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Abstract

We present a microfounded New Keynesian model that features financial vulner-
abilities. Financial intermediaries’ occasionally binding value at risk constraints
give rise to vulnerabilities that generate time varying downside risk of the output
gap. Monetary policy impacts the output gap directly via the IS curve, and indi-
rectly via its impact on the tightness of the value at risk constraint. The optimal
monetary policy rule always depends on financial vulnerabilities in addition to out-
put, inflation, and the real rate. We show that a classic Taylor rule exacerbates
downside risk of GDP growth relative to an optimal Taylor rule, thus generating
welfare losses associated with negative skewness of GDP growth.
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1 Introduction

FOMC statements mention financial stability and financial conditions with increasing fre-

quency (see Peek, Rosengren, and Tootell (2015)). Additionally, the notion of downside

risks to growth has become more prevalent in the speeches of monetary policy makers.

In the academic literature, authors increasingly consider the roles of financial conditions

and vulnerabilities in monetary policy settings (see Adrian and Shin (2010), Borio and

Zhu (2012), Curdia and Woodford (2010), and Gambacorta and Signoretti (2014)).

An important early strand of the literature triggered by Bernanke and Gertler (1989)

and Bernanke and Blinder (1992) argues for the credit channel of monetary policy. In

the credit channel, financial frictions of borrowers or lenders shift credit demand and

supply curves when monetary policy changes, thus giving financial conditions a role in

monetary policy via the “external finance premium.” However, Bernanke and Gertler

(2000) argue that financial vulnerabilities should impact central banks’ monetary policy

actions only to the extent that vulnerabilities change the forecasts for inflation and real

activity, thus promoting a form of the Taylor (1993) and Taylor (1999) rule within an

inflation targeting framework. Financial vulnerabilities refer to downside risks to GDP

growth caused by risks to asset valuations, the level of leverage in the financial and

nonfinancial sectors, and the degree of maturity transformation (see Adrian, Covitz, and

Liang (2015) for a framework on measuring financial vulnerability).

More recent literature has argued for a Taylor rule with financial variables. In the se-

tups of Curdia and Woodford (2010) and Gambacorta and Signoretti (2014), the optimal

monetary policy rule is augmented to take financial conditions into account. Limited

capital in the financial intermediary sector leads to a distortion in aggregate activity

that optimal monetary policy takes into account. However, just as the literature on

the credit channel focused on financial conditions, and not financial vulnerabilities, the

setups of Curdia and Woodford (2010) and Gambacorta and Signoretti (2014) do not

feature financial vulnerabilities either. While financial conditions refer to the notion that

the pricing of risk impacts aggregate activity, settings with financial vulnerability give

rise to downside risks to growth from financial frictions that impact aggregate economic

welfare.

In a series of influential of papers, Svensson (2016b,a) explicitly incorporates financial

vulnerabilities in the form of financial crises. Svensson develops a cost benefit framework,

argues that financial stability considerations should not enter monetary policy decisions

if costs exceed benefits, and finds that, for existing empirical estimates, costs exceed
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benefits by a substantial margin. In Svensson’s setup, the costs consist of distorting the

dual mandate objectives, while the benefits are measured in terms of the reduction of the

likelihood or severity of financial crises. In contrast, Adrian and Liang (2016) present

a comprehensive literature review of the role of financial conditions and vulnerabilities

in monetary policy and argue that there is compelling empirical evidence that financial

vulnerabilities should affect monetary policy considerations.1

In this paper, we present a parsimonious macroeconomic framework for incorporating

financial vulnerabilities in monetary policy. Our starting point is the standard New

Keynesian model of Woodford (2003) and Gaĺı (2008). Households have risk averse utility

over differentiated products and supply labor to an intermediate goods producing sector.

Intermediate goods have a constant returns technology with exogenous productivity and

labor as only input. These intermediate goods producing firms maximize profits subject

to a demand curve for differentiated products and Calvo style price stickiness. Their

output is sold to the final goods producers in a monopolistically competitive way. The

intermediate goods profits are distributed as dividends to shareholders. Without loss of

generality, as the Modigliani-Miller theorem holds, these intermediate goods producing

firms are fully equity financed. The final good sector is perfectly competitive and uses

intermediate goods as only input.

