The Economics of Bank Supervision

Thomas Eisenbach¹ David Lucca¹ Robert Townsend²

¹Federal Reserve Bank of New York

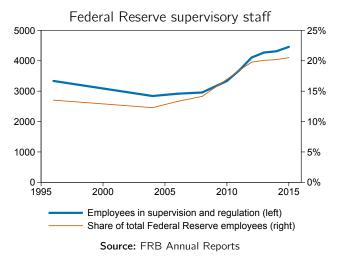
²Massachusetts Institute of Technology

First Conference on Financial Stability Banco de España May 2017

The views expressed in the presentation are those of the speaker and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System.

Introduction

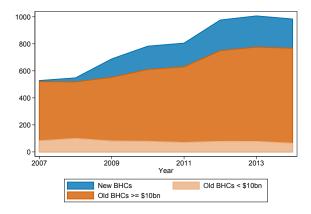
 Bank supervision as opposed to regulation: Regulation: Defining rules: bank ownership, permissible activities, minimum capital/liquidity requirements


Introduction

• Bank supervision as opposed to regulation:

Regulation: Defining rules: bank ownership, permissible activities, minimum capital/liquidity requirementsSupervision: Compliance with rules and preventing/detecting "unsafe and unsound" practices

- Supervision is resource intensive (monitoring & intervention)
- This paper: Use new data on Fed examiners' hours; what's the impact of supervision? How are resources allocated?


Why study allocation of supervisory resources?

Enhanced supervisory framework post-financial crisis (stress tests) → large increase in supervisory staff: too much, too little or about right?

Assessing resource allocation (1/2)

• New BHCs under Fed supervision drive large portion of increase (extensive vs intensive) ...

Source: Hours data

Assessing resource allocation (2/2)

• ... but need a framework to interpret data:

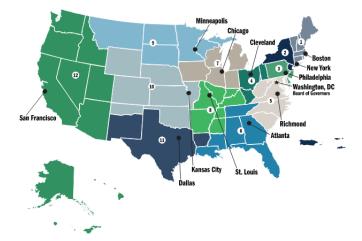
	2002-2006		2007-2009		2010	-2014
	Small	Large	Small	Large	Small	Large
Total Assets (\$ bn)	801	9980	1049	14419	1066	15802
Total Yearly Hours (thousands)	83	347	100	488	104	807
Total Yearly Hours / Total Assets (\$ bn)	104	35	96	34	98	51
$\sigma(ROA)$ (%)	0.56	0.61	0.80	0.85	0.68	0.66
Probability of Failure (%)	0.00	0.00	0.66	0.31	0.25	0.06

- More hours at larger banks (rows 1&2) but at declining rate (row 3)
- Post-2009:
 - Increase in intensity at large banks, decline at small banks
 - Higher risk, especially at small banks


Rest of the talk

- 1. Resource allocation for a bank in isolation:
 - Establish main determinants
 - Motivating model assumptions
- 2. Allocation with multiple banks:
 - Model
 - Estimation
 - Impact of supervision and aggregate resource allocation

Data description


Three data sources:

- 1. Recorded hours spent by Fed supervisors (12 Fed districts)
- 2. Fed composite supervisory ratings RFI (BOPEC pre-2006):

- 3. Balance sheet and income data from reg filings (Y9-C)
- → Quarterly 1998q1 to 2014q4 for BHCs with assets \geq \$1 billion

Federal Reserve Bank Districts

Federal Reserve Bank System

Baseline specification for supervisory hours

Log(Hours)	(1)	(2)	(3	5)	(4	.)
Log(Assets)	0.96***	[0.02]	0.68***	[0.11]	0.68***	[0.11]	0.68***	[0.11]
Rating $= 2$	0.23***	[0.05]	0.15**	[0.06]	0.15**	[0.06]	0.15**	[0.06]
Rating = 3	0.94***	[0.09]	0.70***	[0.09]	0.69***	[0.09]	0.69***	[0.09]
Rating = 4	1.31***	[0.11]	1.08***	[0.11]				
Rating = 5	1.61***	[0.16]	1.36***	[0.16]				
Rating 4, 5					1.16***	[0.11]	1.69***	[0.32]
Rating 4, 5 \times Log(Assets)							-0.07**	[0.03]
FEs: t, d, BHC	Y,Y	′,N	Y,Y	΄,Υ	Y,Y	′,Y	Y,Y	′,Y
Adj. R ²	0.4	19	0.5	56	0.5	56	0.5	56
#Obs. #BHCs	17969	785	17969	785	17943	780	17943	780

