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Abstract

We show that the distribution of any portfolio whose components jointly follow a location-
scale mixture of normals can be characterised solely by its mean, variance and skewness.
Under this distributional assumption, we derive the mean-variance-skewness frontier in
closed form, and show that it can be spanned by three funds. For practical purposes,
we derive a standardised distribution, provide analytical expressions for the log-likelihood
score and explain how to evaluate the information matrix. Finally, we present an empirical
application in which we obtain the mean-variance-skewness frontier generated by the ten
Datastream US sectoral indices, and conduct spanning tests.

Keywords: Generalised Hyperbolic Distribution, Maximum Likelihood, Portfolio Frontiers,
Sortino Ratio, Spanning Tests, Tail Dependence.

JEL classification: C52, C32, G11.



1 Introduction

Despite its simplicity, mean-variance analysis remains the most widely used asset
allocation method. There are several reasons for its popularity. First, it provides a
very intuitive assessment of the relative merits of alternative portfolios, as their risk and
expected return characteristics can be compared in a two-dimensional graph. Second,
mean-variance frontiers are spanned by only two funds, which simplifies their calculation
and interpretation. Finally, mean-variance analysis becomes the natural approach if
we assume Gaussian or elliptical distributions, because then it is fully compatible with
expected utility maximisation regardless of investor preferences (see Chamberlain, 1983;
Owen and Rabinovitch, 1983; Berk, 1997; as well as Ross, 1978 for a related discussion).

At the same time, mean-variance analysis also suffers from important limitations.
Specifically, it neglects the effect of higher order moments on asset allocation. In this
sense, Patton (2004) uses a bivariate copula model to show the empirical importance
of asymmetries in asset allocation. Further empirical evidence has been provided by
Jondeau and Rockinger (2006) and Harvey et al. (2002). Unfortunately, it is rather
difficult to obtain general results for mean-variance-skewness frontiers unless one intro-
duces some structure in the N(N + 1)(N + 2)/6 non-redundant third moments, where
N is the cross-sectional dimension. In this sense, Athayde and Flores (2004) derive
several useful properties of mean-variance-skewness frontiers, and obtain their shape for
some examples by simulation techniques. Similarly, Briec, Kerstens, and Jokung (2007)
propose an optimisation algorithm that, starting from a specific portfolio, obtains the
efficient mean-variance-skewness portfolio along a given direction (see also Jurczenko,
Maillet, and Merlin, 2006).

In this paper, we make mean-variance-skewness analysis fully operational by work-
ing with a rather flexible family of multivariate asymmetric distributions, known as
location-scale mixtures of normals (LSMN), which nest as particular cases several im-
portant elliptically symmetric distributions, such as the Gaussian or the Student ¢, and
also some well known asymmetric distributions like the Generalised Hyperbolic (GH)
introduced by Barndorff-Nielsen (1977). The GH distribution in turn includes other
well known and empirically relevant special cases, such as symmetric and asymmetric

versions of the Hyperbolic (Chen, Hirdle, and Jeong, 2008), Normal Gamma (Madan
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and Milne, 1991), Normal Inverse Gaussian (Aas, Dimakos, and Haff, 2005) and Mul-
tivariate Laplace distributions (Cajigas and Urga, 2007).! In addition, LSMN nest other
interesting examples, such as finite mixtures of normals, which have been shown to be
a flexible and empirically plausible device to introduce non-Gaussian features in high
dimensional multivariate distributions (see e.g. Kon, 1984), but which at the same time
remain analytically tractable.

In terms of portfolio allocation, our first result is that if the distribution of asset
returns can be expressed as a LSMN, then the distribution of any portfolio that com-
bines those assets will be uniquely characterised by its mean, variance and skewness
parameter. Therefore, the differences between any two portfolios can be fully explained
by the discrepancies between those three parameters.

Then, we analyse these moments to characterise the feasible investment opportunity
set, and obtain the mean-variance-skewness frontier in closed form. Furthermore, we
will show that the efficient part of this frontier can be spanned by three funds: the two
funds that generate the usual mean-variance frontier, plus an additional fund that spans
the skewness-variance frontier. Moreover, we show that one can replace this last fund
by the portfolio that maximises the Sortino ratio. Lastly, we show that we can continue
to span the frontier with three funds when no risk-free asset exists.

For practical purposes, we study several aspects related to the maximum likelihood
estimation of a general multivariate conditionally heteroskedastic dynamic regression
model whose innovations have a LSMN representation. In particular, we obtain analyt-
ical expressions for the score by means of the EM algorithm. We also describe how to
evaluate the unconditional information matrix by simulation, and confirm the accuracy
of our proposed technique in a Monte Carlo exercise.

Finally, we apply our methodology to obtain the frontier generated by the ten US
sectoral indices in Datastream. Our results illustrate several interesting features of the
resulting mean-variance-skewness frontier. Specifically, we find that, for a given variance,
important gains in terms of positive skewness can be obtained with very small reductions

in expected returns. We also analyse the effect of including additional assets in our

!Barndorff-Nielsen and Shephard (2001) also use the GH distribution to capture the unconditional
distribution of returns on assets whose price dynamics are generated by continuous time stochastic
volatility models in which the instantaneous volatility follows an Ornstein-Uhlenbeck process with Lévy
innovations.
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portfolios. In particular, we formally test whether the Datastream World-ex US index is
able to improve the investment opportunity set in the traditional mean-variance sense,
as well as in the skewness-variance sense. For the sake of robustness, we check our
results using two non-nested members of the LSMN family: the GH distribution, and a
location-scale mixture of two Gaussian vectors.

The rest of the paper is organised as follows. We define LSMN in section 2.1, and
explain how to reparametrise them so that their mean is zero and their covariance matrix
the identity. Then, we analyse portfolio allocation in section 3, and discuss maximum
likelihood estimation in section 4. Section 5 presents the results of our empirical applic-
ation, which are followed by our conclusions. Proofs and auxiliary results can be found

in appendices.

2 Distributional assumptions
2.1 Location-scale mixtures of normals

Consider the following /N-dimensional random vector u, which can be expressed in

terms of the following Location-Scale Mixture of Normals (LSMN ):
u=a+ YRy (1)

where @ and 3 are N-dimensional vectors, Y is a positive definite matrix of order N,
r ~ N(0,Iy), and ¢ is an independent positive mixing variable. Asusual, the conditional
normality given the mixing variable could be justified by appealing to the central limit
theorem. For the sake of concreteness, we will denote the distribution function of ¢ as
F(+;7), where T is a vector of ¢ shape parameters. For instance, £ will be a Generalised
Inverse Gaussian variate in the GH case (see Jgrgensen, 1982). Since u given ¢ is
Gaussian with conditional mean o + YB¢ ' and covariance matrix Y&, it is clear
that a and Y play the roles of location vector and dispersion matrix, respectively. The
parameters 7 allow for flexible tail modelling, while the vector 3 introduces skewness in
this distribution.

We will refer to the distribution of u as LSM Ny(a, 3, Y, 7). To obtain a version
that we can use to model the standardised residuals of any conditionally heteroskedastic,

dynamic regression model, we need to restrict @ and Y in (1) as follows:
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Proposition 1 Let e* ~ LSMNy(a,3,YX,T) and m(7) = F (f_k). If mp(1) < 00 for
k=1,2, a = —c(B,7)8 and

Y= v e,
where
and )

_ /ma(m) ()

7T1(7')

CU(T> )

then E(e*) =0 and V(e*) = Iy.

As expected, the scale of ¢', which can be fully characterised by 7 (7), is arbitrary,
and can be set to 1 without loss of generality. Notice also that the distribution of &*
becomes a simple scale mixture of normals, and thereby spherical, when 3 is zero. Like
any scale mixture of normals, though, this distribution does not allow for thinner tails
than the normal. Nevertheless, financial returns are very often leptokurtic in practice,
as section 5 confirms.

Another important feature of a LSMN is that, although the elements of £* are uncor-
related, they are not independent except in the multivariate normal case. In general, the
LSMN induces “tail dependence”, which operates through the positive mixing variable
in (1). Intuitively, £ forces the realisations of all the elements in €* to be very large in
magnitude when it takes very small values, which introduces dependence in the tails of
the distribution. In addition, we can make this dependence stronger in certain regions
by choosing 3 appropriately. Specifically, we can make the joint probability of extremely
low realisations of several variables much higher than what a Gaussian variate can allow
for, as illustrated in Figures 1a-f, which compare the density of the standardised bivariate
normal with those of two asymmetric examples: a particular case of the GH distribution
known as the asymmetric ¢+ and a LSMN whose mixing variable is Bernoulli.? We can
observe in Figures 1c and le that the non-Gaussian densities are much more peaked
around their mode than the Gaussian one. In addition, the contour plots of the asym-
metric examples show that we have introduced much fatter tails in the third quadrant

by considering negative values for all the elements of 3. This is confirmed in Figure 2,

Interestingly, the LSMN driven by the Bernoulli mixing variable can be interpreted as a mixture of
two multivariate normal distributions with different mean vectors but proportional covariance matrices.
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which represents the so-called exceedance correlation between the uncorrelated marginal
components in Figure 1. Therefore, a LSMN could capture the empirical observation
that there is higher tail dependence across stock returns in market downturns (see Longin
and Solnik, 2001). In this sense, the examples that we consider illustrate the flexibility
of a LSMN to generate different shapes for the exceedance correlation. However, it is
important to mention that while the GH distribution can display non-zero values at the
extreme tails, any finite LSMN cannot be distinguished from the Gaussian distribution
in terms of its extreme value exceedance correlation, as Figure 2 illustrates.