The point of departure from the standard NK model is the existence of banks. House-

holds cannot directly invest in the shares of the intermediate goods producing sector, as

it is assumed that all financing is intermediated by the banks. There is a continuum of

identical banks that issue riskless deposits that pay out the risk free rate of return. The

deposits, as well as the risky equity of banks, are owned by households. Banks maximize

profits by investing in all available risky assets in the economy. The banks’ portfolio

selection problem is subject to a value at risk (VaR) constraint on their net worth (i.e.

on bank equity). Banks do not consume. Relative to earlier NK models with banks, the

VaR is the main difference (see, for example, Gertler and Karadi (2011) and Curdia and

Woodford (2010)).

The only source of risk in the economy are shocks to the time preference rate of

banks. These shocks capture differences in beliefs between banks and the other agents

in the economy. Because there is only one source of risk, and bank equity and bank

deposits trade continuously, markets are complete. Using martingale techniques from

financial economics, we can solve for the equilibrium in closed form. Importantly, we

1See Svensson (2017) for a response.
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solve for the full stochastic equilibrium, which is characterized by conditional means and

conditional volatilities as a function of state variables. For analytical tractability, we

linearize first and second moments. This is a novel approach relative to standard first

order approximations, as it preserves the equilibrium conditions that are imposed on

second moments. The model and solution technique thus lends themselves to study the

risk return tradeoff of monetary policy.

The linearized solution can be represented as a parsimonious four equation reduced

form model. Relative to the standard NK model, the IS curve (which is derived from the

Euler equation) features risk premia. Risk premia, in turn, depend on the vulnerability of

aggregate economic activity. Vulnerability is defined as the VaR of the output gap. The

evolution of vulnerability is the third equation. Finally, there is the stochastic process

that determines risk.

Our modeling approach is motivated by the empirical evidence that financial condi-

tions forecast tail risks. Estrella and Hardouvelis (1991) and Estrella and Mishkin (1998)

show that the term spread, an indicator of the pricing of interest rate risk, forecasts re-

cessions. Gilchrist and Zakraǰsek (2012), López-Salido, Stein, and Zakraǰsek (2016), and

Krishnamurthy and Muir (2016) find that credit spreads forecast downside risks to GDP

growth. More generally, Adrian, Boyarchenko, and Giannone (2016) document that fi-

nancial conditions are strong forecasters of downside risks to GDP growth. Deteriorating

financial conditions give rise to an increase in the conditional volatility of GDP and a

decline in the conditional mean of GDP in such a way that upper quantiles of GDP

growth are more or less constant, while lower quantiles are varying sharply. Hence the

unconditional distribution of GDP is highly skewed to the left as a function of financial

conditions.

The four equation reduced form NK model captures these dynamics of the condi-

tional output distribution. The model gives rise to a relationship between the conditional

mean and the conditional volatility of output that generates the empirical features of

the conditional output distribution, namely, the negative correlations between mean and

volatility that Adrian, Boyarchenko, and Giannone (2016) document. As a result, the

model features strongly time varying downside risk as a function of financial conditions,

while upside risks are more or less constant. Monetary policy impacts not only condi-

tional means, but also conditional volatilities via its impact on the tightness of the VaR

constraint of banks.

The central bank is assumed to minimize a standard loss function with the squared

output gap and the squared inflation rate entering as arguments. We can solve for the
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optimal policy rules in closed form using dynamic programming. We consider optimal

monetary policy rules with flexible prices (no Phillips curve) and sticky prices.

Our optimal monetary policy rule can be cast in the language of a flexible infla-

tion targeting framework, such as the one in Svensson (1999), Rudebusch and Svensson

(1999), Svensson (2002), and Giannoni and Woodford (2012). Relative to the standard

New Keynesian model, there are two important differences. First, vulnerability becomes

a target variable. Second, the coefficients in the linear optimal targeting criterion rule

that trade off deviations in output, inflation and financial vulnerability from their desired

levels, depend on the parameters that govern GDP vulnerability.

