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Abstract 

Maravall and del Río (2001), analized the time aggregation properties of the Hodrick-Prescott 

(HP) filter, which decomposes a time series into trend and cycle, for the case of annual, 

quarterly, and monthly data, and showed that aggregation of the disaggregate component 

cannot be obtained as the exact result from direct application of an HP filter to the 

aggregate series. The present paper shows how, using several criteria, one can find HP 

decompositions for different levels of aggregation that provide similar results. We use as the 

main criterion for aggregation the preservation of the period associated with the frequency 

for which the filter gain is ½; this criterion is intuitive and easy to apply. It is shown that the 

Ravn and Uhlig (2002) empirical rule turns out to be a first-order approximation to our 

criterion, and that alternative —more complex— criteria yield similar results. Moreover, the 
values of the parameter λ  of the HP filter, that provide results that are approximately 

consistent under aggregation, are considerably robust with respect to the ARIMA model of 

the series. Aggregation is seen to work better for the case of temporal aggregation than for 

systematic sampling. Still a word of caution is made concerning the desirability of exact 

aggregation consistency. The paper concludes with a clarification having to do with the 

questionable spuriousness of the cycles obtained with HP filter. 
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1 Introduction 

The subjectiveness in the concept of business cycle has resulted in multiple methodologies 

for its identification [see, for example, Canova (1998)]. Yet, despite substantial academic 

criticism [see, for example, Cogley (2001), Cogley and Nason (1995), Harvey (1997), Harvey 

and Jaeger (1993), or King and Rebelo (1993)], the so-called Hodrick-Prescott (HP) filter 

[Hodrick and Prescott (1997)] has become central to the paradigm for business-cycle 

estimation at many economic institutions (examples are the IMF, the OECD, or the ECB). 

The HP filter decomposes a time series into two components: a long-term trend and a 

stationary cycle, and requires the prior specification of a parameter known as lambda ( λ ) that 

tunes the smoothness of the trend, and determines, for a given model for the series, 

the main period of the cycle that the filter will produce. Nevertheless, as pointed out by 

Wynne and Koo (1997), the parameter does not have an intuitive interpretation for the user, 

and its choice is considered an important weakness of the HP method [Dolado et al. (1993)]. 

The use of the same λ  for series with different periodicity will (broadly) maintain 

the frequency associated with the cycle spectral peak, and hence will produce cycles that are 

inconsistent under time aggregation. For example, if the frequency is 60/π=ω  radians, the 

monthly data will show a cycle concentrated around a period of 10 years; for annual data, 

the period becomes 120 years. Obviously, different periodicities require different values of λ . 

For quarterly data (the frequency most often used for business-cycle analysis) there 

is an implicit consensus in employing the value of 1600=λ , originally proposed by Hodrick 

and Prescott, based on a somewhat mystifying reasoning (“…a 5% cyclical component is 

moderately large, as is a 1/8 of 1% change in the growth rate in a quarter…”). Still, the 

consensus around this value undoubtedly reflects the fact that analysts have found it useful. 

The consensus, however, disappears when other frequencies of observation are used. 

For example, for annual data, Baxter and King (1999) recommend the value 10=λ , Cooley 

and Ohanian (1991), Apel et al. (1996), and Dolado et al. (1993) employ 400=λ , while 

Backus and Kehoe (1992), Giorno et al. (1995) or European Central Bank (2000) use the 

value 100=λ , which is also the default value in the popular econometrics program 

EViews [EViews (2005)]. Concerning monthly data (a frequency seldom used), the default 

value in EViews is 14400, while the Dolado et al. reasoning would lead to 4800=λ . 

None of the references mentioned addresses the issue of the relationship between 

the values of λ  used for different observation frequencies. In particular, if Mλ  is used for 

monthly data, how do the implied quarterly cycles compare with those obtained directly 

from the quarterly data with 1600Q =λ ? Also, what value of Aλ  applied to annual 

observations yields cycles that are close to the ones obtained by aggregating the 

cycles obtained for quarterly data with 1600Q =λ ? Ravn and Uhlig (2002) use an empirical 

rule to obtain these “consistent under time aggregation” values of λ . Using as reference the 

value of Qλ  (for quarterly data), and letting Dλ  denote the value for an alternative frequency 

of observation, they restrict attention to the relationship 

Q
n

D )k( λ=λ , (1.1) 

where k is the ratio of the number of observations per year for the alternative and quarterly 

frequencies respectively (thus 3k =  and 4/1k =  when the alternative frequencies are the 
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monthly and annual ones) and n is a positive integer. Ravn and Uhlig (RU) present evidence 

that 4  n =  appears to be the best choice. For 1600Q =λ , this implies 129600M =λ  and 

25.6A =λ . 

Section 4 of the paper addresses the issue of consistency under temporal 

aggregation of the HP cycle from the perspective of preserving an important filter 

property, namely, the period associated with the frequency for which the filter gain is ½. 

Higher frequencies will belong mostly to the cycle; lower ones, to the trend. The criterion 

is easy to apply and yields results that are very close to those obtained by RU. In fact, it is 

shown how the RU rule turns out to be a first-order approximation to the criterion 

we consider. Section 5 considers criteria that preserve alternative characteristics of the HP 

filter and the results are found robust. 

But the frequency domain properties of the cycle obtained will depend, not only 

on the filter, but also on the spectrum of the series at hand. This is analyzed in Section 6 and 

it is seen that, for an important class of models, the results are robust and remarkably 

close to those obtained with the simple criterion of Section 4. The closeness is stronger 

for the case of temporal aggregation than for the case of systematic sampling (in particular, 

when the model is not far from noninvertibility for the zero frequency). The robustness of the 

results is confirmed by a Least Squares exercise (Section 7). Finally, Section 8 discusses 

some limitations that should be taken into account when estimating and comparing cycles for 

different series periodicity. 

Appendix A addresses a point having to do with the spuriousness of the HP filter. 

It is shown how, under very general conditions and for any linear process, the HP filter trend 

and cycle estimators can be given a perfectly sensible model-based interpretation that fully 

respects whatever model may have been identified for the series. Appendix B details how the 

autocovariances of the aggregate model can be obtained from those of the disaggregate 

model following the Wei and Stram procedure (extended to the systematic sample case). 

The paper centers on monthly, quarterly, and annual frequencies of observation, 

and uses the widely accepted value 1600Q =λ  as the pivotal value for the comparisons. 

The analysis, however, generalizes trivially to any other frequencies of observation and 

pivotal value for λ . The discussion is illustrated with some five macroeconomic series 

(the industrial production IPI series for the US, Japan, France, and Italy, and the US 

unemployment series) spanning the period January 1962 – December 2005 (528 monthly 

observations). The series are taken from the OECD database and are available at 

(www.bde.es →  Professionals →  Econometrics Software). 
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2 The Hodrick-Prescott Filter 

Let B denote the lag operator, such that jtt
j xxB −= , and B1−=∇  denote the regular 

difference. For the rest of the paper, “w.n. (0, ν )” will denote a white noise (i.e., niid) variable 

with zero mean and variance ν . Suppose we are interested in decomposing tx  into a 

long-term trend tm and a residual, tc , to be called “cycle”. From the time series realization 

) x (x T1 … , the HP filter provides the sequences )m  (m T1 …  and )c  (c T1 …  such that 

ttt cmx +=
       

T,1, t …= , (2.1) 

and the loss function 

( )∑ ∇λ+∑
==

T

3t

2

t
2

T

1t

2
t mc

 (2.2) 

is minimized. The first term in (2.2) penalizes large residuals (i.e., poor fit), while the second 

term penalizes lack of smoothness in the trend. The parameter λ regulates the trade-off 

between the two criteria: larger values of λ  will produce smoother trends and increase the 

variance of the cycle. King and Rebelo (1993) showed that the filter could be given an 

unobserved component (UC) model derivation whereby tx  is the realization of a stochastic 

process consisting of (2.1), where 

mtt
2 am =∇  ,   mta ∼ ), (0 w.n. mν  ;  tc  ∼ ), (0 w.n. mc νλ=ν ; (2.3) 

with mta  orthogonal to tc . Under these assumptions, the HP filter solution is equivalent to 

the minimum mean square error (MMSE) estimator of tm  and tc obtained by the Kalman 

filter. Kaiser and Maravall (2001) show that the HP estimators can also be derived with 

an ARIMA-model-based (AMB) algorithm. We summarize this approach. 