- Size elasticity less than one: 0.96 across, 0.68 within
 - → Suggests scale economies

Baseline specification for supervisory hours

Log(Hours)	(1)	(2)	(3	5)	(4	.)
Log(Assets)	0.96***	[0.02]	0.68***	[0.11]	0.68***	[0.11]	0.68***	[0.11]
Rating $= 2$	0.23***	[0.05]	0.15**	[0.06]	0.15**	[0.06]	0.15**	[0.06]
Rating = 3	0.94***	[0.09]	0.70***	[0.09]	0.69***	[0.09]	0.69***	[0.09]
Rating = 4	1.31***	[0.11]	1.08***	[0.11]				
Rating = 5	1.61***	[0.16]	1.36***	[0.16]				
Rating 4, 5					1.16***	[0.11]	1.69***	[0.32]
Rating 4, 5 \times Log(Assets)							-0.07**	[0.03]
FEs: t, d, BHC	Y,Y	′,N	Y,Y	΄,Υ	Y,Y	′,Y	Y,Y	′,Y
Adj. R ²	0.4	19	0.5	56	0.5	56	0.5	56
#Obs. #BHCs	17969	785	17969	785	17943	780	17943	780

- Size elasticity less than one: 0.96 across, 0.68 within
 - → Suggests scale economies
- Monotonic response to higher risk (rating)
 - Δ hours for rating 1 \nearrow 3: +94% across, +70% within
 - → Increase equivalent to doubling of assets
- Negative interaction between size and risk (model)

Supervisory hours for largest banks

Log(Hours)	(1) (2)		(3)		
Log(Assets)	0.56***	[0.10]	0.43***	[0.16]	0.63***	[0.07]
Large BHC	0.40***	[0.15]	0.38**	[0.16]		
Post-2008 \times (Large BHC)					0.55***	[0.10]
Post-2008 \times (Small BHC)					-0.23***	[0.06]
Log(N BHC Subsidiaries)			0.13*	[0.07]		
Log(N BHC Employees)			0.10	[0.17]		
Asset Conc. (HHI)			-0.48	[0.76]		
Loan Share			0.51	[0.78]		
FEs: t, d, BHC, Rating	Y,Y,Y,Y		Y,Y,Y,Y		N,Y,Y,Y	
Adj. R ²	0.56		0.55		0.56	
#Obs. #BHCs	17969	785	16845	716	17969 785	

- Lit. and policy (TBTF, DFA) suggests large banks special
- Allow for break at \$10 billion (adjusted) assets
- Large banks have about 40% more hours after controls
- Post-08 $\Delta \log(Hours)_{large} = 55\%$ vs $\Delta \log(Hours)_{small} = -23\%$

Hours Allocation to Multiple Banks: Model

- Supervisors monitor banks and intervene based on their findings
- Data do not distinguish monitoring vs intervention → Focus on intervention
- Model has three main ingredients:
 - **1.** Next period default probability depends on current risk (rating) and supervision
 - **2.** Potential economies of scale in supervision; resources fixed at Fed district level in the short run
 - 3. Default externalities differs at the largest BHCs

Probability of default

 Probability of default is affine in a Cobb-Douglas combination of a function of rating (rating R_i = 1,...,5) and scale-free supervision intensity s_i:

$$\mathsf{PD}(R_i, s_i) \propto \frac{r(R_i)}{s_i^{\sigma}}$$

- σ measures effectiveness of supervision (elasticity of PD to s_i)
- Hours-cost function to achieve *s_i*:

$$h(s_i, A_i) = s_i A_i^{\alpha}$$

• When $\alpha < 1 \rightarrow$ economies of scale in supervision

Optimal allocation

• Supervisor solves:

$$\min_{\{H_i\}} \left\{ \sum_i \mathsf{PD}(R_i, h^{-1}(H_i, A_i)) N(A_i) \right\} \text{ subj to } \sum_i H_i = \bar{H}$$

where the spillover externality $N(A_i) = n_i A_i$:

$$n_i = \begin{cases} 1 & \text{for } A_i \leq \$10 \text{ billion} \\ n & \text{for } A_i > \$10 \text{ billion and } t \leq 2008 \\ \hat{n} & \text{for } A_i > \$10 \text{ billion and } t > 2008 \end{cases}$$

Model solution

• Optimal hours:

$$H_i = \left(\frac{\sigma r(R_i) n_i}{\mu}\right)^{\frac{1}{1+\sigma}} A_i^{\frac{\alpha\sigma+1}{1+\sigma}}$$