It is possible to show that the marginal distributions of linear combinations of a

LSMN (including the individual components) can also be expressed as a LSMN:

Proposition 2 Let €* be distributed as a N x 1 standardised LSMN random vector with

parameters T and 3. Then, for any vector w € RN, with w # 0, s* = w'e*/V/wW'wW is
distributed as a standardised LSMN scalar random variable with parameters T and

) - C(BBT) (W) Ve
ww e (B8.7) — 1] (WB2/(BB)

where (-, -) is defined in (2).

Proposition 2 generalises an analogous result obtained by Blaesild (1981) for the GH
distribution. Note that only the skewness parameter, 5(w), is affected, as it becomes a
function of the weights, w. As we shall see in section 3, this is particularly useful for asset
allocation purposes, since the returns to any conceivable portfolio of a collection of assets
is a linear combination of the returns on those primitive assets. For the same reason,
Proposition 2 is very useful for risk management purposes, since we can compute in closed
form the Value at Risk, Expected Shortfall or Marginal Value at Risk of any portfolio
from the parameters of the joint distribution (see Jorion, 2006, for formal definitions of
these statistics). Finally, Proposition 2 also implies that skewness is a “common feature”
of LSMN, in the Engle and Kozicki (1993) sense, as we can generate a full-rank linear

transformation of €* with the asymmetry confined to a single element.

2.2 Dynamic econometric specifications

Let y; be a vector of excess returns on N risky assets. To accommodate flexible

specifications, we assume that those excess returns are generated by the following con-
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ditionally heteroskedastic dynamic regression model:

yi = 1(0) + 27 (),
p(0) = p(I;1;6), (3)
3(0) =X (l;-1;0),

where p() and vech [3()] are N and N (N + 1)/2-dimensional vectors of functions known
up to the p x 1 vector of true parameter values, 0y, I;_; denotes the information set
available at t — 1, which contains past values of y, and possibly other variables, Ei / 2(9)
is some N x N “square root” matrix such that Zi/Q(O)Zi/Q’(H) = 3,(0), and €} is a vector
martingale difference sequence satisfying E(e;|l;—1;600) = 0 and V (e} |I;—1;00) = In. As
a consequence, F(y:|l;_1;00) = p,(00) and V (y:|Ii—1;00) = X:(60).

In this context, we will assume that the distribution of €} is a LSMN conditional on
I; 1. Importantly, given that the standardised innovations are not generally observable,
the choice of “square root” matrix is not irrelevant except in univariate models, or in mul-
tivariate models in which either ¥;(0) is time-invariant or €; is spherical (i.e. 8 = 0), a
fact that previous efforts to model multivariate skewness in dynamic models have over-
looked (see e.g. Bauwens and Laurent, 2005). Therefore, if there were reasons to believe
that e; were not only a martingale difference sequence, but also serially independent,
then we could in principle try to estimate the “unique” orthogonal rotation underlying
the “structural” shocks. However, since we believe that such an identification procedure
would be neither empirically plausible nor robust, we prefer the conditional distribution
of y; not to depend on whether Ei/ %(0) is a symmetric or lower triangular matrix, nor
on the order of the observed variables in the latter case. This can be achieved by making

3 a function of past information and a new vector of parameters b in the following way:
B,(6.b) = £'(6)b. (4)
It is then straightforward to see that the distribution of y,; conditional on [;_; will not
1
depend on the choice of X7 (0).
3 Portfolio allocation
3.1 The investor’s problem

Consider an investor whose wealth at time ¢ — 1 is A;_;. Assuming that a risk-free

asset with returns r; exists (see Appendix A for the no riskless asset case), then her
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wealth at ¢ can be expressed as:
At = At—l (1 + Tt + W;yt) s

where w; is the vector of allocations to the risky assets, which together with r; are known
at ¢t — 1. In this context, we can show the following property for any portfolio of LSMN

returns:

Proposition 3 Lety,; be conditionally distributed as a N x 1 LSMN random vector with
conditional mean p,(0), conditional covariance matriz 3,(0), and shape parameters T

and b. Then, for any vector w; € RY known at t—1, the conditional distribution of W}y,
can be fully characterised as a function of its mean, variance and skewness parameter

w3, (0)b.

Proposition 3 implies that, from an investor’s point of view, the relative attractiveness
of any two portfolios can always be explained by their expected returns, variances and
skewness because the higher order moments depend on the lower ones and the common
tail parameters 7. Hence, we only need to characterise the investment opportunity set
in terms of these moments to fully describe the investor’s available strategies. This
in turn involves studying the mean-variance-skewness frontier, which limits the feasible
combinations of the first three moments of portfolios. In this sense, it is straightforward
to show that the expected return of A; can be expressed as A; 1[1 + r, + wju,(0)] while
the conditional variance is A? ;w}3,(0)w;. As for the third centred moment, we can use

the results in Appendix D to show that it can be expressed as A3 | times
§0t<0, b, T) = (Slt + 352t53t> [W;Et<0)b]3 + 382t [WéEt(G)Wt] [W:‘/Et(e)b] y (5)
where

s = B[l =m(n)]’] B (O)b, 7)),
sy = c2(T)c[b'Z(0)b, 7],
sy = {c[p'Z,(0)b, 7] —1}/[b'S,(0)b].

Since in line with most of the literature we are implicitly assuming that the investment
technology shows constant returns to scale, we can normalise the above moments by

setting A; 1 = 1 without loss of generality.
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3.2 Mean-variance-skewness frontiers

The mean-variance-skewness frontier is a generalisation of the mean-variance frontier:

tor = oo\ 11(0) (011, (0). (6)

which we obtain by maximising expected return g, for every possible standard deviation
oot- As is well known, the mean-variance frontier (6) can be spanned by just two funds:
the risk-free asset and a portfolio with weights proportional to 3, (0) ().

The efficient section of the mean-variance-skewness frontier yields the maximum
asymmetry for every feasible combination of mean and variance. We can express this

primal problem as follows:

Wllellft<9> = Hot
max b7 s { S "

Obviously, there are other equivalent approaches to obtain this frontier. For instance,
Athayde and Flores (2004) maximise expected returns subject to constraints on the vari-
ance and asymmetry. However, we prefer the formulation in (7) because it is straight-
forward to ensure the feasibility of the target expected return and variance. Specifically,

we know that any feasible portfolio must satisfy

P < (05 (0)1(6). (8)

since its Sharpe ratio cannot be greater than the Sharpe ratio corresponding to the
mean-variance frontier (6).

We can solve (7) by forming the Lagrangian

L=¢,(0,b, 7))+, [t — W;Ht(e)] + 72 [0(2315 - Wézt(e)wt] ) (9)

and differentiating it with respect to the portfolio weights, thereby obtaining the follow-

ing first order conditions:

% = {3(51t + 359¢53¢) [blzt(e)wt]z + 352 [ngt(O)Wt]} 3:(0)b

+6502¢ [b'E(O)W,] T (@)W, — 71 ,(0) — 27,54(0)w,. (10)

8Wt

Then, we can explicitly obtain in closed-form the set of portfolio weights that satisfy

these conditions:
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Proposition 4 The efficient mean-variance-skewness portfolios that solve (10) can be
expressed as either

Y s i T AL !