From (2.1) and (2.3) it follows that t
2

mtt
2 cax ∇+=∇  and hence the reduced form 

for tx  is an IMA(2,2) process, say 

t
2

21tHPt
2 b)BB1(b)B(x θ+θ+=θ=∇  ,   tb ∼ ), (0 w.n. bν  (2.4) 

where the identity  

c
22

mbHPHP )F1()F()B( ν−∇+ν=νθθ  (2.5) 

determines the parameters 1θ , 2θ , and bν ; see Section 4.4 in Kaiser and Maravall (2001) 

or Appendix A in Maravall and del Río (2001). For the pivotal value, 1600=λ , it is found that 

2
HP B79944.B7771.11)B( +−=θ  ; 4.2001V b = . (2.6) 

It should be stressed that the model-based interpretation (2.3) – (2.4) is simply meant 

to provide an algorithm, and not the model that could presumably be generating the series 

[see, for example, Pollock (2006)]. We shall refer to the model (2.3) – (2.4) as the “artificial” 

model. It will be most unlikely that the artificial model coincides with the model actually 

identified for the series (obviously, a white-noise business-cycle makes no sense) and the 



BANCO DE ESPAÑA 12 DOCUMENTO DE TRABAJO N.º 0728 

discrepancy between the artificial and identified model underlies the criticism made on 

occasion of the HP filter. This spuriousness issue is discussed in Appendix A where it is 

shown that, if properly interpreted, the trend and cycle estimators provided by the HP 

filter are MMSE of components with sensible trend and cycle models, that aggregate into 

whatever model might have been identified for the series. 

The r.h.s. of (2.5) implies that t
2 x∇  has a positive spectral minimum (equal to mν ), 

and hence tHP b)B(θ  is an invertible process; therefore, 1
HP )B( −θ  will converge. 

The MMSE estimator of tm  and tc  obtained with the Wiener-Kolmogorov (WK) filter are the 

ones obtained with the HP filter, which can thus be expressed as 

)F()B(

1
)F,B(

HPHPa

m

m θθν

ν
=ϑ , (2.7) 

)F()B(

)F1()B1(
)F,B(

HPHP

22

a

c

c θθ

−−

ν

ν
=ϑ , (2.8) 

where )BF( -1=  denotes the forward operator, such that jtt
j xxF += . The estimators 

of tm  and tc  can be obtained through 

tmt x)F,B(m̂ ϑ=  ,   tct x)F,B(ĉ ϑ= . (2.9) 

The filters (2.7) and (2.8) are symmetric, centered, and convergent. From (2.3) and 

(2.5), the filter (2.7) can alternatively be expressed in terms of the HP parameter λ  as:  

22m
)F1()B1(1

1
)F,B(

−−λ+
=ϑ . (2.10) 

It will prove useful to look at the frequency domain representation of the filter (2.10). 

If [ ]π∈ω ,0  denotes the frequency measured in radians, replacing B by the complex number 
ω− ie , and using the identity ωω− +=ω ijij ee)jcos(2 , gives the frequency response function 

(also the gain) of the trend  estimation filter: 

2m
)cos1(41

1
),(G

ω−λ+
=λω . (2.11) 

The gain function of the filter that estimates the cycle is ),(G1),(G mc λω−=λω . 

Equating the pseudo-autocovariance functions (ACF) of the two sides of both equations 

in (2.9), and taking the Fourier transform (FT) yields  

[ ] )(S),(G),(S x
2

mm̂
ωλω=λω ; (2.12a) 

[ ] )(S),(G),(S x
2

cĉ
ωλω=λω , (2.12b) 

where ),(S m̂ λω , ),(S ĉ λω , and )(S x ω  are the spectra or pseudo-spectra 

(hereafter also denoted spectra) of tm̂ , tĉ , and tx . The squared gain of the filter indicates 

thus how much the frequencies of tx  will contribute to the variance of the estimators tm̂  

and tĉ . Given that seasonal variation (or noise) should not contaminate the cyclical signal, 
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the variable tx  in (2.9) and (2.12) will typically be a seasonally adjusted (SA) series 

or a trend-cycle component. 

The WK filters (2.7) and (2.8) extend from −∞  to ∞ . Their convergence, however, 

would allow us to use a finite truncation. But, as characterizes all 2-sided filters, estimation of 

the component at both ends of a finite series requires future observations, still unknown, and 

observations prior to the first one available. The optimal (MMSE) estimator for end points can 

be obtained by extending the series with forecasts and backcasts, so that expression (2.9) 

remains valid with tx  replaced by the extended series. There is no need however 

to truncate the filter: using the approach in Burman (1980), Kaiser and Maravall (2001) 

present the algorithm for the HP filter case, and show how the effect of the infinite extensions 

can be exactly captured with only four forecasts and backcasts. The WK application of 

the HP filter is computationally efficient and analytically convenient. 
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3 Temporal Aggregation of the Hodrick-Prescott Filter 

We shall consider two types of aggregation. In the first one ("temporal aggregation") 

the aggregate variable is the sum (or average) of the disaggregate variable; in the second 

one ("systematic sampling") the aggregate variable is obtained by periodically sampling one 

observation from the disaggregate variable. 

Given that different values of λ  have to be used for different series periodicity 

and that the HP filter is only linear for fixed λ , aggregation of an HP cycle will not yield the 

cycle that would result of a direct application of an HP filter to the aggregate series. 

[This point is discussed in detail in Maravall and del Río (2001).] As mentioned in Section 1, 

a variety of (seemingly arbitrary) values of λ  have been used for different frequencies 

of observation. The first question that comes to mind is: how relevant can be the lack of 

aggregation consistency between the different values of λ ? Figures 1, 2, and 3 display the 

cycles estimated for the USA Industrial Production Index during the period 1962-2005 for 

different values of λ  and frequencies of observation. Figure 1 compares the estimates for the 

last 200 months using the RU rule ( 130000=λ ) and the EViews default value ( 14400=λ ). 

Figure 2 compares, for the case of systematic sampling, the cycles for the last 50 quarters 

obtained directly with the consensus value 1600=λ  and indirectly by aggregating the 

monthly cycles using the EViews default value. Finally, Figure 3 compares, for the case of 

temporal aggregation, the annual cycles for the full period obtained directly with the value 

400=λ  and indirectly with the same EViews monthly value. 

Direct inspection of the figures shows that, although the most salient features of the 

cycles may roughly be robust to variations in λ , the differences are nevertheless important 

and increase with the level of aggregation. The next question is whether one can derive λ  

values for different frequencies of observation such that consistency under time aggregation 

is approximately preserved. Specifically, given the HP decomposition of the quarterly series 

with Qλ  as parameter, 

(a)  can we obtain a value Aλ  that provides a direct HP decomposition of the annual series 

with components that are close to the ones obtained by aggregating the quarterly 

components? 

(b)  can we obtain a value of Mλ  that provides monthly components that, when aggregated, 

are close to the components of the direct  quarterly decomposition? 

In summary, we seek values of λ  —say Mλ , Qλ , and Aλ — such that direct 

application of the HP filter to the monthly, quarterly, and annual series yields cycles that are 

very approximately consistent. We shall consider first criteria based on the preservation of 

some feature of the filter. 
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Figure 1: Monthly cycles, IPI USA
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Figure 2: Quarterly cycles, systematic sampling
 IPI USA
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Figure 3: Annual cycles, temporal aggregation
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4 Aggregation Criteria Based on the Preservation of Filter Characteristics; the 

Ravn and Uhlig Rule 

4.1 Aggregation by Fixing the Period for which the Gain is One Half (the Cycle of 

Reference) 

In the engineering literature, a well-known family of filters designed to remove (or estimate) 

the low-frequency component of a series is the Butterworth family [see, for example, 

Pollock (1997, 2003), or Gómez (2001)]. The filter is described by its gain function which, for 

the two-sided expression and the sine-type subfamily, can be expressed as 

1d2

0
m )2/sin(

)2/sin(
1)(G

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ω

ω
+=ω , π≤ω≤0 , (4.1) 

and depends on two parameters, d and 0ω . Given that 5.)G( 0 =ω , the parameter 0ω  is 

the frequency for which 50% of the filter gain has been achieved (Figure 4). Thus frequencies 

lower than 0ω  will go mostly to the trend, while frequencies higher than 0ω  will be assigned 

mainly to the cycle. We shall refer to the cycle associated with that frequency as the "cycle of 

reference". Setting d=2 and [ ] 1
0

4 )2/(sin
−

ω=β , the gain can also be expressed as 

( )[ ] 14
m 2/sin1)(G

−
ωβ+=ω . (4.2) 

From the identity )cos(1)2/(sin2 2 ω−=ω , (4.2) can be rewritten as 

( )[ ] 12
m cos1)4/(1)(G

−
ω−β+=ω , 

which, considering (2.11), shows that the filter is precisely the HP filter, with 16/β=λ . 