• Lagrange multiplier on budget constraint (μ):

$$\mu^{\frac{1}{1+\sigma}} = \frac{1}{\bar{H}} \sum_{i} \left(\sigma r(R_i) \, n_i \right)^{\frac{1}{1+\sigma}} A_i^{\frac{\alpha\sigma+1}{1+\sigma}}$$

- μ is the shadow value of relaxing $\bar{H},$ or total "risk-adjusted assets" to \bar{H}
- \bar{H} fixed at the Fed district level

Estimating model parameters

• FOC in logs:

$$\log H_i = \underbrace{\frac{\alpha \sigma + 1}{1 + \sigma}}_{\beta_A} \log A_i + \underbrace{\frac{1}{1 + \sigma}}_{\beta_{R_i}} \log r(R_i) + \underbrace{\frac{1}{1 + \sigma}}_{\beta_{n_i}} \log n_i - \underbrace{\frac{1}{1 + \sigma}}_{\beta_{\mu}} \log \mu + \frac{1}{1 + \sigma} \log \sigma.$$

1. Treat μ as a fixed effect \rightarrow obtain reduced form $\hat{\beta}$

- Note that $\mu(\beta(\sigma, \alpha, n_i))$
- **2.** Compute $\hat{\mu}$ from $\hat{\beta}s \rightarrow \text{estimate } \hat{\beta}_{\mu}$ and $\hat{\sigma}$
- **3.** From $\hat{\sigma} \rightarrow \hat{n}_i$ and $\hat{\alpha}$

Estimating Model Parameters

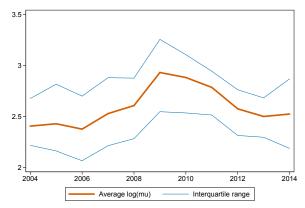
Log(Hours)	(1)		(2)		(3)	
Log(Assets)	0.80***	[0.03]	0.80***	[0.03]	0.55***	[0.10]
Rating $= 2$	0.24***	[0.05]	0.29***	[0.06]	0.15**	[0.06]
Rating = 3	0.93***	[0.08]	1.01***	[0.09]	0.69***	[0.08]
Rating = 4	1.38***	[0.12]	1.43***	[0.13]	1.13***	[0.11]
Rating = 5	1.80***	[0.17]	1.75***	[0.16]	1.49***	[0.15]
Large BHC	0.35***	[0.11]	0.35***	[0.11]	0.17	[0.15]
Post-2008 \times (Large BHC)	0.70***	[0.10]	0.67***	[0.09]	0.76***	[0.09]
Log(mu)			-0.54***	[0.06]	-0.50***	[0.05]
Dist×Date FEs?	Y		Ν		Ν	
FEs: t, BHC	N,N		Y,N	Y,N		
Adj. R ²	0.51		0.49		0.57	
#Obs. #BHCs	17969 785		17969 785		17969 785	

- First stage: include district×date (1)
- Second stage: $\hat{\beta}_{\mu} = -.5 \rightarrow \sigma = 1$

Discussion of estimates

- Significant economies of scale: $\alpha = .55$
- Spillovers from largest banks relative to small:

 $n_i = \begin{cases} 1.9 & \text{for } A_i > \$10 \text{ billion and } t \le 2008 \\ 6.6 & \text{for } A_i > \$10 \text{ billion and } t > 2008 \end{cases}$


- Large implied sensitivity $\sigma=1$ of PD to the intensity of supervision
- σ estimated from hours allocation; alternative, use an IV approach with PD as an observable

Impact of Supervision

(Fail or R to $4/5$) _{t+1,t+4}	(OL	.S)	(OLS)		(IV	')
Post-2008 Post-2008 × (Large BHC) Log(mu)	0.01 -0.03*** 0.04***	[0.01] [0.01] [0.01]	-0.03*** 0.01	[0.01] [0.01]		
Log(Hours)					-0.03***	[0.01]
Assets, Ratings	Y,Y		Y,Y		Y,Y	
FEs: t, d, BHC	N,N,Y		Y,N,Y		N,N,N	
Adj. R ²	0.57		0.58		0.30	
#Obs. #BHCs	24861	880	24861 880		17969 785	

- IV coefficient is -.03 and $\frac{\partial PD}{\partial log(H)}=-\frac{PD}{\sigma} \rightarrow \sigma=2$
- Repeat exercise with $\sigma(ROA)$