- > (), (6) — ——— b, 11
T BN (TN ()
. AT (o, 701 (B)b |
" Mot — Q¢ (Mogs Tot ) -1
Wi = . 1(0),(0) + b, 12
e Ome) o OO R (12)
where

Dyt o0e) = \/ (2(6)b) (1O)2 O (0) ~ (OB

U(%t (;1,{5(0)2;1(9);1,75(9)) - M%t
Thus, there are two potential solutions,® both of which can be expressed as a linear
combination of the mean-variance efficient portfolio 3, (8)p,(0) and a portfolio with
weights b. This second vector can be interpreted as an asymmetry-variance efficient
portfolio, because we can maximise asymmetry for a given standard deviation by con-
sidering portfolios with weights proportional to b (see Appendix B for details). Hence,
Proposition 4 shows that the efficient region of the mean-variance-skewness frontier can
be spanned by the aforementioned three funds.
In order to obtain an explicit equation for the frontier in mean-variance-skewness
space, let j = —1,+1 and define ¢, (j) as the third centred moment that results from
introducing (11) or (12) in (5), respectively. It is straightforward to show that ¢y, (j)

can be expressed as:

©or(J) = (s1¢ + 3s2u53¢) hae (4h5, — 3hay)
+3 {(s1e + Bsaesa) he (hoe — hiy) [1(0) 2 (0) 1y (0)] + sathue } 110y 0y

7 (e — 1) {03 (104 (0)5: (811, (8)] — 43}

(s1t + 352t53t)(4h%t — h2t)ﬂ%t
8 ( + {(s1¢ + 3sa53¢) (har — 13,) [ (0)2;1(0) 1, (0)] + 352 } 75, ) (14)

where

hyy = p:(60)b b'%,(0)b

LN - / - )
TAOPCIITAC) 1 (0)2(0) 1y (0)

It is not difficult to show that (14) satisfies the set of properties obtained by Athayde

and hy =

and Flores (2004) for general distributions. The two most important ones are homothecy

and linearity along directions in which the Sharpe ratio remains constant. Homothecy

3In order to assess whether (11) or (12) yields the efficient part of the frontier, we can either check
the second order conditions or simply choose the solution with the highest asymmetry, which can be
computed using (14). But if (8) is satisfied with equality, which only occurs on the mean variance
frontier, then we can show that wi, = w3, and ¢, (—1) = @, (1).
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states that if a portfolio with weights w} belongs to the frontier, then kw; will also be
on the frontier. Moreover, if we consider a direction in which o, is proportional to 1,
oot = K’y say, then the cubic root of the asymmetry will also be proportional to ||
along this direction.

In addition, we can show the convexity of the mean-variance-skewness frontier in
terms of portfolio weights.

Proposition 5 If the conditional distribution of y, is a LSMN, then any linear combin-
ation of two mean-variance-skewness efficient portfolios will also be an efficient mean-
variance-skewness portfolio.

Figure 3 shows the shape of the mean-variance-skewness frontier for an example with
five risky assets. The three dimensional plot of the frontier is displayed in Figure 3a.
In addition, we also compute the three types of contour plots. Figure 3b shows the
well known mean-variance frontier, but it also includes several iso-skewness lines along
which ¢,(0, b, T) is constant. Note that the efficient section of the mean-variance frontier
corresponds to negative skewness in this example.

We focus on the mean-skewness space in Figure 3c, where we plot the iso-variance
lines and include the efficient parts of both mean-variance and asymmetry-variance fron-
tiers, whose linearity on this space is due to the homothecy property discussed above.
Note that the mean-variance frontier is located on the eastern part of the space. In
contrast, the asymmetry-variance frontier, which contains those portfolios that yield
maximum asymmetry for given values of standard deviation and whose weights are pro-
portional to b, is on the northern half. These relative positions hold in general because,
for a given variance, the mean-variance frontier contains the points with highest expected
return, which is displayed on the x-axis, while the asymmetry-variance frontier maxim-
ises skewness (on the y-axis). Finally, we consider the skewness-variance space in Figure
3d, where we can observe the linearity of the skewness-variance frontier (see Appendix
B for details).

We have also plotted in this figure the portfolios chosen by investors who minimise

the second lower partial moment,

S(Wt) = \/Et—l [min<07 Wzlfyt)Q]v

for any given target return. The portfolios that solve this problem maximise the Sortino

ratio, which is defined as wju,(0)/S(w;) (see e.g. Pedersen and Satchell, 2002). We
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can span those portfolios by scaling any of them with a positive scalar (see Hogan and

Warren, 1974). In the case of LSMN, we can show the following additional property.

Proposition 6 If the conditional distribution of y; is a LSMN, then the portfolios that
maximise the Sortino ratio will be along a straight line on the mean-variance-skewness
frontier.

By combining Propositions 5 and 6, we can show that the mean-variance-asymmetry
frontier can also be spanned if we combine a portfolio that maximises the Sortino ratio
with the risk-free asset and a mean-variance efficient portfolio. In addition, Proposition
6 implies that we can restrict our attention to the frontier portfolios in Proposition 4 in
order to maximise the Sortino ratio. This feature makes the Sortino ratio maximisation
much easier to handle, since it only requires choosing the free parameter o2, for a given
target expected return p,, regardless of N. As we can see in Figure 3c, this type of
investors would choose portfolios with higher (positive) skewness than mean-variance
investors for the same variance.

The departure from the mean-variance solution is even more remarkable in Figure
4, which shows another example with five assets under a more asymmetric parameter
configuration. Notice that in this case the the iso-variance contours have a flat region
with maximum constant skewness. However, we can arbitrarily define the asymmetry-
variance frontier as the line with highest expected returns. Interestingly, it can be
shown that the frontier in terms of the first two moments and the asymmetry parameter

b3, (0)w, is a cone whose iso-variance contours are ellipses.

4 Maximum likelihood estimation

In the previous sections, we have assumed that we know the true values of the para-
meters of interest, ¢ = (6, T),. Of course, this is not the case in practice. Given that
we are considering a specific family of distributions, it seems natural to estimate ¢ by
maximum likelihood.

The log-likelihood function of a sample of size T" takes the form

T
Ly (¢) = Zl (Ytutfl; ¢) )
t=1

where [ (y;|1;_1; ¢) is the conditional log-density of y; given I; 1 and ¢. We can generally

express this log-density as

[(yi|li-1; @) = log [E [f (vl Le—15 @) | Li—1; ¢H )
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where f (y:|&,, [;_1; ¢) is the Gaussian likelihood of y; given &, I, and ¢. Given the
nonlinear nature of the model, a numerical optimisation procedure is usually required
to obtain maximum likelihood (ML) estimates of ¢, ¢, say. Assuming that all the ele-
ments of p,(0) and 3,(0) are twice continuously differentiable functions of 6, we can
use a standard gradient method in which the first derivatives are numerically approx-
imated by re-evaluating Ly (¢) with each parameter in turn shifted by a small amount,
with an analogous procedure for the second derivatives. Unfortunately, such numerical
derivatives are sometimes unstable, and moreover, their values may be rather sensitive
to the size of the finite increments used. Fortunately, it is possible to obtain analytical
expressions for the score vector of our model, which should considerably improve the
accuracy of the resulting estimates (McCullough and Vinod, 1999). Moreover, a fast
and numerically reliable procedure for the computation of the score for any value of ¢ is
of paramount importance in the implementation of the score-based indirect estimation

procedures introduced by Gallant and Tauchen (1996).

4.1 The score vector

We can use EM algorithm - type arguments to obtain analytical formulae for the
score function s;(¢p) = Il (y¢|l;_1;¢) /0¢. The idea is based on the following dual
decomposition of the joint log-density (given [;_; and ¢) of the observable process y;

and the latent mixing process &,:

l (yt7 €t|[t71; ({b) =1 (Yt‘fta Iy ({b) +1 (ft‘[tJ; ({b)
= I(yddi—1;0) +1(Elye i1; )

where [ (y¢|¢;,I;_1;¢) is the conditional log-likelihood of y, given &,, I; 1 and ¢;
[ (&|ye, Ii—1; @) is the conditional log-likelihood of &, given y;, I, ; and ¢; and finally
L(yi|li—1; @) and [ (&,|];—1; @) are the marginal log-densities (given I;_; and ¢) of the
observable and unobservable processes, respectively. If we differentiate both sides of the
previous identity with respect to ¢, and take expectations given the full observed sample,
Ir, then we will end up with:

I (yil§s, I-1; @) ’ ]T;¢) +E (61 (&l Li-15 @)
O ¢
because E [0l (§,|yt, [i-1; @) /0| I1; p] = 0 by virtue of the Kullback inequality. This
result was first noted by Louis (1982) (see also Ruud, 1991, and Tanner, 1996, p. 84).

() = E(

IT;¢) (15)
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In this way, we decompose s;(¢) as the sum of the expected values of (i) the score of a
multivariate Gaussian log-likelihood function, and (ii) the score of the distribution of the
mixing variable.* In many cases of practical interest, it is straightforward to compute the
required expectations. For example, if the distribution of excess returns is GH, then the
distribution of &, given the full observed sample will be a Generalised Inverse Gaussian

(GIG) with parameters,

N ye(b'E(0)b,vy). s [Bu(v), +1
GIG <E - v, \/ R () b’3,(0)b + ,\/ 5 pi(@)X (P)pu() + 1) )

where

(b'’3(6)b, vy) — 1
b'S,(0)b

Pi(P) = yi — 1(0) + c(b'Zi(0)b,v,7)3:(0)b, c(b'%,(6)b,v,y) is defined in (2) with

Gw) = Do (=1 By () = Kuia (7) /150 (7)s Doir (7) = K2 (7) Ko (7) /K741 (7)

and K, (+) is the modified Bessel function of the third kind (see Abramowitz and Stegun,

1965).

5 () = S4(0) + & 3,(6)bb'S,(6),

Analogously, if ¢, is multinomial, then &,|I7; ¢ will also be multinomial, where the

probability for each possible value can be easily obtained using Bayes rule.