Corresponding to 0ω=ω , one finds 

[ ] 12
00 )cos1(4

−
ω−=λ . (4.3) 

 

 

 

 

 

 

 

Figure 4: Gain of the HP filter (LAM=1600)
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Therefore, knowing the parameter 0ω , the HP filter parameter λ  can be easily 

obtained, and vice versa. If τ  denotes the period of ωcos , τ  is related to ω  through 

ωπ=τ /2 . (4.4) 

Using (4.3) and (4.4), we can express the period τ  directly as a function of λ , as  

)
2

1
1cos(a/2

λ
−π=τ . (4.5) 

Equations (4.3)-(4.5) allow us to move from period to frequency, and then to λ  

(and vice versa) in a simple way. The frequency 0ω  —or its associated period 0τ — provide 

a more intuitive characterization of the cycle than the HP parameter λ . For example, from 

(4.5) the consensus value 1600Q =λ  implies an associated period of (very approximately) 

10 years. The choice of a 10-year period cutting point (between periods that will be mostly 

assigned to the trend and those that will be mostly assigned to the cycle) seems easier to 

interpret than the choice of a value for λ . The preservation of the period of the cycle of 

reference provides an attractive criterion for finding values of λ  that yield relatively consistent 

results under aggregation. 

Our procedure amounts to the following. Starting with 0λ  for some frequency 

of observation (for example, quarterly), the associated period 0τ  (in quarters) is found 

through (4.5). Consider another frequency of observation (for example, monthly or annual). 

Expressed in this frequency, 0τ  implies the period 

0D k τ=τ , (4.6) 

where k is as in (1.1). From (4.4) and (4.6), k/0D ω=ω , so that Dλ  can be obtained with 

(4.3) with 0ω  replaced by Dω . The procedure is simple to apply, and can be used for 

aggregating or disaggregating series with any frequency of observation. 

For the consensus value 1600Q =λ , (4.5) implies a period of 39.7 quarters. Thus, 

for annual data, the period of the cycle of reference is, according to (4.6), 9.9=τ  years. 

From (4.4), 9.9/2A π=ω , and finally (4.3) yields 65.6A =λ . On the other hand, in terms of 

monthly observations, the period of 39.7 quarters is equal to 119.1 months. Using (4.4) 

and (4.3), it is found that the equivalent value for monthly data is 129119M =λ . Thus, using 

this criterion, values of λ  that are consistent under aggregation are 

129119M =λ  ;   1600Q =λ   ;   65.6A =λ . (4.7) 

These values are very close the ones that result from the RU rule. An example can 

illustrate the difference with respect to other proposed values. In Giorno et al. (1995) the 

method used by the OECD for the estimation of the output gap is described: it uses the HP 

filter with 1600Q =λ  and 100A =λ . These values are referred to as "de facto industry 

standards"; they are also used by the European Central Bank (2000) and default values in 

EViews. Using 100A =λ  for annual data, from (4.5), the period of the cycle of reference 

is 8.19A =τ  years which, in terms of quarterly data, becomes 2.79Q =τ  quarters, very 

different from the 39.7 quarters associated with the consensus Qλ  value. 
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For the cases of temporal aggregation and systematic sampling, figures 5, 6, 7, 

and 8 compare the direct and indirect cycles obtained with (4.7) for the USA IPI example: the 

two cycles are seen to be virtually indistinguishable for the case of temporal aggregation, and 

very close for the case of systematic sampling. 
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Figure 5: Direct and indirect quarterly cycles for IPI USA 
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The convenience of using λ  values that are consistent under time aggregation 

is illustrated with the following example. Figure 9 shows the cycles estimated for the quarterly 

USA IPI and unemployment series during the period 1962-2005 using the consensus 

value 1600Q =λ  for both. The figure reveals a very stable inverse relationship between the 

two cycles throughout the entire period. Recessions in industrial production are associated 

with expansions in unemployment, and viceversa, with the association moving in close to 

perfect phase. 

Figures 10 and 11 show the monthly and annual cycles for the two series using 

the λ -values obtained with the criterion of maintaining the period associated with the 50% 

gain. It is seen how the relationship between the two series is preserved, so that inferences 

concerning the relationship between the cycles are robust with respect to the measurement 

time units. 
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Figure 7: Direct and indirect quarterly cycles  for IPI USA
Systematic sampling
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Systematic sampling
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Figure 11: Annual cycle, temporal aggregation 
(LAM=6.5)
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Figure 10: Monthly cycle (LAM=130000)
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Figure 9: Quarterly cycle, temporal aggregation 
(LAM=1600)
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4.2 Relationship with the Ravn and Uhlig Rule 

As mentioned in the introduction, Ravn and Uhlig (2002) provide a simple rule to compute 

values of λ  for different frequencies of observation that appear to be approximately 

consistent under aggregation. If Qλ  is the reference value for quarterly data, and Dλ  

denotes the value for an alternative frequency of observation, they look at relationships 

of the type (1.1) and present evidence that good results are obtained for 4  j = . If 1600Q =λ , 

this rule yields the monthly and annual values 129600M =λ  and 25.6A =λ , close to the 

ones obtained in (4.7). This closeness can be explained as follows. 

Let 0λ  be the HP parameter for a given periodicity of observation, and let 0ω  and 

0τ  be the frequency and period associated with .5)(G 0 =ω . We wish to obtain the 

equivalent value for 0λ , say Dλ , for another observation periodicity, using the criterion 

of preserving the period 0τ . Let Dω  and Dτ  be the frequency and period associated 

to .5)(G D =ω . Then, preservation of the period implies that 0D k τ=τ  or, equivalently, 

k/0D ω=ω , so that, according to (4.3), 

( )( ) 2
0

D
k/cos14

1

ω−
=λ . (4.8) 

Further, from (4.3), 

)2/(11cos 00 λ−=ω . (4.9) 

Considering the power series expansion 

2/x1xcos 2−=  + higher order terms, (4.10) 

letting 0x ω=  and comparing (4.9) and (4.10), after simplification, 

4/1
00
−λ≅ω . (4.11) 

Letting k/x 0ω=  in (4.10), ( ) 22
00 k2/1k/cos ω−≅ω , so that, considering 

(4.11), after simplification (4.8) becomes 

0
4

D k λ≅λ . (4.12) 

Expression (4.12) shows that the RU rule turns out to be a first-order approximation 

to the criterion of preserving the period of the cycle for which the gain of the filter is 1/2. The 

approximation will work better for larger values of λ , as shown in Table 1. (Note: in the table, 

the value of τ  for RU is the period associated with the condition that Gain = .5 when the RU 

value of λ  is employed.) 
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Table 1: Performance of approximation 

 
Frequency of 
observation 

 G = .5 
criterion 

RU           
criterion 

Every month 

 

Every 2 months 

 

Every 3 months 

 

Every 4 months 

 

Every 6 months 

 

Once a year 

λ  

τ  (months) 

λ  

τ  (2 months) 

λ  

τ  (quarter) 

λ  

τ  (4 months) 

λ  

τ  (6 months) 

λ  

τ  (years) 

129120 

119.1 

8081 

59.55 

1600 

39.70 

508 

29.77 

101.3 

19.85 

6.65 

9.92 

129600 

119.2 

8100 

59.58 

1600 

39.70 

506 

29.75 

100 

19.79 

6.25 

9.76 

 

 

From the table, starting from the quarterly value of 1600Q =λ , the period of 

the cycle associated with ω  such that 5.)(G =ω  is 1.119=τ  months. Let λ  denote the 

value for another frequency of observation, obtained with the same criterion, and let RUλ  

denote the value obtained with the RU rule. If τ  and RUτ  are the period of the cycles 

associated with Gain = .5 when λ  and RUλ , respectively, are used, for monthly data: 

1.RU
MM =τ−τ  months; for annual data: 9.1RU

AA =τ−τ  months; for data recorded every 

two years:  9RU
Y2Y2 =τ−τ  months. Thus the annual frequency seems to provide a rough 

limit for the validity of the approximation. The criterion of preserving the period of the cycle 

that represents the cutting point between “mostly trend” and “mostly cycle” periods provides 

a sensible rationale to the empirical rule of RU. 
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5 Criteria Based on Alternative Filter Characteristics 

5.1 Replacing the Gain by the Squared Gain 

Section 4 used as aggregation criterion the preservation of the period associated with the 

frequency for which the filter gain is ½. This period was referred to as the cutting point 

between trend and cycle in the series. But, in view of (2.12), one could consider the way 

variances are filtered, and use perhaps as criteria the preservation of the period associated 

with the frequency for which the squared gain of the cycle filter equals ½. 