Optimal monetary policy can also be expressed as an augmented Taylor rule. The

nominal interest rate not only depends on inflation and output, but also on financial

vulnerability. The optimal coefficients on output and inflation are taking the parameters

that govern GDP vulnerability into account.

The NKV model (New Keynesian Vulnerability model) is straightforward to cali-

brate from GDP, inflation, and financial conditions data. When we simulate the model

under the optimal monetary policy rule, and the alternative standard New Keynesian

Taylor rule, we find that the latter generates higher equilibrium GDP skewness. There-

fore, policy makers that take vulnerability into account mitigate downside movements of

output.

Our model captures the intuition that in recent years monetary policy has explicitly

taken into account and influenced financial conditions.2 A deterioration of financial

conditions corresponds to an increase in tail risk, as conditional GDP volatility rises,

while the conditional growth forecast deteriorates. As a result of such an increase in

financial vulnerability, i.e. an increase in the downside risk to GDP growth, monetary

policy is relatively easier than under the classic Taylor rule. This results in a lowering

of vulnerability, and hence in less severe left skewness of GDP.

We also study an extension with a zero lower bound on nominal interest rates. The

zero lower bound implies a flexible inflation targeting rule when interest rates are away

from the bound, and a forward guidance rule when the zero lower bound is reached.

Therefore, the New Keynesian model with financial vulnerability can be extended to

settings with a zero lower bound.

In the setting of our paper, monetary policy always takes GDP vulnerability into ac-

count, even though the policy maker only cares about output and inflation. Incorporating

2Dudley (2015); Yellen (2016).
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financial vulnerability in the flexible inflation targeting framework strictly dominates the

standard Taylor rules that condition only on output and inflation. This result is in stark

contrast to Svensson (2016b,a) who argues that financial stability considerations should

not be taken into account if costs exceed benefits. Despite the contrasting conclusions,

the framework of analysis that we are using here is similar to the framework that Svens-

son is using. However, while Svensson focuses on tail risks to GDP growth that only

occur very rarely, we focus on vulnerabilities that are present most of the time. Im-

portantly, tail risks can naturally occur within our setup, due to a particular form of

nonlinearity involving first and second moments. Hence our setting also captures the

extreme tail events that Svensson studies.

The remainder of the paper is organized as follows. Section 2 provides the motivation

for our model from the existing empirical and theoretical literature on financial stability

in a macroeconomic context. Section 3 presents the model. The solution ot the model is

presented in Section 4. Section 5 derives the optimal monetary policy rule in the reduced

form. Section 6 concludes.

2 Financial Vulnerability

Financial vulnerability refers to the presence of amplification mechanisms that are caused

by leverage, maturity transformation, or asset valuations. When financial vulnerability

is large, small shocks can have severe aggregate macroeconomic consequences. Adrian,

Covitz, and Liang (2015) present a framework for the monitoring of financial vulner-

ability. They measure leverage, maturity transformation, and asset valuations across

four sectors: asset markets, the banking system, the market based financial system, and

the nonfinanical system. Aikman, Kiley, Lee, Palumbo, and Warusawitharana (2015)

propose a quantitative indicator for the vulnerabilities in this framework.

In this paper, following Adrian, Boyarchenko, and Giannone (2016), we construct

a measure of financial vulnerability by using the National Financial Conditions Index

(NFCI) of the Federal Reserve Bank of Chicago. That index aggregates 105 financial

market, money market, credit supply, and shadow bank indicators to compute a single

index using the filtering methodology of Stock and Watson (1998). Adrian, Boyarchenko,

and Giannone (2016) show that the conditional GDP distribution features strong down-

side risk as a function of financial conditions. We reproduce the main results of Adrian,

Boyarchenko, and Giannone (2016) here using a conditionally heteroskedastic model to
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estimate the conditional first and second moments of GDP gap

yt = γy0 + γy1yt−1 + γy2πt−1 + γy3xt−1 + σyt ε
y
t (1)

ln (σyt ) = δy0 + δy1xt−1 (2)

where εyt ∼ N(0, 1), xt denotes the NFCI financial conditions index, and yt is the GDP

gap. Mean GDP gap also depends on the lagged quarterly core PCE inflation rate π and

on the lagged GDP gap. In addition to estimating the conditional mean and conditional

volatility of the GDP gap, we also estimate an analogous equation for the inflation rate:

πt = γπ0 + γπ1yt−1 + γπ2πt−1 + σtε
π
t (3)

ln (σπt ) = δπ0 + δπ1πt−1 (4)

The model is estimated via maximum likelihood.