4.2 The information matrix

Given correct specification, the results in Crowder (1976) imply that under stand-
ard regularity conditions,” the score vector s;(¢) evaluated at ¢, has the martingale
difference property and consequently the ML estimator will be asymptotically normally

distributed with a covariance matrix which is the inverse of the usual information matrix
T
1 / /
T(¢g) =plim = > _si(g)s (o) = Else(o)si(bo))- (16)
t=1

In general, though, (16) cannot be obtained in closed form.% The simplest consistent

*/ ok

41t is possible to show that &}’e} /N converges in mean square to 1/[r1(7)¢,] as N — oo. This means
that in the limit the latent variable &, could be fully recovered from observations on y;, which would
greatly simplify the calculations implicit in (15).

°In particular, Crowder (1976) requires: (i) ¢, € int ® is locally identified, where ® is a bounded sub-
set of RPT9+N: (ii) the Hessian matrix is non-singular and continuous throughout some neighbourhood
of ¢; (iii) there is uniform convergence of the integrals involved in the computation of the mean vec-
tor and covariance matrix of s;(¢); and (iv) —E~! [-T1Y", 0s,(¢)0] T~ >, 0s¢()0¢p RN Logsn,
where E~1 [=T713", 0s4(¢)d¢] is positive definite on a neighbourhood of ¢y.

6Exact formulas for the conditional information matrix are known, for instance, for the Gaussian
(see Bollerslev and Wooldridge, 1992) and the Student ¢ distributions (see Fiorentini, Sentana, and
Calzolari, 2003).
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estimator of Z(¢,) is the sample outer product of the score:

1 T
ZSt ¢T St ¢T
=

However, the resulting standard errors and tests statistics can be badly behaved in finite
samples, especially in dynamic models (see e.g. Davidson and MacKinnon, 1993). We
can evaluate much more accurately the integral implicit in (16) in pure time series models
by generating a long simulated path of size T of the postulated process ¥1,¥2,- -, 3.,
where the symbol ~ indicates that the data has been generated using the maximum
likelihood estimates ¢,. This path can be easily generated by exploiting (1). Then, if
we denote by s;, (g?)T) the value of the score function for each simulated observation, our

proposed estimator of the information matrix is

T
~ -~

Tr(br) = 7 O s (Br)sh, (Br),

5 te=1
where we can get arbitrarily close in a numerical sense to the value of the asymptotic
information matrix evaluated at q?)T, z ((%T), as we increase T;. Our experience suggests
that T = 100, 000 yields reliable results.

We have compared the finite sample performance of our technique with the accuracy
of other alternative estimators of the sampling variance of the ML estimators. In our
Monte Carlo exercise, we use a trivariate experimental design borrowed from Sentana
(2004), which aimed to capture some of the main features of the conditionally hetero-
skedastic factor model in King, Sentana, and Wadhwani (1994). Specifically, we model
the standardised residuals with the GH distribution, while the conditional mean and

variance specifications are given by:

1y (0) = p,
Et(e) = CC//\t + Ft7 (17)

where ' = (4, fig, 13), € = (c1, 2, ¢3), Ty = diag(Vyy, Yoz Vae)s
A= g+ 041(f152,1|t,1 +Weaji-1) + @i, (18)

Yie = Got 1 [(yit—l — M — Ciftflltfl)2 + C?Wtflltfl] + Oy, 1=1,2,3, (19)

fip = wt|tcT{1(yt — 11,(0)) and wy, = A1+ Ty e]~!. This parametrisation can be
interpreted in terms of a latent factor model where (18) would be the variance of the

latent factor, while (19) would correspond to the idiosyncratic effects. In this sense, note
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that the conditional correlation coefficient between any two elements ¢ and j of y; is

given by
CiCj >\t

VN + Vi /c?/\t + 7t

which implies that periods when the volatility of the unobservable factor rises are also

Pijt =

those when, ceteris paribus, individual assets exhibit greater intercorrelation (see King,
Sentana, and Wadhwani, 1994).

As for parameter values, we have chosen p, = .2, ¢; =1, ay = ¢y = .1, ag = ¢, = .85,
a=1—o—aand ¢y =1—¢; — ¢,

We assess the performance of three possible ways of estimating the standard er-
rors in GH models, namely, outer-product of the gradient (O), numerical Hessian (H)
and information (I) matrix, which we obtain by simulation using the ML estimat-

" Since the pur-

ors as if they were the true parameter values, as suggested before.
pose of this exercise is to guide empirical work, our target is the sampling covariance
matrix of the ML estimators, VT((AﬁT), which we estimate as the Monte Carlo cov-
ariance matrix of éT in 30,000 samples of 7" = 1,000 observations each (results for
other sample sizes are available on request). Given the large number of parameters in-
volved, we summarise the performance of the estimators of Vi () by looking at the
sampling distributions of the logs of vech' [V (dr) — V(g vech[VE(¢dr) — Vi(by)]
and vecd [VE (pr) — Vi(dp)vecd[ViE (dg) — Vir(dby)], where E is either O, H or L® The
results, which are presented in Figures ba and 5b, respectively, show that the I standard
errors seem to be systematically more reliable than either the O or numerical H coun-
terparts. Finally, note that our simulation-based approach to evaluate the information

matrix is not only valid under our LSMN assumption, but it can also be applied more

generally to any parametric time series model.

5 Empirical application

We now apply the methodology derived in the previous sections to the ten Datastream

main sectoral indices for the US.? Specifically, our dataset consists of daily excess returns

"We choose n = .1, 1) = 1 and b = —.1¢ as the shape parameters of the GH distribution.

8In the case of a single parameter, the mean of the sampling distribution of these two norms reduces
to the mean square error of the different estimators of its sampling variance.

9Namely, Basic Materials, Consumer Goods, Consumer Services, Financials, Health Care, Industrials,
Oil and Gas, Technology, Telecommunications and Utilities.
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for the period January 4th, 1988 - October 12th, 2007 (4971 observations), where we have
used the Eurodollar overnight interest rate as safe rate (Datastream code ECUSDST).
The model used is a generalisation of the one in the previous section (see (17)), in which
the mean dynamics are captured by a diagonal VAR(1) model with drift, and the covari-
ance dynamics by a conditionally heteroskedastic single factor model in which the condi-
tional variances of both common and specific factors follow GQARCH(1,1) processes to
allow for leverage effects (see Sentana, 1995). We have borrowed this application from
Mencia and Sentana (2009), who find that these US indices are significantly asymmetric
and leptokurtic even after controlling for volatility clustering. We have estimated this
model by maximum likelihood under the assumption that the conditional distribution
of the innovations is GH. Although this distribution has already been used to model the
unconditional distribution of financial returns (see e.g. Prause, 1998), to the best of our
knowledge it has not yet been used in its more general form for modelling the conditional
distribution of financial time series, which is the relevant one from our perspective. In
addition, we assess the robustness of our results by considering a LSMN with a Bernoulli
mixing variable as well. In both cases, we derive the score following the approach de-
scribed in section 4.1 and compute the standard errors by simulation as explained in
section 4.2.

The first column of Table 1a shows the estimates of the asymmetry parameters for
the GH distribution. Although not all of the asymmetry parameters are individually
significant, symmetry is rejected at conventional levels. In particular, a joint LR test
of symmetric vs. asymmetric GH innovations yields 23.45 (p-value=0.012), while the
result of an analogous score-based symmetry test is 25.35 (p-value=0.005). Note that
the null of this test allows for fat tails in the conditional distribution (see Mencia and
Sentana, 2009). The first column of Table 1b shows that the discrete mixing variable
yields similar asymmetry parameters, although the overall fit is worse in this case, as
the smaller log-likelihood confirms.

One potential concern is whether we are able to correctly capture the dynamics of
the data. If our model were misspecified, then it could introduce severe distortions in
the results. However, if our specification of the model dynamics is correct, the departure
from normality that we have found should not affect the consistency of the Gaussian

PML estimators of 8. With this in mind, we have compared the estimates of the con-
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ditional variances obtained with a univariate Gaussian AR(1)-GQARCH(1,1) model for
the equally weighted portfolio with the ones obtained from the Gaussian version of our
multivariate model. Reassuringly, the (log) standard deviations of the two series display
a very similar pattern, although the univariate estimates are somewhat noisier. Another
way to check the adequacy of our specification is to compare the multivariate Gaussian
and GH estimates. In this sense, we also find that the (log) standard deviations implied
by the two distributional assumptions for the equally weighted portfolio are extremely
similar (see Mencia and Sentana, 2009, for further details).

Figure 6 shows the mean-variance-skewness frontier that we obtain for the US indices
with the GH distribution. The results of this figure correspond to a representative day
whose mean vector and covariance matrix are set to their unconditional values. We can
observe in Figure 6¢ that a mean-variance investor would implicitly choose portfolios with
negative asymmetry. In this sense, the rather vertical shape of the iso-variance contours
around the mean-variance optimal line indicate that, for a given variance, mean-variance
investors could obtain important gains in skewness in exchange for only minor reductions
in expected returns. We have also plotted the line that maximises the Sortino ratio. This
line is located in the sector between the mean-variance and asymmetry-variance frontiers,
although much closer to the first one.