From ),(G1),(G mc λω−=λω , it is found that if 0ω  denotes the frequency for 

which [ ] 5.)(G 2
0c =ω , then 5.1)(G 0m −=ω  and, from (2.11), the associated value 

of λ, say 0λ  is: 

2
0

1
0

)cos1(

c

ω−
=λ , (5.1) 

where [ ] 4/1)5.1/(1c 1 −−= . Therefore, the relationship between 0λ  and the period 

associated with 0ω , say 0τ , is given by: 

)
c

1cos(a

2

1

0

λ−

π=τ . (5.2) 

Replacing equations (4.3) and (4.5) with (5.1) and (5.2), one can proceed as in 

Section 4.1. to obtain values of λ for different frequencies of observations that yield 

consistent results. For the pivotal value of 1600Q =λ  it is obtained that 128854M =λ  

and 6.89A =λ . 

5.2 Preserving the period associated with the roots of (B)HPθ  

As seen in (2.7) and (2.8), the model-based algorithm depends on the polynomial 
2

21HP BB1)B( θ+θ+=θ , fully determined from the λ  parameter. Appendix A shows 

that this polynomial in B will show up as part of the AR polynomial in the model for the 

cycle (this model is implied by the convolution of the HP filter and the ARIMA model 

for the series). The roots of (B)HPθ  will be a pair of complex conjugate roots associated 

with a cyclical frequency [McElroy (2006)]. Thus another criterion for aggregation could be the 

preservation of the period that corresponds to that frequency. 

McElroy shows that the dependence of the roots frequency on λ is given by 

[ ]4/)16qq2q2(tana 2/1++=ω . (5.3) 

where λ= 1/q . Proceeding as in Section 4.1, starting with a value 0λ , we obtain 0ω  with 

(5.3), then (4.6) transforms this frequency into the equivalent one (say Dω ) for the different 

periodicity of observations. Solving (5.3) for λ , one obtains the associated value 

4
D

2
D

D
)(tan4

)(tan1

ω

ω+
=λ . (5.4) 
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For the pivotal value of 1600Q =λ , the roots of (B)HPθ  —given by (2.6)— have 

frequency 0.1117 and the associated period is 14 years. The values of λ  that provide 

consistent cycles for the monthly, quarterly and annual periodicities are found to be: 

130082M =λ ;   1600Q =λ ;   84.5A =λ . 

5.3 Summary Remark 

The three criteria yield similar results, similar also to the ones obtained with the RU rule. The 

value of λ  for monthly data consistent with 1600=λ  for quarterly data is always very 

close to 130000M =λ . For annual data, Aλ  ranges between roughly 6 and 7, a small 

range compared to the range of values that have been proposed in the literature (between 6 

and 400). In fact, graphical comparison of the cycles obtained with criteria 4.1, 4.2, 5.1, 

or 5.2 would practically reproduce Figures 5 to 8; the differences would be indistinguishable. 

The criterion of Section 5.1, based on the Squared Gain, does not really provide a 

“cutting-point” interpretation given that a 50% assignment of the variance to the cycle does 

not imply that the remaining 50% is assigned to the trend. There is a loss due to the 

appearance of a covariance between the trend and cycle estimators. Concerning the criterion 

of preserving the period associated with the roots of (B)HPθ , its main justification can 

be found in the time domain: for long enough lag and horizon, the eventual autocorrelation 

and forecast functions will contain a cyclical component with that same period. 

Altogether, of the criteria we have considered that are based on the preservation of 

the characteristics of the filter, the first one (Section 4.1) seems the most intuitive and 

attractive. It provides moreover a nice rationale to the simple RU rule. 
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6 Aggregation by Fixing the Period Associated with the Maximum of the Cycle 

Spectrum 

The previous criteria are based solely on properties of the HP filter. But ultimately, the 

properties of the resulting cycle are a combination of two factors: the characteristics of 

the filter and the stochastic properties of the series in question. We consider now their 

interaction. To describe the cycle we consider its spectrum, which can be computed through 

expression (2.12) and will always be expressed in units of π2 . Series with different stochastic 

structures will imply different spectra for the cycle even when the same HP filter is used. 

As an example, consider two series that follow a standard and a second-order 

random-walk model, as in 

tt1 ax =∇  ,  tt2
2 ax =∇ . (6.1) 

Expressions (2.8) and (6.1) show that the estimators of the cycle can be expressed in 
terms of the innovations ta  as 

t
HPHP

2

ct1 a
)F()B(

)F1)(B1(
kĉ

θθ

−−
= , (6.2a) 

t
HPHP

2

ct2 a
)F()B(

)F1(
kĉ

θθ

−
= , (6.2b) 

where acc /k νν= . The FT of the ACF of (6.2a) and (6.2b) yield the two spectra, namely, 

[ ] a22

32

1c V
)cos1(41

)cos1(8
)(S

ω−λ+

ω−λ
=ω , 

[ ] a22

22

2c V
)cos1(41

)cos1(4
)(S

ω−λ+

ω−λ
=ω . 

 

Figure 12: Spectra of the cycle component of first and second-order random walk (λ=1600) 

 

 

 

 

 

Random walk

0 π/2frequency

Second-order random walk

0 π/2frequency
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The two spectra are displayed in Figure 12 for 1600=λ . Both have the shape of a 

stochastic cyclical component spectrum, with the variance concentrated around the spectral 

peak. The cycle associated with that peak will be denoted the “cycle of dominance”. A natural 

criterion for aggregation could be preservation of the cycle of dominance. [This is similar to 

approximating spectral densities by preserving the mode, see Durbin and Koopman (2000).] 

An advantage of this approach is that it combines the characteristics of the filter with the 

specific features of the series; it has the disadvantage that no general rule for finding 

equivalent values of λ  can be obtained, since the equivalence depends on the model for 

the series. Nevertheless, two issues are of interest. First, what is the equivalence for some 

of the most relevant ARIMA models? Second, if the simpler criterion of fixing the period 

associated with the cycle of reference of section 4 (or the RU rule) is used, are the results 

likely to be much different from those obtained with the criterion of fixing the period 

associated with the cycle of dominance? 

We consider IMA(1,1) and IMA(2,2) models, both of which are consistent under 

temporal aggregation and systematic sampling [Brewer (1973)]. The IMA(d,d) formulation is 

also attractive because it is the limiting model for time aggregates of ARIMA(p,d,q) models 

[Tiao (1972)]. We encompass both cases under the specification 

t
2

21tt
d a)BB1(a)B(x θ+θ+=θ=∇ , (6.3a) 

where 1d =  and 02 =θ  for the IMA(1,1) case, and 2d =  for the IMA(2,2) one. For an 

alternative (aggregate) frequency of observation (6.3a) becomes 

T
2

21TT
d A)BB1(A)B( Θ+Θ+=Θ=Χ∇ . (6.3b) 

Let ),( 21Q θθ=θ  and ),( 21D ΘΘ=θ  denote the vectors with the MA 

parameters of the quarterly model and of the model for the alternative frequency of 

observation (annual or monthly). Likewise, let ),|(S QQQ λθω  and ),|(S DDD λθω  

denote the corresponding spectra. The procedure for obtaining the equivalent values of λ  for 

the transformed series can be summarized as follows: 

1. Given Qθ  and Qλ , obtain the frequency Qω  ( [ ]π∈ω ,0 ) such that 

),|(S QQQ λθω  is maximized, as well as the associated period Qτ . 

2. Transform Qτ  into Dτ  and obtain the associated frequency Dω . 

3. Use the relationship between the variance and covariances of the disaggregate and 

aggregate series to find Dθ  given Qθ . 