Figure 1: Estimated Conditional Distribution of One Quarter Ahead GDP Gap and PCE
Inflation. The figure reports estimates from equations (1), (2), (3), and (4). Panel (a) shows the actual
GDP gap, the conditional mean of GDP gap, and the 5th and 95th quantile. Panel (b) shows the actual
PCE inflation, the conditional mean of inflation, and the 5th and 95th quantile.
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The estimation results are in Figure 1 and Table 1. In Panel (a) of Figure 1, we present

the conditional mean of GDP gap, actual GDP gap, and the 5th and 95th quantiles.

The distribution is left skewed as deteriorating financial conditions are associated with

an increase in conditional volatility, and at the same time a decline in the conditional

mean of GDP gap (see Table 1). Due the negative correlation of mean and volatility the

unconditional distribution is negatively skewed, even though the conditional distribution

is conditionally Gaussian. For inflation, financial conditions aren’t significant for either
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Table 1: GDP Gap and Inflation Conditional Mean and Volatility Estimates

(1) (2)
VARIABLES GDP HET

Financial Conditions (lag) -1.715*** 0.551***
[-5.096] [3.765]

GDP Gap (lag) -0.000356
[-1.510]

Inflation Rate (lag) 0.00277
[0.0842]

Constant 6.213*** 1.785***
[11.02] [21.69]

Observations 173 173
*** p<0.01, ** p<0.05, * p<0.1

the conditional mean equation or the conditional volatility. However, the volatility of

inflation scales in the level of inflation. Hence the conditional mean and the conditional

volatility are positively correlated. Importantly, financial conditions play no role for

inflation dynamics.

Figure 2: Estimated Conditional Mean and Conditional Volatility of One Quarter Ahead
GDP Gap and PCE Inflation. The figure reports estimates from equations (1), (2), (3), and (4).
Panel (a) plots the GDP gap mean against the GDP gap volatility, panel (b) plots PCE inflation mean
against PCE inflation volatility.
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The estimates for GDP have the unusual property that the shift in the conditional

mean and volatility of GDP offset each other in such a way that the 95th quantile is

close to constant. In contrast, the 5th quantile strongly varies as a function of finan-
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cial conditions. Importantly, this property only arises when the GDP distribution is

estimated as a function of financial conditions—real economic indicators do not contain

significant information for the tail of the GDP distribution. This is shown more gener-

ally by Adrian, Boyarchenko, and Giannone (2016). This property is shown in Figure

2, which scatters the conditional mean against the conditional volatility for the GDP

gap and PCE inflation. For the GDP gap, mean and volatility are strongly negatively

correlated, but there is no correlatoin for PCE inflation.

These results suggest that GDP vulnerability is related to the time varying left tail

of the GDP distribution, as a function of financial conditions. In this paper, we define

GDP vulnerability Vt as the value at risk of the GDP gap

Vt = N−1(p)V
[
dyt
dt
|Ft
]√

τ − E
[
dyt
dt
|Ft
]
τ . (5)

Ft denotes the filtration generated by the underlying stochastic processes, V denotes

the volatility operator (the square root of the instantaneous variance of dyt), and E
denotes the expectations operator. The expectation is multiplied by the horizon of the

value at risk, τ , while the volatility is multiplied by the square root of τ . N−1(p)
denotes the inverse cumulative Gaussian distribution function with probability p. As

vulnerability measures the left tail of the GDP gap distribution, p is small, and therefore