From an investor’s point of view, an important question is whether the addition of
some assets improves the trade-offs that they face. Given that we have only considered
investments in the US so far, it seems natural to test whether the mean-variance-skewness
frontier remains unchanged when we also allow for investments outside the US, which
we proxy by the Datastream World ex-US index. Notice that this test generalises the
usual mean-variance spanning tests, because it also takes into account the effect of the
World ex-US index on the skewness-variance frontier.

As is well known (see e.g. Gibbons, Ross, and Shanken, 1989), the additional asset
does not lead to any change in the mean-variance frontier if and only if the conditional

mean of the additional asset satisfies

119,(0) = d’5,(0) 11,,(0), (20)

where p,,(6) and p,,(0) denote, respectively, the vector of (conditional) expected ex-
cess returns on the ten US indices, and the expected excess return of the Word ex-US

index, while d;9:(0) denotes the coefficients of the conditional regression of the World
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ex-US index excess returns on those of the US sectoral indices. Therefore, we can follow
Gibbons, Ross, and Shanken (1989), and check (20) by introducing an intercept in this
expression and assessing whether it equals zero in practice.

Similarly, the World ex-US index will only expand the skewness-variance frontier if
its skewness parameter is significantly different from zero (see (11) and (12)). We analyse
these two effects in Table 2 by means of Wald and LR tests for the two distributions that
we consider. While we are unable to reject the mean-variance spanning restriction (20),
the World ex-US index seems to introduce significant additional skewness in the invest-
ment opportunity set of a US investor. These results remain true regardless of whether
we consider the GH distribution or the LSMN with a Bernoulli mixing variable. As a
consequence, we reject the joint null. Hence, for the set of assets that we consider, a
US investor that only cares about mean-variance efficiency will not be willing to invest
outside the US. In contrast, if this investor takes skewness into account in making her
portfolio decisions, then she will find significant gains by investing part of her wealth
outside the US. Intuitively, investors concerned about skewness can probably use the
additional asset to diversify the asymmetry of their US exposures, which is statistic-
ally significant, as we have already mentioned. From a different perspective, though,
these potential benefits of foreign investments would tend to exacerbate the empirically
observed home bias puzzle (see e.g. French and Poterba, 1991).

Figure 6 also shows the changes in the mean-variance-skewness investment oppor-
tunity set before and after considering the additional asset for the GH case.'® We can
observe the differences between the three-dimensional plots of the two frontiers in Figure
6a. We can also observe in Figure 6b that the mean-variance frontier is almost unaf-
fected, which is consistent with (20) being satisfied. Nevertheless, the iso-skewness lines
have moved to the left, which implies that, for given levels of expected return and skew-
ness, we can obtain a lower standard deviation if we invest in the World ex-US index.
Figures 6¢ and 6d confirm this effect on the iso-variance and the skewness-variance fron-
tiers, respectively. This graphical intuition is confirmed by the formal statistical tests
in Table 2, which explicitly take into account the sampling uncertainty surrounding the
parameter estimates. Finally, note that the third column of Tables 1a and 1b shows that

the estimates of the shape parameters of the GH distribution remain fairly stable when

10This frontier is quantitatively very similar when we consider the Bernoulli mixing variable. We do
not include these results for the sake of brevity, but they are available from the authors on request.
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we include the additional asset.

6 Conclusions

In this paper, we make mean-variance-skewness analysis fully operational by working
with a rather flexible family of multivariate asymmetric distributions, known as location-
scale mixtures of normals (LSMN), which nest as particular cases several popular and
empirically relevant distributions that account for asymmetry and tail dependence with
a rather flexible and parsimonious structure. Specifically, we assume that, conditional
on the information that agents have at the time they make their investment decisions,
the standardised innovations of excess returns can be expressed as a LSMN.

In this context, we show that the distribution of any portfolio of the original assets
can be fully characterised in terms of its mean, variance and skewness. In this sense, our
result extends previous results by Chamberlain, 1983; Owen and Rabinovitch, 1983 and
Berk, 1997, which justify the use of mean-variance analysis with elliptically distributed
returns. In our case, we are able to obtain analytical expressions for the mean-variance-
skewness frontier, which encloses the feasible investment opportunity set, and show that
its efficient part can always be spanned by three funds: the two funds that span the
mean-variance frontier and a skewness-variance efficient portfolio.

We also study the maximum likelihood estimation of dynamic models for excess
returns with LSMN innovations. In particular, we provide analytical expressions for the
score on the basis of the EM algorithm, and explain how to evaluate the information
matrix by simulation. A detailed Monte Carlo exercise confirms that our method yields
more accurate standard errors than the Hessian matrix or the sample outer product of
the score.

Finally, we estimate the mean-variance-skewness frontier generated by the ten Data-
stream main sectoral indices for the US when the distribution of the standardised in-
novations comes from either the GH distribution or a LSMN with a Bernoulli mixing
variable. We find that by moving away from the traditional mean-variance frontier, we
can increase skewness for a given variance without hardly reducing expected returns.
We also analyse whether including the Datastream World ex-US index can improve the
investment opportunity set of a US investor. For the two members of the LSMN family

that we consider, we find that this additional asset does not have a significant impact
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from a mean-variance perspective, but it does indeed offer substantial improvements
once we take into account its effect on skewness.

It would be interesting to check whether our empirical results are robust to consid-
ering a nonparametric specification for the distribution of the mixing variable £,. In
particular, we could consider either a semiparametric expansion of some known distri-
bution, such as the Gamma, or a flexible multinomial distribution.

It could also be interesting to introduce dynamic features in higher order moments.
In this sense, at least two possibilities might be worth exploring: either considering time
varying shape parameters 7; and by, in line with Jondeau and Rockinger (2003), or intro-
ducing a regime switching process for ¢,, following Guidolin and Timmermann (2007).
These extensions might be helpful for skewness timing (see Jondeau and Rockinger,
2008).

Another fruitful avenue for future research would be to assess the asset pricing im-
plications of our model. In particular, we could relate our framework to the extensions of
the CAPM based on the first three moments of returns (see e.g. Kraus and Litzenberger,
1976; Barone-Adesi, 1985; and Lim, 1989). Similarly, it would be useful to explore the
implications of our model at different time horizons. As a starting point, we could exploit
the properties of specific examples such as the Variance Gamma process, which gener-
ates Asymmetric Normal Gamma returns at any investment horizon (see e.g. Madan
and Milne, 1991; and Madan, Carr, and Chang, 1998). It would also be interesting to
derive a specification test of the “common feature” in skewness implicit in our model,
and, if needed, relax that assumption by allowing for several skewness factors.

Finally, it is important to note that our results are largely driven by the fact that
the third centred moment of a LSMN satisfies (5). However, there are other asymmetric
distributions that satisfy this property. Specifically, Simaan (1993) shows that if one adds
an independent scalar asymmetric variable times a vector to an elliptical random vector,
then (5) holds with sy, = 0 (see also Gamba and Rossi, 1998; Pressacco and Stucchi,
2000). In addition, it is possible to show that (5) would also hold with s1;43s9;53; = 0 for
a multivariate Hermite expansion in which asymmetry is a common feature (see Mencia
and Sentana, 2009, for a formal definition of this density). In this sense, it would be

very helpful to characterise a broader class of distributions that satisfy (5).
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A Mean-variance-asymmetry frontier without a risk-
free asset

If r; is not a risk-free asset, then we could understand the analysis in Section 3 as
describing the investment opportunity set of an investor with zero net wealth who can
only invest in arbitrage portfolios. For investors with positive net wealth, consider the
vector of gross returns x; = y;+7;ty, where ¢y is a vector of N ones. Then, we can obtain

the portfolios on the mean-variance-asymmetry frontier from the following problem:
Wfﬁ’/t(0> = Vot
max ,(0,b,T) s.t. w3 (0)w; = o3, (A1)

eRN
he wity =1

where v,(0) = p,(0) + ;. Compared to (7), we have introduced an additional restriction

to ensure the unit cost of the portfolio. We can solve (7) by forming the Lagrangian
L=¢,(0,b,7) + 7 [Vor — wi(0)] + 75 [0, — W B (0)w:] + 75 [1 — wyen]

and differentiating it with respect to the portfolio weights, thereby obtaining the follow-

ing first order conditions:

oL
ok _ {S(Slt + 389055:) [D' () Wil + 350 [wgzt(e)wt]} ,(0)b
3Wt
+659; [blzt(e)wt] E/(0)w, — 7114(0) — 27, 5,(0)w, — ysLn. (A2)

Once again, we can explicitly obtain in closed-form the set of portfolio weights that

satisfy these conditions:

Proposition 7 The efficient mean-variance-skewness portfolios that solve (A2) can be
expressed as either

Croy — A N Cb'vy(0) — Ab/ey | Ty(vor, o)

Wit = D D Hl Et_l(e)yt(e)
B—A Bb'vy — Ab’ II 2
= Vot . b'iy = b'v,(0) 2(1/1(_);1, T5:) S1(0)ey
2o 90,) (A3)

T
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or

Cro—A Cb'vy(0) — Ab/ey  |Tla(vor, 02)
D D 11,

B — Avgy  Bbluy — Ab'vy(0) | Tla(vey, 03)) 1
_ >, (0
D D I, ¢ (O)en

H2<V0tvo-%t)b (A4)

+ I, .

where A = 12 (0),(0), B = i (0)S,1(0),(0), C = y2, (0)ey, D = BO — A2,

M, = b=, (0)b

1 , ’ B —A bILN
v o[ 5 2] (2 )20
and ) p
B - 1
o) =t~ (1w | B S (0 )20 o)

Hence, there are two potential solutions, both of which can be expressed as a linear
combination of the portfolios with weights 3, '(8)v,(0), £, '(8)ty, and b.
It is also interesting to analyse the characteristics of the tangency curve between the

frontiers for x; and y,. In this sense, we can show the following result.