4. Find ω~  such that ),|(S DDD λθω  is maximized, and Dλ  such that D
~ ω=ω . 

Although the procedure is general, in our application we fix 1600Q =λ  for quarterly 

data and derive the values Mλ  and Aλ  that preserve the period associated with the cycle 

spectral peak. Step 3 requires the derivation of the model for the annual or monthly series, 

given the model for the quarterly one. If (6.3a) is the model for the more disaggregate 

series, the model for the aggregate series will be of the type (6.3b). In order to obtain the Θ  

and AV  parameters, we follow the Wei and Stram (1986) approach, extended to cover also 

the case of systematic sampling, as detailed in Appendix B. In brief, if Γ  and γ  denote the 

vector of autocovariances of T
d Χ∇  and t

d x∇ , a matrix M is computed such that 

γ=Γ M . (6.4) 
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Expressing Γ  and γ  as functions of the model parameters, the parameters for the 

alternative frequency can be obtained as functions of the quarterly parameters. 

For the IMA(1,1), and IMA(2,2) models, the matrices M in (6.4) that relate annual to 

quarterly, and quarterly to monthly, covariances are given in Table 2, for both the temporal 

aggregation and systematic sampling cases. 

 

Table 2: Matrices M that relate aggregate and disaggregate covariances 

 

Model Frequencies Temporal Aggregation Systematic Sampling 

IMA(1,1) Quarterly to Annual 

Aggreg. 

Monthly to Quarterly 

Aggreg. 

⎥⎦
⎤

⎢⎣
⎡

2410
8044  

⎥⎦
⎤

⎢⎣
⎡

114
3219  

⎥⎦
⎤

⎢⎣
⎡

10
64  

⎥⎦
⎤

⎢⎣
⎡

10
43  

IMA(2,2) Quarterly to Annual 

Aggreg. 

Monthly to Quarterly 

Aggreg. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

56226
512456216
9121092580

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2161
13211150
180252141

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
322410
628044

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
16114
203219

 

 

6.1 IMA(1,1) Model 

Combining (6.3a) –with 1d =  and 02 =θ – with (2.8), it is seen that the cycle estimator 

follows the model 

t
HPHP

2

a

c
t a)B1(

)F()B(

)F1)(B1(
ĉ θ+

θθ

−−

ν

ν
= , 

so that, considering (2.12), its spectrum is given by 

[ ] a
2

22

32

c V)cos21(
)cos1(41

)cos1(8
),|(S ωθ+θ+

ω−λ+

ω−λ
=λθω , (6.5) 

and maximizing (6.5) with respect to ω   yields 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

θ+λ

θ+
λ

−
θ+λ

θ+=ω
42

2

2 )1(4

3

)1(
1cosa~ . (6.6) 

Solving (6.6) for λ , it is obtained that 

( ) ( )ω−θ+

θ−
ω−

=λ
~cos1)1(

2
~cos14

3~
22

. (6.7) 



BANCO DE ESPAÑA 28 DOCUMENTO DE TRABAJO N.º 0728 

(a)  From Quarterly to Annual Data 

Steps  (1)  and  (2)  above  are  a  direct  application  of  (6.6)  and  (4.4)  with  

Qθ=θ   and  Qλ=λ , and of (4.6) with 1/4  k = . From (6.3a) and (6.3b), 

aQa
2
Q10 V,V)1[(),( θθ+=γγ=γ ], A1A

2
110 V,V)1[(),( ΘΘ+=ΓΓ=Γ ], or, 

considering (6.4) with the appropriate M matrix from Table 2, the system of covariance 

equation is 

 

a
2
QQ0 V)448044( θ+θ+=Γ , 

a
2
QQ1 V)102410( θ+θ+=Γ . 

 

Therefore, 2
1 1(1 ) / c+ Θ Θ = , where )102410/()448044(c 2

QQ
2
QQ θ+θ+θ+θ+= . The 

MA parameter of the annual IMA(1,1) model is given by the invertible solution of equation 

01zcz 2 =+− . (6.8) 

 

For the case of systematic sampling, using the appropriate matrix from Table 2, the 

system of covariance equations becomes 

a
2
QQ0 V)464( θ+θ+=Γ  ,  aQ1 Vθ=Γ . 

 

Defining Q
2
QQ /)464(c θθ+θ+= , the MA parameter for the IMA(1,1) annual 

model is again the invertible solution of (6.8). Having obtained 1Θ , setting 1Θ=θ , and 

D
~ ω=ω  in (6.7), the equivalent value of λ  for annual series, Aλ , is obtained. The period 

associated with the cycle spectral maximum will be identical for the quarterly and annual 

series. 

(b)  From Quarterly to Monthly Data 

Step (1) and (2) are as in the previous case, except that now, QM 3 τ=τ , the 

aggregate series is the quarterly one, and hence a
2
Q0 V)1( θ+=Γ , aQ1 Vθ=Γ , 

a
2
M0 V)1( θ+=γ , and aM1 Vθ=γ . Using the appropriate matrix M from Table 2, the 

system of covariance equations is given by 

 

a
2
MMA

2
Q

V)193219(V)1( θ+θ+=θ+ , 

a
2
MMAQ

V)4114(V θ+θ+=θ . 

 

Letting Q
2
Q1 /)1(c θθ+= , it is found that Mθ  is the invertible solution of (6.8), with 

)4c-)/(1911c-(32c 112 = . The equation has complex solutions when 3.0Q ≥θ  so that 

IMA(1,1) monthly models aggregate into IMA(1,1) quarterly models with the MA parameter 

restricted to the range 3.0-1 Q <θ< . 
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For the case of systematic sampling and using the appropriate M matrix from 

Table 2, the system of covariance equations is replaced by: 

a
2
MMA

2
Q

V)343(V)1( θ+θ+=θ+ , 

aMAQ VV θ=θ , 

so that, if 
Q

2
Q1 /)1(c θθ+=  and 1c (4-c )/3= , the value of Mθ  is the invertible solution of 

(6.8). The system yields complex solutions when 33.0Q >θ  and hence systematic sampling 

of monthly IMA(1,1) models yields quarterly IMA(1,1) models with the MA parameter restricted 

to the range 33.0-1 Q <θ< . 

With the quarterly value set at 1600Q =λ , Table 3 displays the equivalent monthly 

and annual values of λ , obtained with the criterion of preserving the period associated with 

the cycle spectral peak, when the series follows an IMA(1,1) process, and for different values 

of the MA parameter Qθ . It is seen that the model parameter has a moderate effect on the 

period of the cycle of dominance. 

 
 

Table 3: IMA(1,1): Monthly and annual λ values that preserve the period of the cycle spectral 

peak for λQ = 1600 

 

Equivalent values of λ  

temporal aggregation systematic sampling 

 
 
 
 

Qθ  

Period of the 
cycle of 

dominance  
(in years) 

annual 
( Aλ ) 

monthly 

( Mλ  in 310 ) 

annual 
( Aλ ) 

monthly 

( Mλ  in 310 ) 

-0.8 
-0.6 
-0.4 
-0.2 
0.0 
0.2 
0.4 
0.6 
0.8 

5.72 
7.14 
7.41 
7.50 
7.53 
7.55 
7.56 
7.56 
7.56 

6.53 
6.12 
6.05 
6.03 
6.02 
6.02 
6.01 
6.01 
6.01 

129.3 
129.8 
129.8 
129.9 
129.9 
129.9 

        -     (*) 
- 
- 

20.86 
10.85 
8.21 
7.33 
6.97 
6.81 
6.74 
6.70 
6.69 

71.4 
112.0 
123.4 
127.2 
128.8 
129.8 

       -    (*) 
- 
- 

 

(*) Values of Qθ  for the lines marked “-” cannot be obtained by aggregation of monthly 

IMA(1,1) models. 

 

For the case of temporal aggregation the results are seen to be very stable. The 

monthly equivalent values Mλ  are always close to 130000, and the annual equivalent 

value Aλ  lies between 6 and 6.5. These values are close to the ones obtained in Sections 4 

and 5. When aggregation is achieved through systematic sampling, the results are less stable, 

in particular as Qθ  approaches -1. 
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6.2 IMA(2,2) Model 

When tz  follows the IMA(2,2) model given by (6.3a), from (2.8) and (2.12) it is found that the 

HP cycle follows the model 

t
22

2
21

2

t a
)F1()B1(1

)BB1()F1(
ĉ

−−λ+

θ+θ+−λ
= , 

with spectrum 

[ ]
[ ] a

22

221
2
2

2
1

22

21c V

)cos1(41

2cos2cos)1(21)cos1(4
),,|(S

ω−λ+

ωθ+ωθ+θ+θ+θ+ω−λ
=θθλω . 