Shadow value of supervisory hours

1. Large increase in Fed supervisory staff post 2008

- More supervisors but also more assets & risk
- Effects roughly balance out $\rightarrow \mu$ back to 2007 level
- 2. Large cross-district dispersion remains

Conclusion

• New data on supervisory hours to study resource allocation

Conclusion

- New data on supervisory hours to study resource allocation
- Allocation to one bank:
 - Supervisory efforts strongly dependent on bank risk
 - Low size elasticity of supervisory efforts (but largest bank discontinuity)

Conclusion

- New data on supervisory hours to study resource allocation
- Allocation to one bank:
 - Supervisory efforts strongly dependent on bank risk
 - Low size elasticity of supervisory efforts (but largest bank discontinuity)
- Allocation to many banks:
 - Large effect of supervision on outcomes (both model and IV implied)
 - Shadow value of supervisory resources (risk-adjusted total assets to hours) approximately back to 2007; large cross district variation remains

Additional slides

Impact of Supervision: $\sigma(ROA)$

$\sigma(ROA)_{t+1,t+4}$	(OL	(OLS) (OLS)		(IV)		
Post-2008	-0.06***	[0.01]				
Post-2008 \times (Large BHC)	-0.09***	[0.02]	-0.10***	[0.02]		
Log(mu)	0.11***	[0.01]	0.02	[0.01]		
Log(Hours)					-0.07***	[0.02]
Assets, Ratings	Y,`	Ý	Y,Y		Y,`	Y
FEs: t, d, BHC	N,N,Y		Y,N,Y		N,N,N	
Adj. <i>R</i> ²	0.26		0.33		-0.06	
#Obs. #BHCs	22537	825	22537 825		16315 747	

Summary Statistics

		A II	Small	Small BHCs		BHCs
	Mean	StDev	Mean	StDev	Mean	StDev
Hours	484.36	1357.14	95.53	168.89	1372.02	2202.04
Assets (\$ millions)	36026.70	188138.43	2441.27	1611.61	112699.08	328264.78
Log(Hours)	4.14	2.15	3.33	1.73	6	1.87
Log(Assets)	8.43	1.50	7.64	0.54	10.26	1.38
Rating	1.95	0.74	1.98	0.79	1.90	0.63
Rating 4, 5	0.04	0.19	0.05	0.22	0.02	0.13
Log(N BHC Subsidiaries)	2.48	1.31	1.92	0.78	3.78	1.37
Log(N BHC Employees)	7	1.47	6.23	0.63	8.75	1.33
Large BHC	0.30	0.46	0	0	1	0
Log(mu)	2.58	0.47	2.57	0.46	2.59	0.47
ROA SD	0.28	0.32	0.30	0.33	0.25	0.29
Fail/Downgrade4-5	0.06	0.23	0.07	0.25	0.02	0.16
Observations	15364		10684		4680	

OCC Fee schedule

- Office of the Comptroller of the Currency
 - Supervises federally chartered commercial banks
 - Funds itself through fees assessed based on size and risk

OCC Fee schedule

- Office of the Comptroller of the Currency
 - Supervises federally chartered commercial banks
 - Funds itself through fees assessed based on size and risk
 - OCC assessment fee schedule in terms of size

If the amount of the total balance sheet assets (consolidated domestic and foreign subsidiaries) is: (\$ millions) The Semiannual Assessment will be:

Year 2007							
Over	But Not Over	This Amount (\$)	Plus	Of Excess Over (\$ millions)			
0	2	5,480	0	0			
2	20	5,480	0.000227454	2			
20	100	9,574	0.000181963	20			
100	200	24,131	0.000118274	100			
200	1,000	35,958	0.000100078	200			
1,000	2,000	116,020	0.000081883	1,000			
2,000	6,000	197,903	0.000072785	2,000			
6,000	20,000	489,043	0.000061932	6,000			
20,000	40,000	1,356,091	0.000050403	20,000			
40,000		2,364,151	0.000033005	40,000			

Source: 12 CFR 8 and OCC bulletins.

OCC assessment fees

• Apply assessment fees to the universe of NA commercial banks:

	log(Fe	es)
log(Assets)	0.70***	[0.00]
Rating = 2	-0.01^{*}	[0.01]
Rating = 3	0.40***	[0.01]
Rating = 4	0.68***	[0.01]
Rating = 5	0.69***	[0.01]
Adjusted R ²	0.99	
#Obs. #NAs	2,866 1	1,772

- Size elasticity of fees remarkably similar to Fed hours
- → Suggests that scale economies generate size elasticity < 1