Proposition 8

1. The tangency portfolios between the mean-variance-skewness frontiers with and
without risk-free asset have weights

o i(0)b — pgblen oy B — i A
— >71(0)1,(0) —
W= A (@b = By = OO = e~ By

on the risky assets.

2. The tangency curve can be expressed as

, _ (B'4(6)b) B — (p;(6)b)” 2 My
Oo = B[A/,L;(e)b — Bb,LN]g (B - ILLOtA> + § (A7)

B Variance-asymmetry frontier

If we ignore expected returns, we can obtain a skewness-variance frontier by maxim-

ising skewness subject to a variance constraint:
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Proposition 9 If

il b’ (0)b+—2L | > 0. (BS)

S1¢ + 3591834 S1¢ + 359831

then the solution to the problem

max 0, (0,b,7) st wiE(0)w, = o, (B9)
wee
will be 1/
[Sot(ev b? T)] = A1<97 b7 T)O-Oty (BlO)
where
/ 3/2 / 1213
A(O,b,T) = {(slt + 35953,) [D'4(0)b]* + 359, [b'S, ()] } , (B11)
which s achieved by
N N — (B12)
b’ (0)b

Otherwise the solution to (B9) will be

[p,(0, b, 7)]"* = max {A1(0,b,7), A2(0,b,7)} 00y,

where

Ao(8,b,7) = 213 /55, [~ 51, — Bsasa] °, (B13)
which is obtained by portfolios that satisfy

b'S(0)w! = oy | ——2 Bl4
t( )Wt oot S1t + 3S9:S3¢ ( )

Hence, we can interpret b as a “skewness-variance” efficient portfolio, since every
portfolio on this frontier will be proportional to b when (B8) is satisfied. However, when
(B8) is not satisfied, (B12) will not necessarily yield maximum skewness. In fact, there
might be an infinite number of portfolios that satisfy (B14), all of them yielding exactly
the same variance and skewness but different expected returns. One way of solving this
indeterminacy is to choose the portfolio with maximum expected return. In this sense,

we can show that:
Proposition 10 If (B8) does not hold, then the solution to the problem
w3 (0)w, = o5,

/ —_—
arg max w,p,(0)  s.t. b'S,(0)w, = oo / Sot (B15)
S1p + 352531

can be expressed as a linear combination of the “skewness-variance” efficient portfolio b
and the “mean-variance” efficient portfolio X, (0),(0).
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C Proofs of Propositions
Proposition 1

If we impose the parameter restrictions of Proposition 1 in equation (1), we get

e € [, @B -1, ]
) 11* ) {I“ gg P v (C19

Then, we can use the independence of £ and r, together with the fact that E(r) =0

¢ = c(3B.7) 3 {

to show that €* will also have zero mean. Analogously, we will have that

V() = dne @709 + 1y + LET Ly
Substituting ¢ (3, v,~) by (2), we can finally show that V (¢*) = I. O
Proposition 2

Using (C16), we can write s* as
C e wWB [
S - C(/B /377-) W’W |:’/T1(’T) 1:|
W { c(88,7) -1 }
71_1(7_) /_WIW IN + ﬂ/ﬂ /8/8 r

But since the second term in this expression can be written as the product of the square
root of the mixing variable times a univariate normal variate, r say, we can also rewrite

s* as

e [

w'w 7T1(7'
¢! c(BB,7)—1(wp)’
+\/mm \/1 T ww (1)

Given that s* is a standardised variable by construction, if we compare (C17) with
the general formula for a standardised LSMN in (C16), then we will conclude that
the parameters 7 are the same as in the multivariate distribution, while the skewness
parameter is now a function of the vector w. Finally, the exact formula for 5(w) can be

easily obtained from the relationships

e[ W), 7] Bw) = e (BB, 7) S
c(B8'8,7)—1(wg)>
66 ww

c [ﬁQ(W),T] =1+
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Proposition 3

If we introduce the results of Proposition 1 in (3), we can express y; as:

yi = 1,(0) +c(b'Z(0)b, T)Z,(0)b [ & 1}

71(T)

[ SIS

o [b/S,(O)b, 7] — 1 , )
A 120 P S OWEO)

where &, ~ iid F(-;7) and r;~iid N(0,I,) are independent. Hence, w)y, can be ex-

pressed as:

1
Wiyt = Wiy (8) + c[b/S,(8)b, }w! 5,(0)b [ & _ 1]

7T1("')
&

7T1<’T)

1
2

{wgzt(e)wt v C[b'ii(gt)g’é)g -1 [wgzt(e)bf} r, (C18)

We can observe that wjy; is a LSMN that can be characterised in terms of its mean

w,p,(0), its variance w;X,;(0)w, and the bi-linear form w;3,(0)b. O
Proposition 4

In what follows we maintain the assumption that

3(s17 + 359:83:) [/ (0)w]? + 35000, (C19)

is different from zero, since the equality case is treated in Propositions 9 and 10. If we

set (10) to zero, we can express the optimal portfolio weights as:

* 71 1
- >
. 659, [0/, (O) W] — 2y, ! (@)1, (0)

B {3(s1¢ + 352,58375,) [b’Et(i)Wﬂz + 35200, } b (C20)
659t D' (0)W]] — 27,

If we pre-multiply (C20) by b'Y; (), we obtain:

N 71 !
b'S,(0)w = b, (0
t( )Wt 659y [blzt(g)wzﬂ] — 272 P’t( )
{3(51t + 382t53t>[b/2t<€)wr]2 - 3S%U%t}bIZb (C21)
659/ [b' % (0)W;] — 27,

Hence, we can express (C20) as

. v 7 [3(s1¢ + 350:831)2*2 + 389:02,]
W, = 6 " 1_ B 3 1<0)Nt<9) - ! ' *t_ ok
S92 Yo 6592 274

b (C22)
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where z* is the solution of the following equation:

[682t + 3<b/2t<3)b) (Slt + 382t83t)] 22
—27,% + [359(b'%4(0)b)og, — v,b'p,(0)] = 0. (C23)

The equality restrictions of our problem can then be written as:

Y1 ! —1
= ——u,(0)X, (0 0
Mo = G g OB O)u0)
[3(81t + 3S2t53t)2*2 + BSQtU%] ’
— 0)b C24
o e T (C24)
2 V% 1
Ot = B} s (0)%,(0)1,(0)
[652:2% — 27,]

[3(51t + 352t53t)2*2 + 3S2ta(2)t]2
[659;2* — 272]2
*2 2
o1 Blou 382153t)z 350wl oy (C25)
[659;2* — 275,]

Thus, we must find z*, v, and v, such that (C23), (C24) and (C25) are satisfied. From

b'S,(0)b

(C24), it is straightforward to express v, as:

Ho
1 (0)Z7(0) s, (0)
[3(s11 + 350¢531) 2™ + 359007
1 (0)7(0) s, (0)

If we introduce (C26) in (C25), we will obtain after some algebraic manipulations that:
(b'Sb) (11(6)%;'(8).(6)) — (ki(6)b)*

UOt (ut(9)2t—1(9)ut(9)) - M%t
X [3(81,5 + 382t83t)2*2 + 382t0(2)t]2

Y1 [652tz* - 2’72]

1i(6)b (C26)

[659:2" — 2,]°

From condition (8) o2,u(0)%;(0),(0) — p2, > 0, whereas
(b'S,(0)b) (1, (6)=;1(0),(6)) — (1,(0)b)? is also non-negative because of the Cauchy-

Schwarz inequality. Therefore, we can express 7, as:

Vo = 3592"

il\/(bIZb) 4(0)5 ©10) G (Ob)
i (ki(0)2 1 (0)i(8)) — m

3(s1t + 359:55¢) 2™ + 35%0(2%} ,

whence
[3(81,5 + 332t53t)2*2 + 35215‘7%75]
1(0)271(0)p,(6)
W (b'S,(60)b) ((0)3;'(0),(0)) — (u£(9)b)2
“t“’)bi“m\/ 7% (1i(0)5, " (0)1,(6)) -

Y1
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If we introduce these expressions in (C23), we obtain the following “non-trivial” solutions:

ey pi(0)b
" ki (0)2(6)p(6)

\/[(b’Et(G)b) (11 (0)Z(0)1,(8)) — (ki(0)b)”] [05, (i (0)%; " (8)1s,(8)) — 4]

(C27)

There are potentially two other solutions characterised by 3(s1;+389:83¢)2**+ 39,02, = 0.
However, it can be checked that those two solutions belong to the inefficient frontier
mentioned in Proposition 10.