The maximum with respect to ω  is achieved for the real and positive solution of a 

third degree polynomial in ωcos . Let this solution be 

),,(~~
21 θθλω=ω . (6.9) 

or, solving for λ , 

[ ])~cos)2()2()~cos1(1)~cos1(2

~cos4

)~cos1(4

1~

12211

2211

ωθ++−θθ+ω++θθ+ω−

ωθ+θθ+θ
−

ω−
=λ

 (6.10) 

Proceeding as in the previous section, given ),( 21Q θθ=θ  and Qλ  for the 

quarterly model, we use (6.9) to compute the frequency for which the spectrum of 

the quarterly cycle reaches a maximum, and obtain the associated period. Expressing this 

period in terms of annual and monthly data, we obtain the annual and monthly associated 

frequencies. Once we know the parameters 1θ  and 2θ  of the annual and monthly model, 

(6.10) provides the values of Aλ  and Mλ . The monthly and annual series also follow 

IMA(2,2) models and, in order to derive the parameters, we follow as before the Wei-Stram 

procedure. 

Let ),(,x 21t θθ , and aV  denote the disaggregate series, the MA parameters of 

its model, and its innovation variance, respectively. Likewise, let ),(,X 21T ΘΘ , and AV  

denote the aggregate series, the MA parameters of its model, and its innovation variance. If 

),,( 210 γγγ  and ),,( 210 ΓΓΓ  represent the variance, lag-1, and lag-2 autocovariances 

of t
2 x∇  and T

2 X∇ , respectively, we have 

a
2
2

2
10 V)1( θ+θ+=γ , (6.11a) 

a211 V)1( θ+θ=γ , (6.11b) 

a22 Vθ=γ
, (6.11c) 

and, replacing ),( 21 θθ  and aV  by ),( 21 ΘΘ  and AV , similar expressions 

hold for 10 ,ΓΓ  and 2Γ . If γ  and Γ  denote the vectors )',,( 210 γγγ=γ  and 

)',,( 210 ΓΓΓ=Γ , the relevant M matrices in (6.4) are given in Table 2. 
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Given γ , one can obtain Γ  and, using the inverse relationship Γ=γ −1M , given Γ , 

one can obtain γ . The aggregate/disaggregate MA parameters are found by factorizing 

the ACF obtained, as in Maravall and Mathis (1994, Appendix A). 

Table 4, which is analogous to Table 3 for the IMA(2,2) case, displays the monthly 

and annual λ values that are consistent with the quarterly value 1600Q =λ , under the 

criterion of preserving the period associated the cycle spectral peak (the MA values 1θ  and 

2θ  are restricted to lie in the invertible region). Compared to the IMA(1,1) case, the IMA(2,2) 

model increases the length of the period of the cycle of dominance, and the θ  parameters 

are seen to have a small effect on Aλ  and Mλ . The results are again close to those obtained 

with the criteria of Sections 4 and 5. 

 

Table 4: IMA(2,2): monthly and annual λ values that preserve the period of dominance for 

λQ=1600 

 

Equivalent values of λ  

temporal aggregation systematic sampling 
 

1,Qθ

 

2,Qθ  
Period of the 

cycle of 
dominance (years) annual 

( Aλ ) 
monthly 

( Mλ  in 310 )

annual 
( Aλ ) 

monthly 

( Mλ  in 310 )

0.2 
0.0 
0.0 
-0.2 
-0.2 
-0.4 
-0.4 
-0.6 
-0.6 
-0.8 
-0.8 
-1.0 
-1.0 
-1.4 

0.0 
0.0 
0.2 
0.0 
0.2 
0.0 
0.2 
0.0 
0.2 
0.2 
0.4 
0.2 
0.4 
0.6 

9.9 
9.9 

10.0 
9.9 

10.0 
9.9 

10.0 
9.7 
9.9 
9.9 

10.0 
9.4 

10.0 
10.1 

6.02 
6.03 
6.01 
6.03 
6.01 
6.04 
6.01 
6.05 
6.02 
6.04 
5.98 
5.99 
5.98 
5.74 

131.8 
128.6 
131.2 
127.7 
131.1 
125.2 
130.8 
117.7 
129.7 
125.7 
133.5 
102.9 
132.9 
140.8 

6.24 
6.24 
6.23 
6.24 
6.23 
6.26 
6.23 
6.29 
6.24 
6.28 
6.22 
6.59 
6.24 
6.23 

129.6 
129.6 
131.8 
129.6 
131.4 
129.6 
130.9 
129.5 
129.8 
129.6 
133.9 
102.7 
133.0 
140.9 
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7 Least squares minimization of the distance between direct and indirect cycle 

For a particular application, it is always possible to compute close-to-equivalent values of λ  

through least-squares minimization of the distance between the direct and indirect aggregate 

cycles. If 0λ  is the value of λ  applied to the disaggregate series, the value dλ  to use for 

direct adjustment is given by 

[ ]∑ λ−λ=λ
t

2

dt,d0t,id )(Ĉ)(Ĉminargˆ  (7.1) 

where )(Ĉ 0t,i λ  and )(Ĉ dt,d λ  denote the estimated indirect and direct aggregate cycle, 

respectively. This procedure is relatively cumbersome, depends on the particular realization, 

and may produce variability in the values of λ  that could induce inconsistencies for the 

different levels of aggregation. It is nevertheless of interest to ascertain  whether the solution 

is likely to yield values of λ  that may strongly depart from the values obtained with the 

previous criteria. 

We looked at the case of aggregating quarterly series into annual ones (using 

1600Q =λ  for direct estimation of the quarterly cycle), under temporal aggregation and 

systematic sampling, and for the IMA(1,1) and IMA(2,2) models for different values of the 

parameters. For each of the cases, only 100 simulations were made; the results seemed 

stable given our level of precision (first decimal point in Aλ ). For each simulation, expression 

(7.1) was solved and dλ̂  estimated; then the mean and standard deviation of the dλ̂ ’s 

obtained were computed. 

As before, except for the case of systematic sampling a model with an MA root close 

to  -1, the values of Aλ  are relatively stable and close to those obtained with the previous 

criteria. Notice that the value 65.6A =λ , obtained according to the criteria of preserving the 

cycle of reference, is not significantly different from any of the values in Tables 5 and 6. 

 

Table 5: Least square minimization: IMA(1,1) models 

 

temporal aggregation systematic sampling 

Aλ  Aλ  

 

Qθ  

mean std. dev mean std. dev 

-0.8 
-0.6 
-0.4 
-0.2 
0.0 
0.2 
0.4 
0.6 
0.8 

6.9 
6.8 
6.6 
6.7 
6.6 
6.7 
6.7 
6.6 
6.6 

0.7 
0.4 
0.2 
0.2 
0.2 
0.2 
0.2 
0.1 
0.1 

(*) 
15.1 
10.8 
8.4 
7.4 
7.1 
7.1 
7.1 
7.0 

(*) 
11.4 
13.3 
4.1 
1.7 
1.2 
1.2 
1.2 
1.2 

 
(*) Numerical problems because of the flat surface of the objective 

function around the minimum. 
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Table 6: Least square minimization: IMA(2,2) models 

 
temporal aggregation systematic sampling 

Aλ  Aλ  
 

1,Qθ  
 

2,Qθ  

mean std. dev mean std. dev 
-0.8 
-0.6 
-0.4 
-0.2 
0.0 
0.2 
0.4 
0.6 
0.8 
-0.6 
-0.6 
-0.5 
-0.5 
-0.4 
-0.4 
0.4 
0.4 
0.5 
0.5 
0.6 
0.6 

0 
0 
0 
0 
0 
0 
0 
0 
0 

-0.3 
0.3 
-0.3 
0.3 
-0.3 
0.3 
-0.3 
0.3 
-0.3 
0.3 
-0.3 
0.2 

6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.6 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

6.7 
6.7 
6.7 
6.6 
6.5 
6.4 
6.6 
6.6 
6.5 
6.9 
6.5 
6.6 
6.6 
6.6 
6.6 
6.6 
6.5 
6.6 
6.5 
6.6 
6.5 

0.9 
0.7 
0.6 
0.6 
0.7 
0.6 
0.6 
0.6 
0.6 
1.1 
0.7 
0.9 
0.6 
0.9 
0.6 
0.6 
0.6 
0.5 
0.5 
0.6 
0.5 
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8 Limitations of Consistency under Aggregation 

Our objective has been to obtain values of λ  for which direct and indirect estimation 

under time aggregation yield cycles that are consistent. Yet there are a number of reasons 

that can justify departures from aggregation consistency. For example, it can be argued that 

when monitoring a series observed once a year or once every two years, short- or 

medium-term analysis should not focus on the same frequencies as when the series is 

observed weekly or monthly. Evidently, a 3-year cycle may be of interest when monitoring a 

monthly series, but would hardly be helpful if the series is observed once every 2 years. Thus 

the analyst may not be interested in preserving as cycle of reference one designed for 

quarterly data, and the choice of λ  may differ depending on the frequency of observation. 

