -0.17 -0.31 -0.09
AZ Arizona 31 40 28 -0.14 -0.48 0.05
CA California 16 42 41 -0.13 -0.63 0.18
CO Colorado 41 38 21 0.01 -0.56 -0.02
CT Connecticut 23 41 36 -0.12 -0.54 0.08
DE Delaware 34 41 25 -0.14 -0.49 0.06
FL Florida 35 25 40 -0.27 -0.56 0.24
GA Georgia 48 12 40 -0.20 -0.51 0.12
HI Hawaii 16 41 42 -0.20 -0.73 0.39
IA Iowa 9 75 16 -0.10 -0.39 -0.05
ID Idaho 7 63 30 0.00 -0.34 -0.22
IL Illinois 28 22 50 -0.13 -0.58 0.14
IN Indiana 14 71 16 -0.12 -0.37 -0.07
KS Kansas 18 68 14 -0.14 -0.35 -0.06
KY Kentucky 24 65 11 -0.15 -0.40 -0.01
LA Louisiana 48 34 17 -0.23 -0.40 0.04
MA Massachusetts 10 42 48 -0.09 -0.72 0.22
MD Maryland 23 26 51 -0.16 -0.64 0.23
ME Maine 5 72 23 -0.06 -0.42 -0.11
MI Michigan 10 71 20 -0.04 -0.60 0.07
MN Minnesota 17 41 42 -0.03 -0.65 0.13
MO Missouri 23 64 13 -0.14 -0.38 -0.04
MS Mississippi 27 50 23 -0.21 -0.23 -0.13
MT Montana 9 56 35 0.02 -0.26 -0.29
NC North Carolina 41 34 25 -0.16 -0.48 0.07
ND North Dakota 10 63 27 -0.04 -0.37 -0.14
NE Nebraska 9 67 24 -0.10 -0.34 -0.10
NH New Hampshire 11 70 19 -0.01 -0.49 -0.08
NJ New Jersey 16 36 48 -0.14 -0.73 0.27

NM New Mexico 9 47 43 -0.03 -0.40 -0.12
NV Nevada 11 64 26 -0.06 -0.53 0.01
NY New York 10 45 45 -0.09 -0.72 0.20
OH Ohio 16 77 7 -0.12 -0.46 0.01
OK Oklahoma 23 57 20 -0.18 -0.27 -0.11
OR Oregon 18 53 29 -0.03 -0.53 -0.01
PA Pennsylvania 22 32 45 -0.11 -0.58 0.12
RI Rhode Island 11 42 48 -0.10 -0.69 0.22
SC South Carolina 31 50 19 -0.20 -0.29 -0.08
SD South Dakota 4 75 20 -0.06 -0.32 -0.16
TN Tennessee 28 61 11 -0.16 -0.38 -0.04
TX Texas 46 20 34 -0.23 -0.46 0.13
UT Utah 12 66 22 -0.03 -0.54 0.00
VA Virginia 35 15 50 -0.15 -0.56 0.14
VT Vermont 11 49 40 -0.07 -0.60 0.09
WA Washington 27 47 26 0.00 -0.63 0.04
WI Wisconsin 8 76 16 -0.06 -0.50 0.00
WV West Virginia 11 58 30 -0.11 -0.27 -0.17
WY Wyoming 9 56 35 0.04 -0.21 -0.38

20 50 29

the differences from the national average (%)
Weight of the different factors in explaining

Mean difference on the effect on Rt (with sign)

unweighted mean
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Graph 9: counterfactual scenario for Rt, with temperature constant at regional January levels 
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