Finally, we obtain the required result by introducing (C27) in (C22). O

Proposition 5

Consider two mean-variance-skewness efficient portfolios with weights

'aA_l . ()b .
Wi, = Hoat ‘H/ t (ﬂ)anao ) (0) 1(0) 1,(6) — N 0 b,
1y (0)%;(0)1,(0) t(Hoat> T0at)
N A—l / 0 b .
H’Obt + 2 t (MObt: O-Obt)l‘l’t( ) 2t—1<e>ut(0) . A p b’

“;(0)2;1<9)“t(0) +(Kobts Tobt)

where i, and 7, are either 1 or —1. Then, for any k,, k, € R we can express the linear

*
Wit

: : * * *
combination w}, = k,w}, + k,wy, as

o Hoe T [Faia ST (Hoas 00at) + Fyin A7 (Hop, o0n)| p44(0)b 4
at ; 1 3 (0),ut(0)
ut(B)Et (O)Nt<9>

- [kaiaAt_l(NOata Toat) + kbibAt_l(/LObtv OObt>] b,

where 1o, = Kallog: + kbitoy- Hence, we only need to show that we can express
koS¢ (Hoats Toat) + Euin Ay 1oy Tobe)

as =A; 1 (loer, Toet) for some o, to obtain the required result. In this sense, it is straight-

forward to show that

Ug . = ugct
‘ 1 (0)3;1(0)p,(0)
[kaiaAt_l(u’Oata Ooat) + kbibAt_l(MObm UObt)]2 -0
— / — / -1
121(0)21(0) 11, (0) [(0'E,(0)b) (1;(0), ' (0)12,(6)) — (124(6)b)?]
satisfies this restriction. O
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Proposition 6

We can exploit conditional normality of the LSMN family to express the second lower

partial moment as
S(w) = [ B [min(0,wiy, 16 dF (€5 7)

where

E [min(0, wiy,)*|€,] = [1(&) + 07 (&)] @ (‘Mt(&))

a¢(&;)

(€)oo <—%) , (C28)

~1
W(E) = oy + ('S (O)b, Tz [@——1},

m1(T)
-1 /
2 B & 2 c[b'% ()b, 7] — 1 2
o; (&) = T (7) |:0-0t + b'E,(0)b 2ot | s
tor = Wi, (0), o2, = w3, (0)w;, and zp, = w3, (0)b and ®(-) is the standard normal

cdf. In addition, it can be shown that

dS(w;) o OF [min(an/}’t)2|ft] .
3ggt —/ 3U%tt dF(&;T) >0,
since )
OF [min(0, wiy,)?*[§, = & <_Mt(€t)> 3
903 ~*Uae)) mm 7

Hence, for any interior point of the feasible mean-variance-skewness opportunity set, we
can always diminish the second lower partial moment by reducing the standard deviation
keeping constant mean and skewness until we reach the mean-variance-skewness frontier.
Finally, we can show that the portfolios with maximum Sortino ratio will be along
a straight line by combining the homothecy property of the mean-variance-skewness
frontier with the fact that we can span these portfolios by scaling any of them with a

positive scalar . 0

Proposition 7

It is not difficult to check that (A3) and (A4) satisfy the first order conditions (A2)

with v, v, and 5 such that

Y1 A -Cu N Cb'vy(0) — Ab'Ly [ ma(vo, 03)
650,02 (O)WF — 27, D D T

Y3 B — Ay N Bb'uy — Ab'vy(0) [7a(vo, 03)
659:b’' 2 (0) W] — 27, D D T
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and
659,b'3,(0) W] — 27, B T

2 ;= * 2"
3(s1¢ + 3sa:53:) [b'X4(0) W™ + 352,07, m2(vo, 03)
where the positive (negative) sign corresponds to wy, (w$,). It is necessary, though, to

show that (A5) and (A6) are both non-negative so that the optimal portfolio weights
are well defined. It can be checked that Iy(vg, 03,) is the difference between o2, and
the variance of a portfolio on the mean-variance frontier that has the same expected

return. Hence, this difference cannot be negative. As for II;, we can express (A5) as

I1; = b'Q(0)b, where

o[58 ()

But since €,(0) is the residual variance of the regression of y, on ¢33, 1(0)y; and
v (0)%;1(0)y,, it must be positive semidefinite, which ensures that IT; > 0. Finally, if

there are portfolios such that
3(81t + 382t83t) [b'Et(O)Wtf + 382t0'%t = 0,

then there might be other combinations of portfolio weights that satisfy (A2). As in the
frontier with a risk-free asset, though, these portfolios will have the same asymmetry
and standard deviation but different expected returns. It is possible to follow the same
procedure as in Proposition 10 to show that the portfolio in this set with maximum

expected return can also be expressed in terms of either (A3) or (A4). O

Proposition 8

The tangency portfolios will be such that 1 = w}/¢y, for ¢ = 1,2. If we introduce this

restriction in (11) and (12), we obtain:

Ap,(0)b — Bb'ey

A ==
t(Hos> oor) B — jig, A

(C29)

By introducing (13) in (C29), we can obtain (A7). In addition, w} follows directly from
introducing (C29) in either (11) or (12). O

Propositions 9 and 10

We can solve (B9) by forming the Lagrangian

L=¢,(0,b,7) 47, (05, — W;Zi(0)w) . (C30)
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If we differentiate (C30) with respect to the portfolio weights, we obtain the following

first order conditions:

oL

87 = {3(8” + 382t83t>[b12t<0)wt]2 + 382150-31&} Et(O)b
t

+ {659 [b' 21 (0)W;] — 27, } 4 (O)w, =0

There are two possible situations. First, assume that (C19) is different from zero. In this
case, we can express the optimal portfolio weights as w; = kb for some constant x. Then,
if we impose the variance constraint by choosing x appropriately, we obtain (B12). How-
ever, an additional solution will be obtained if the scalars (C19) and 6s2;[b"%;(60)w;| —27,

are both zero. This solution will be characterised by

—S2t
b’y (0w, = + _ C31
(O)wi oot S1t + 359:53; ( )

w, (0w, = ob. (C32)

t

However, we will choose the positive sign because it is the one that yields positive
skewness. Condition (C31) defines a plane. Thus, this solution will only exist if this
plane intersects the ellipse defined by (C32). We need to find under what conditions
(C31) and (C32) are both satisfied. If this solution exists, there will be an infinite number
of portfolios with the same asymmetry and standard deviation but different expected
returns. We can consider the one that has maximum expected return by solving (B15).

In this case, the Lagrangian can be expressed as

L = Wgy,t(O) + 7 [U(Q)t - ngt(e)wt]

—S2t /
——— —b'3,(0 . C33
A [UOt S1t + 352: 53¢ o )Wt] (C33)
If we differentiate (C33) with respect to w,, we obtain:
1 _
W= o [5;1(0)1,(0) — 7D (C34)
71
It is straightforward to show that
-9 / 2
v =+ \/Nt 0)1,(0) Y20 1,(6) +73(b'E,(0)b) (C35)

200
ensures that (C32) holds. If we introduce (C34) and (C35) in (C31), we obtain the

following restriction:
57 (0)p(6) ~ b [
\/Nt ), (8) — 27,0 11 (0) + 73[b'E4(0) W] S1e + 352831
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If we square the above expression, it is straightforward to show that it can be expressed

as a second order equation which will only have real solutions if (B8) does not hold. [J

D Third and fourth moments of a LSMN
Consider w; € RY. Then,

E [(Wi(Yt - “t(e))?”[t*l;euﬁr} = UeC/(WtW:s)‘I’t(H;T)Wt = ,(0,b,T),

B [(Wilye — m(0)) 1 1:0,7] = ved (ww))Ky(0, T)vec(ww)),
where

®.(0,7) = Evec[(ye — m(0))(yr — 1,(0))'] (e — 1,(0))'[ 11— 6, 7]
= sy wec [X:(0)bb'E,(0) b'X,(0)
+sqvec[X5(0)b'X,(0)

+59 (Inz + Kyn) [Z:(0)b @ 37(0)],

K.(0,7) =
= Evec[(yr — 11(6))(yr — 1,(8)) Tvec [(ye — 124(0))(yr — 14,(6))'] [ 11-1; 0, 7]
— ke [Si(0)bb'S,(8)] ved [£,(0)bb'S,(6))]
thig (Lyz + Kyy) (Z5(0) @ S4(0)bb'S,(0)) (Iy: + Kyy)
Fhigy [vec[S(0)bb'E, ()] ved [£5(0)] + vec [S5(8)] ved [S,(8)bb/S,(0)]

+rg [(Lv> + Ky ) (37(0) ® 37(0)) + vee (7(8)) ved (37(0))]

K is the duplication matrix, and

Bl = m(m)]

Kig = p—r A(b'S,(0)b, 1),
El(¢—m(r 2et
Rot = [(5 71_3(7_() )) 5 }CQ(b/Et(g)b, T)7
Koy = ma(T)
(O]
37(0) = 3,(0) + 53, 2,(0)bb’3,(0).
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Table 1
Maximum likelihood estimates of a conditionally heteroskedastic single factor
model for ten Datastream sectoral indices for the US.