N−1(p) is negative. For example, N−1 (5%) = −1.96. To save notation, we will denote

α = −N−1(p).
We will derive a fully microfounded NK model in the next sections. To foreshadow

where we will end up, we present the reduced form model here, which consists of the

following four equations:

dyt = γ−1
(
Rt − rt + γη̂ξ

(
Vt − st −

1

2

η̂

ξγ

))
dt+ ξ (Vt − st) dZt (6)

Vt = −αV
[
dyt
dt
|Ft
]√

τ − E
[
dyt
dt
|Ft
]
τ (7)

dst = κs (s̄− st) dt+ σsdZt (8)

dπt = (βπt − κyt) dt (9)

Equation (6) is the Euler equation (or IS curve) of a standard NK model augmented

with a risk premium. The risk premium has drift γη̂ξ
(
Vt − st − 1

2
η̂
ξγ

)
and volatility

ξ (Vt − st). Note that both drift and volatility are proportional to Vt − st, where Vt is
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the VaR of GDP as defined in (7) and st is a state variable defined in (8). Importantly,

vulnerability is endogenous to the stochastic evolution of GDP as a function of shocks

to the risk premium. The shock dZt is a standard Brownian motion. We can interpret

Vt as conditional volatility of GDP, and st as a mean reverting shock to volatility.

Using (6) in (5) and solving for Vt gives vulnerability as a function of the interest

rate gives

Vt =
−γ−1 (Rt − rt) + αξst

√
τ + η̂ξ

(
st + 1

2
η̂
ξγ

)
τ

1 + αξ
√
τ + η̂ξτ

(10)

Vulnerability depends on the interest rate in excess of the natural rate Rt − rt and the

process st. We can thus interpret st as a shock to vulnerability. Higher interest rates

make vulnerability more negative.

The sign of the dependence of Vt on the interest rate Rt depends on the sign of

− (1 + αξ
√
τ + η̂ξτ). The empirical results presented above can help us pin down the

sign of these parameters. The mean-variance tradeoff for yt follows by writing E [dyt|Ft]
and V [dyt|Ft] as functions of vulnerability Vt and the shock to vulnerability st

E [dyt|Ft] = −α
√
τξ + 1

τ

(
Vt −

α
√
τξ

α
√
τξ + 1

st

)
(11)

V [dyt|Ft] = ξ (Vt − st) (12)

and then eliminating Vt to get

E [dyt|Ft] = −α
√
τξ + 1

τξ
V [dyt|Ft]−

(
1

τ

)
st. (13)

Empirically, the slope is negative and the intercept is positive, hence we need

−α
√
τξ + 1

τξ
< 0 (14)(

1

τ

)
s̄ > 0 (15)

To calibrate the reduced form model, we set α = −1.645, which corresponds to a VaR

value of 5%. We choose a VaR horizon of one year,
√
τ = 1. To match the data, we

set the slope −α
√
τξ+1
τξ

= −1.15 and the intercept s̄ = −0.67τ which gives ξ = 0.36 and

s̄ = −0.67. These calibrations imply that GDP vulnerability Vt and interest rates it
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are negatively correlated. This correlation is consistent with the empirical observation

that when financial conditions deteriorate, GDP vulnerability increases, and short-term

interest rates decline. Figure 3 shows a simulated path of (6), (7), (8) setting R − r to

zero, for simplicity. The simulation clearly features the stylized facts of Figure 1.

Figure 3: Simulated Conditional Distribution of One Quarter Ahead GDP Growth. The
figure shows simulated conditional mean of GDP, and the 5th and 95th quantile of model (6), (7), (8).
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The IS curve augmented with the shocks to risk premia that depend on vulnerability

lead to an additional channel for monetary policy. The traditional transmission channel

is via the drift of the IS curve: higher interest rates are associated with a higher growth

rate of output. This is because a higher interest rate shifts consumption from the present

to the future, via increased savings. The additional channel that arises in the current

setup is the impact of monetary policy on vulnerability, and hence on the volatility of the

risk premium. Hence monetary policy impacts total risk in the economy. This channel

is sometimes called the “risk taking channel of monetary policy” (see Adrian and Shin

(2010) and Borio and Zhu (2012)). When we study optimal monetary policy in the next

section, this tradeoff is going to emerge prominently.