Cycles used for different frequencies may not display good aggregation properties, yet they 

might be of more use to the analyst. 

There are also methodological reasons that justify departures from aggregation 

consistency. In order to avoid contamination with seasonal frequencies, the HP filter is applied 

to SA data. Yet seasonal adjustment is a non-linear transformation [Ghysels et al. (1996); 

Maravall (2006)] and hence one cannot expect to preserve linear constraints-such as those 

implied by time aggregation. Further, the SA series is contaminated with noise and possibly 

with outliers or trading day effects, and this contamination may distort estimation of the 

cyclical signal. Figure 13 compares the gains of the convolution of the HP filter ( 1600=λ ) 

with the filter that provides the estimators of the SA series and of the trend-cycle for 

the model tt4 ax =∇∇ . The use of the trend-cycle improves the band-pass features of the 

cyclical filter in the sense that it performs a more drastic removal of frequencies that do not 

belong to the range of cyclical frequencies (in the figure, the periods between 2 and 15 years). 

It is thus preferable to use as input to the HP filter the trend-cycle component. This is 

illustrated in Figures 14 and 15, which plot the cycles estimated on the SA series and on the 

trend-cycle component of the monthly Italian and French IPIs (Jan 1962-Dec 2005). 

The similarities between the two cycles are more clearly discernible when the trend-cycle 

component is employed. 

 

 

 

 

 

 

 

 

 

Figure 13: Gain of the HP filter applied to seasonally adjusted series 
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In general, filtering or pretreatment of a series prior to application of the HP filter may 

already affect aggregation. Outliers detected in a monthly series may well be different from 

those detected in an annual one. Trading-day and/or Easter effects may be significant for the 

monthly series, but not for the quarterly one. The ARIMA models used to extend the series, or 

to obtain the SA series or trend-cycle component, will hardly ever be exact aggregates when 

identified for different levels of aggregation. As a consequence, departures from aggregation 

consistency should be expected. Figures 16-19 illustrate these departures for the Italian and 

French IPI cycles obtained with the equivalent values of λ  given by (4.7). As is usually 

the case, direct estimation provides a smoother series and, although the overall effect 

is moderate, it cannot be regarded as trivial. Given that little can be done to solve in a 

convincing manner this discrepancy problem, perhaps the best solution is to compute both 

the direct and indirect estimators, and this may serve as a reminder of our (many) 

measurement limitations. 

Figure 14: Monthly cycles (LAM=130000)
Measured on SA series
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Figure 15: Monthly cycles (LAM=130000)
Measured on trend-cycle
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Figure 16: Direct and indirect quarterly cycles based on 
trend-cycle. IPI France. Temporal aggregation
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Figure 17: Direct and indirect quarterly cycles based on 
trend-cycle. IPI Italy. Systematic sampling
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Figure 18: Direct and indirect annual cycles based on 
trend-cycle. IPI France. Temporal aggregation

-6

-4

-2

0

2

4

6

1 11 21 31 41
-6

-4

-2

0

2

4

6

Direct Indirect



BANCO DE ESPAÑA 37 DOCUMENTO DE TRABAJO N.º 0728 

 Figure 19: Direct and indirect annual cycles based on 
trend-cycle. IPI Italy. Systematic sampling
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9 Conclusions 

We have analyzed the time aggregation properties of the Hodrick-Prescott (HP) filter, 

focusing on monthly, quarterly, and annual observations. Two types of aggregation 

have been considered: Temporal Aggregation, whereby the aggregate series consists of 

(non-overlapping) sums (or averages) of disaggregate values, and Systematic Sampling, 

whereby the aggregate series is equal to a value of the disaggregate series sampled at 

periodic intervals. The main results can be summarized as follows. 

For the two types of aggregation, the HP filter does not preserve itself under 

aggregation in the following sense. Cycles estimated by aggregating cycles obtained for 

disaggregate data with an HP filter (indirect estimation) cannot be seen as the exact result of 

an HP filter applied to the aggregate data (direct estimation). Direct and indirect estimation 

of cycles computed with HP-type filters cannot yield identical results. In practice, this lack of 

aggregation consistency has led to an arbitrary choice of inconsistent λ ’s for different levels 

of aggregation. 

Several statistically-based criteria that provide values of λ  that yield almost 

equivalent results have been considered. The first criterion, considered in Section 4.1, is to 

preserve, for different levels of aggregation, the period of the cycle associated with the 

frequency for which the gain of the HP filter is .5. Given that this frequency represents 

the cutting point between frequencies that will be mostly assigned to the cycle and those that 

will be mostly assigned to the trend, the criterion is intuitively attractive and simple to apply. 

Section 4.2 shows that the empirical rule suggested by Ravn and Uhlig (2002) turns out to be 

a first-order approximation to the previous criterion. Sections 5.1 and 5.2 consider criteria 

based on preserving different filter characteristics and it is seen that the results remain roughly 

unchanged. 

But the properties of the estimated cycle will depend, not only on the filter, but also 

on the characteristics of the series at hand. We represent the latter with an ARIMA model and 

this allows us to derive the spectrum of the cycle estimator. In Section 6 equivalent values 

of λ  for different levels of aggregation are derived, for IMA (1,1) and IMA (2,2) models, under 

the criterion of preserving the period associated with the frequency for which the cycle 

spectrum reaches a maximum. It is seen that, except for the case of systematic sampling 

of models that are close to non invertibility, the results are robust with respect to the model 

parameters, and very close to those obtained with the previous criteria. Finally, Section 7 uses 

as criterion least-square minimization of the distance between direct and indirect cycles. 

With the same exception as before, the results obtained are again very close. 

For the quarterly consensus value 1600Q =λ , the previous results yield monthly 

and annual equivalent values in the intervals  

130000 125000 M <λ< , 76 A <λ< , 

with the λ  values more in the vicinity of the upper bounds. It follows that the RU rule can 

be safely used, with perhaps a slightly larger value of Aλ  (such as 5.6A =λ  or 6.75). 

For the case of systematic sampling of close-to-noninvertible models a smaller value for Mλ  

and a larger one for Aλ  may perform better. Nevertheless, although consistency under 
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aggregation is a desirable property, the final section explains and illustrates why optimal 

procedures are likely to induce inconsistencies between direct and indirect estimation, even 

when consistent values of λ  are employed. 
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APPENDIX A: Identification of the Cycle and Spurious Results 

Criticism of the HP filter has focused on two methodological points: It has been argued that 

the HP parameter λ  should be estimated directly in a structural time series model (STSM) 

approach [see Harvey (1997)] and concern has been repeatedly expressed over the danger of 

violating the series structure by imposing a spurious cycle. A closer look will show that these 

two  criticisms are not justified. 

It is well known that the differencing operator ∇  has a strong effect on the low 

frequencies of tx , including the range of cyclical frequencies. As an example, the gain of 

the trend extraction filter in the ARIMA-model-based decomposition of the Airline model 

popularized by Box and Jenkins (1970) and given by t
12

t12 a)B6.1()B4.1(x −−=∇∇ , 

is displayed in Figure A.1 for the range of frequencies between 0 and the first seasonal 

harmonic. It is seen how the trend filter picks up most of the variation for cyclical frequencies, 

so that the component should be more properly called “trend-cycle” component. (This feature 

also characterizes trends produced by the standard STSM approach or by the Henderson 

filters in X11.) 

 

 

 

 

 

 

 

 

For the usual series length, regular differencing, as a rule, does not permit 

identification of business cycles through a “let the data speak” approach. A way to 

overcome this limitation is to use ad-hoc band-pass filters that extract the series variation 

for some range of frequencies, while respecting the information that the “let the data speak” 

approach provides (namely, that the identified ARIMA model transforms the series into 

white noise). 