Daily excess returns (January 4th, 1988 - October 12th, 2007).

(a) Generalised Hyperbolic distribution

Ten indices Extended model
Asymmetry parameters b SE SE
Basic Materials -0.100 0.038 -0.088 0.040
Consumer Goods 0.068 0.066 0.053 0.070
Consumer Services 0.077 0.091 0.093 0.091
Financials 0.009 0.052 0.048 0.050
Health Care -0.033 0.078 -0.082 0.083
Industrials -0.096 0.084 -0.080 0.089
Oil and Gas 0.116 0.056 0.130 0.058
Technology -0.091 0.066 -0.092 0.066
Telecommunications 0.067 0.074 0.062 0.082
Utilities -0.027 0.037 -0.034 0.042
World ex-US - - -0.163 0.052
Log-likelihood -51997.250 -57588.015

(b) LSMN with a Bernoulli mixing variable

Ten indices Extended model
Asymmetry parameters b SE SE
Basic Materials -0.123 0.041 -0.122 0.063
Consumer Goods 0.095 0.066 0.101 0.110
Consumer Services 0.009 0.089 -0.004 0.138
Financials 0.036 0.061 0.083 0.120
Health Care -0.004 0.078 -0.047 0.121
Industrials -0.156 0.092 -0.125 0.135
Oil and Gas 0.125 0.055 0.139 0.086
Technology -0.055 0.054 -0.063 0.121
Telecommunications 0.088 0.067 0.079 0.121
Utilities -0.009 0.039 -0.016 0.075
World ex-US - - -0.168 0.068
Log-likelihood -52142.065 -57752.316

Note: Extended model denotes the model based on the ten US indices and the World ex-US index.
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Table 2:

Spanning tests. Improvement in the investment opportunity set caused by the

introduction of the World ex-US index.

Daily excess returns (January 4th, 1988 - October 12th, 2007)

(a) Generalised Hyperbolic distribution

Null hypothesis Wald LR
p-value
Mean-variance efficiency 1.00 1.05 0.306
Skewness-variance efficiency 9.64 9.79 0.002
Joint 13.57 13.72 0.001
(b) LSMN with a Bernoulli mixing variable
Null hypothesis Wald LR
p-value
Mean-variance efficiency 0.99 1.08 0.298
Skewness-variance efficiency 6.12 8.58 0.003
Joint 10.20 12.10 0.002

Notes: The mean-variance efficiency test denotes a test of the null hypothesis ji5,(0) = do,pt1,(0),
where pq,(0) and po,(6) denote, respectively, the vector of expected excess returns of the 10 US
indices and the expected excess return of the World ex-US index, while d5; denotes the coefficients
of the conditional regression of the excess returns of the World ex-US index on those of the 10 US

sectoral indices. The skewness-variance efficiency test denotes a test of the null hypothesis that

the element of the skewness vector b corresponding to the World ex-US index is zero.
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Figure la: Standardised bivariate normal &
density Figure 1b: Contours of a standardised bivari-
ate normal density

3 ‘ ‘ ‘ ‘ ‘

R

Figure 1c: Standardised bivariate asymmetric

Student ¢ density with 10 degrees of freedom  Figure 1d: Contours of a standardised bivari-

(n=.1) and B8 = (-3,-3) ate asymmetric Student ¢ density with 10 de-
grees of freedom (np =.1) and 8 = (-3, -3)’

3 T
2,
§
#
g
5 8
5 0(
118
_2,
_3x7.007 L
3 =2

Figure le: Standardised bivariate LSMN with

a Bernoulli mixing variable and 3 — (—3, —3)’ Figure 1f: Contours of a standardised bivari-

ate LSMN with a Bernoulli mixing variable
and B = (—3,-3)

Notes: The Bernoulli mixing variable of Figures le and 1f is such that it has mean E(§) = 1 and
Pr(¢ =0.6) = 0.04.
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Figure 2: Exceedance correlation for symmetric and asymmetric location-scale mixtures of normals

0.5f °*  Normal i
Asymmetric t
Asymmetric Bernoulli

= = = Symmetric t i

— — — Symmetric Bernoulli
0.3 i

0.4F

0.2f

01

"..—..........‘..

Notes: The exceedance correlation between two variables e} and €} is defined as corr(e},eb| e} >
k,e5 > k) for positive k and corr(e},es|el < k,e5 < k) for negative k (see Longin and Solnik,
2001). Symmetric ¢ distribution with 10 degrees of freedom (n = .1) and Asymmetric ¢ distribution
with n = .1 and 8 = (-3, —3). Asymmetric Bernoulli denotes a location-scale mixture of normals
with 0 = (=3, —3) and mixing variable such that it has mean F(§) = 1 and Pr(§ = 0.6) = 0.04.
By construction, corr(e},e5) = 0 in all cases.
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Figure 3: Mean-Variance-Skewness frontier of a LSMN. Example 1.

(a) Three dimensional representation (b) Mean vs. Standard Deviation

(¢) Mean vs. Asymmetry (d) Standard Deviation vs. Asymmetry
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Notes: The mean-variance frontier is plotted with dotted lines. Dash-dot lines are used for the
skewness-variance frontier, which maximises asymmetry for given standard deviations. In this case,
the asymmetry-variance frontier portfolio weights are proportional to —b. Thin solid lines indicate
several iso-asymmetry, iso-variance and iso-mean contours on panels (b), (c) and (d), respectively.
Thick solid lines represent the location of the optimal portfolios that an investor who maximises the
Sortino ratio for different target expected returns would choose. This example has been obtained
with a five-dimensional LSMN with b = —¢5 in which the mixing variable is the Bernoulli variable
€ = 2,10, with Pr(¢ = 2) = .1.
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Figure 4: Mean-Variance-Skewness frontier of a LSMN. Example 2.

(a) Three dimensional representation (b) Mean vs. Standard Deviation

(¢) Mean vs. Asymmetry (d) Standard Deviation vs. Asymmetry
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Notes: The mean-variance frontier is plotted with dotted lines. Dash-dot lines are used for the
skewness-variance frontier, which maximises asymmetry for given standard deviations. Thin solid
lines indicate several iso-asymmetry, iso-variance and iso-mean contours on panels (b), (¢) and (d),
respectively. Thick solid lines represent the location of the optimal portfolios that an investor who
maximises the Sortino ratio for different target expected returns would choose. This example has
been obtained with a five-dimensional LSMN with b = —¢5 in which the mixing variable is the
Bernoulli variable ¢ = .1, 10, with Pr(¢ =.1) = .1.
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Figure 5a: Sampling distribution of the log of vech![VE (¢q) — Vi (pr)vech[ViE (dr) — Vi (dby)]
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Notes: Obtained from a Monte Carlo study with 1,000 replications of sample size T" = 1,000,
except VT(éT), which is the sampling variance of the ML estimators in 30,000 samples of the same
size. E refers to the standard errors obtained by either the outer-product of the gradient (O),
numerical Hessian (H), or the simulated unconditional information matrix (I).
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Figure 6: Mean-Variance-Skewness frontier of the the US Datastream indices and change induced by
adding the World ex-US Datastream index

(a) Three dimensional representation

(b) Mean vs. Standard Deviation

US sectors

0.06
— US sectors+World ex-US|

0.041

0.02

)

-0.02
-0.04

-0.06; q

(¢) Mean vs. Asymmetry (d) Standard Deviation vs. Asymmetry

1 T T T T T T T T

0.61

08l | T US sectors
: — US sectors+World ex-US|

041 0.6

041
0.2

0.2 e
[ — -
<o @ R
= ot - O O
= B
a Ity
-0.2- e
-0.2-
-0.4-
-0.4- -0.6-
= US sectors -0.8-
~0.6- | —— Us sectors+World ex-US| . N
I I I I I - -
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 o
U 0
0

Notes: Frontier of daily excess returns with moments expressed in percent terms. Results based
on the GH distribution, whose parameters have been estimated by maximum likelihood. Thick
lines represent the contours obtained from the ten US indices, while the contours of the frontier
obtained including the World ex-US index are represented with thin lines. The mean-variance
frontier is plotted with dotted lines, while dash-dot lines are used for the skewness-variance frontier.
Asterisks (circle) are used to plot the positions of the individual US indices (World ex-US index).
The results correspond to a representative day whose mean vector and covariance matrix are set
to their unconditional values. Straight lines represent the location of the optimal portfolios that
an investor who maximises the Sortino ratio for different target expected returns would choose,
where the thin (thick) line is based on the 10 US sectoral indices (10 US sectoral indices and the
World ex-US index).
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