Consider a series that follows the general model 

tt
d a)B(x ψ=∇ ,   (d < 3), (A.1) 

where ta)B(ψ  is a stationary ARMA process, and the HP decomposition of tx  into trend 

( tm̂ ) and cycle ( tĉ ) given by (2.9), so that ttt ĉm̂x += . In general, the concept of 

spuriousness is questionable in the context of ad-hoc filters: the filter simply yields what it is 

Figure A.1: Gain of Trend filter in Airline 

model
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designed to yield, without reference to a model. For the case of the HP filter, perhaps the 

reason for asserting its spuriousness can be found in its model-based interpretation given by 

King and Rebelo (the “artificial” model) which implies an IMA(2,2) structure for the series tx , 

with the MA polynomial — )B(HPθ — determined from λ . In so far as it is highly unlikely that 

tx  follows this model, it is argued that the filter is spurious [in particular for I(1) series]. 

But the argument is fallacious. The HP filter can be given another, perfectly sensible, 

model-based interpretation. The series tx , given by (A.1), can be expressed as the sum of 

orthogonal trend ( tm ) and cycle ( tc ) components, with models given by 

mtt
d

HP a)B(m)B( ψ=∇θ ,   )V,0(wn ~ a mmt , (A.2) 

ct
d2

tHP a)B(c)B( −∇ψ=θ ,   )V,0(wn ~ a cct , (A.3) 

and λ=mc V/V . It is straightforward to check that the HP filter estimators in (2.7) – (2.9) are 

the MMSE estimators of tm  and tc . Let  )F,B(dmγ  and )F,B(dcγ  denote the ACFs 

of t
d m∇  and t

d c∇ , respectively. From (A.2) and (A.3), 

)F()B(/)F()B(k)F,B( HPHPmdm θθψψ=γ , 

)F()B(/)F1()F()B(k)F,B( HPHP
22

cdc θθ−ψ∇ψ=γ , 

where amm V/Vk =  and acc V/Vk = . The ACF of )cm( tt
d +∇  is equal to 

[ ] aHPHP
22

cma V)F()B()F()B(/)F1(kk)F()B(V ψψ=θθ−∇+ψψ , 

where use has been made of (2.5); it is thus equal to the ACF of t
d x∇ . It follows that, 

under our assumptions, model (A.1) and the model consisting of ttt cmx += , (A.2), and 

(A.3), are observationally equivalent. The ACFs implied by the two models are equal and so 

will be the spectra and the implied joint distribution of the observed series. The models will 

provide the same diagnostics, the same likelihood, and the same forecast function. [A related 

discussion can be found in Maravall and Kaiser (2005).] 

One may disagree with the specification of the UC component model, but the results 

cannot be properly called spurious. The spectral shape of tm  will be that of a smooth trend 

(the small value of mk  will produce a narrow peak for the zero frequency) and the spectral 

shape of tc  will be that of a stochastic cycle, with the peak determined from the AR(2) 

polynomial )B(HPθ , which will have complex roots associated with a cyclical frequency 

[McElroy (2006)]. This frequency will be determined by the analyst choice of λ . It should be 

pointed out that, given (A.1), the UC model (A.2)-(A.3) is, in general, underidentified and hence 

the parameter mc k/k=λ  cannot be consistently estimated from the data. Identification can 

be achieved in a variety of ways. For example, in the STSM approach no model for the 

observed series is identified; the component models are directly specified and identification 

is achieved by a-priori restrictions on the orders of the MA polynomials in those models. 

In our approach, the condition that the component models be consistent with the model 

for the observed series is imposed (thereby avoiding spuriousness) and identification is 

achieved by a-priori selecting λ  (so to speak, by choosing the band-pass features of the 

cycle filter). 



BANCO DE ESPAÑA 42 DOCUMENTO DE TRABAJO N.º 0728 

In the STSM approach, the parameter λ  is estimated as the ratio of the trend and 

cycle innovation variances. But in order to separate the trend from the cycle frequencies this 

ratio needs to be very small and, unless the series is abnormally long, the estimator of 

the ratio will not be significant; hence no cycle can be detected. This lack of resolution is more 

a limitation of the approach than a proof that no cycle information can be found in the series. 

As an example, we consider a quarterly series that follows the random walk 

model (6.1a). Setting 1600=λ , the WK implementation of the HP filter implies estimation 

of tc  in the artificial model (2.3) and (2.4), with )B(HPθ  and bV  given by (2.6). Thus 

0005.V/1k bm ==  and 8.V/1600k bc == , and t1x  can be decomposed into 

orthogonal trend ( tm ) and cycle ( tc ) components that follow the models 

mttHP am)B( =∇θ , (A.4) 

cttHP ac)B( ∇=θ , (A.5) 

with mmt k)a(Var =  and cct k)a(Var = . It is straightforward to check that the filters that 

yield the MMSE of tm  and tc  in the above model are the HP filters (2.7) – (2.8), and that the 

sum of the spectra of tm  and tc  yields the spectrum of (6.1a). The spectrum of tm  is 

shown in figure A.2: it consists of a monotonically decreasing narrow peak around 0=ω . 

Figure A.3 displays the spectrum of the cyclical component tc : it has the standard shape of 

a stationary stochastic cycle, with the variance concentrated around a peak associated 

with a cycle period of 10 years. The two figures portray sensible (smooth) trend and cycle 

components, and the sum of their spectra yields exactly the spectrum of the random walk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Spectrum of Trend
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Notice that attempts to estimate an innovation variance in the order of aV 0.0005  by 

means of the STSM approach, for a quarterly series with 100 or 200 observations, would be 

futile. The STSM obtained would say that the series simply consists of a random walk trend. 

This result would reflect the limits of the approach; it would not imply that the trend plus 

cycle decomposition produces a spurious result, induced by some model misspecification. 

If the random walk model is not rejected by the data, the UC model (A.4) – (A.5) will not be 

rejected either. 
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APPENDIX B: Construction of the Wei-Stram Aggregation Matrix 

The Wei-Stram aggregation matrix, M, relates the covariances of the stationary transformation 

of the aggregate and disaggregate series. We consider IMA(d,d) models, with 1d =  and 2, so 

that the stationary tranformation of the series tx  is t
d x∇ . Let k be the order of aggregation 

( 3k =  and 4 when aggregating monthly into quarterly and quarterly into annual frequencies, 

respectively) and define 1)(dn +=  for temporal aggregation and n=d for systematic 

sampling. Let iγ  and iΓ  be the autocovariance of order i for the stationary transformation of 

the disaggregate and aggregate series respectively. Wei and Stram (1986) prove the following 

relationship for the case of temporal aggregation: 

))1k(nki(
n2

i S −+γ=Γ    i=0,1,… (B.1) 

where )B...BB(1S 1-k2 ++++=  is the aggregation operator. The systematic sampling 

case is not consider by them but, proceeding in a similar manner it is straightforward to find 

that (B.1) also holds (although the value of  n  will differ). 

If tx  follows a IMA(d,q) model, then the aggregate series TX   follows a IMA(d,Q) 

process. When, as in our case, q=d, then Q=d also. If γ  and Γ  denote the column vectors 

with the i-th element equal to iγ  and iΓ , respectively, the Wei-Stram procedure permits 

us to obtain the relationship γ=Γ M , where M is constructed as follows. Let c be a 

1)1)-1x(2n(k +  row vector with elements ( ic ) the coefficients of iB  in the polynomial 2nS . 

Define the matrix A as the 1)1)-2n(k(kQ  x1)(Q +++  matrix: 

 

where j0  is a (1xj) row vector of zeros. Adding the column (n(k-1)+1-j) of matrix A to the 

column (n(k-1)+1+j) of the same matrix, for j=1 to n(k-1), and then deleting the first n(k-1) 

columns, we obtain a new matrix A*. The matrix M consists of the first q+1 columns of A*. 

Consider as a first example systematic sampling of a quarterly IMA(1,1) model which 

is aggregated to annual frequency. In this case n=d=1, the vector c contains the coefficients 

of 2322n )BBB(1S +++= , that is 1)  2  3  4  3  2  (1c = , and A is the following (2x11) 

matrix: 
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As a second example, consider a monthly IMA(2,2) model and its quarterly temporal 

aggregate. In this case, k = 3, d = q = 2, and n = d+1 = 3. The vector c, with elements the 

coefficients of 62 )BB(1 ++ , is equal to 1)  6  21  50  90  126  141  126  90  50  21  6  (1c = , 

and hence A is the (3x19) matrix: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1621509012614112690502161000000
0001621509012614112690502161000
0000001621509012614112690502161

A , 

A* is the (3x13) matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1621509012614112690502161
0001621509012614213211150
00000021242100180252141

A* , 

and the matrix M is given by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2161
13211150
180252141

M . 
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