3 The Model

3.1 Physical Environment

Time is continuous. There is a continuum of identical, infinitely lived households who

rank consumption streams Ct and labor streams Nt according to

E0

∫ ∞
0

e−βt

(
C1−γ
t

1− γ
− N1+ξ

t

1 + ξ

)
dt, (16)
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where β > 0 is a time-preference parameter, γ > 0 is the coefficient of relative risk

aversion and ξ > 0 is the inverse of the Frisch elasticity of labor supply. The variable Ct

represents a consumption index given by

Ct ≡
(∫ 1

0

Ct (i)1−
1
ε di

) ε
ε−1

, (17)

where Ct (i) is the quantity of differentiated good i ∈ [0, 1] consumed by the household

at time t and ε > 1 is the constant elasticity of substitution across different goods. The

variable Nt is the aggregate labor supplied to all firms and given by

Nt ≡
∫ 1

0

Nt (i) di, (18)

where Nt (i) is the amount of labor supplied at time t to the firm that produces goods of

type i. Output Yt (i) for each good i can be produced by the following constant returns

to scale technology

Yt(i) = ANt (i) , (19)

where A is the constant economy-wide level of technology. The final good Yt is produced

with the technology

Yt =

(∫ 1

0

Yt (i)1−
1
ε di

) ε
ε−1

. (20)

There is no government spending and the economy is closed to imports and exports.

The resource constraint of the economy is

Ct = Yt. (21)

3.2 First Best

The first best is obtained by maximizing the utility of the representative household, given

in equation (16), subject only to the structure of the economy’s physical environment
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described by equations (17)-(21). This central planner problem is

V FB
s = max

{Ct(i),Nt(i),Yt(i)}t≥s
Es

{∫ ∞
s

e−β(t−s)

(
C1−γ
t

1− γ
− N1+ξ

t

1 + ξ

)
dt

}
,

s.t.

Ct =

(∫ 1

0

Ct (i)1−
1
ε di

) ε
ε−1

,

Yt =

(∫ 1

0

Yt (i)1−
1
ε di

) ε
ε−1

,

Nt =

∫ 1

0

Nt (i) di,

Yt(i) = ANt (i) ,

Ct = Yt.

The solution to this problem is

Ct (i) = Ct (j) , (22)

Yt (i) = Yt (j) , (23)

Nt (i) = Nt (j) , (24)

for all i and j and

Nt = A
1−γ
γ+ξ , (25)

Ct = Yt = A
1−γ
γ+ξ

+1. (26)

3.3 Market Structure

Now we describe the structure of the market economy that we use to find the decentral-

ized equilibrium. The only source of uncertainty is a single standard Brownian motion.

There are two types of firms, intermediate good producers and final good producers.

There is a continuum of identical households. They are as in the standard New Keyne-

sian model with two differences. First, they cannot invest in shares of the intermediate

good producers (but can still invest in all other available financial assets). The reason is

that all financing of the intermediate good producers must be intermediated by banks.
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Second, they are allowed to deposit money in riskless accounts at banks3 and hold shares

of the banks.

There is a continuum of identical banks. They issue riskless deposits to households

that pay out the risk-free rate of return. In addition, the banks issue shares that can

be purchased and held by the households or by the banks themselves. Banks are also

allowed to trade a riskless bond among themselves and with the households. Banks

have a risk averse objective function over total distributions (dividends, plus payouts

to depositors, plus net payoffs from positions in the riskless bond) that has preference

shocks. The Modigliani-Miller theorem holds for banks4, so how total distributions are

split between its components is irrelevant. We henceforth use the word “dividends” to

refer to total bank distributions. Banks maximize their objective by choosing a portfolio

of investments in all financial assets available in the economy. The banks’ portfolio

selection problem is subject to a Value-at-Risk (VaR) constraint on their wealth (net

worth). In summary, the liabilities of the banks are deposits and equity while their

assets are positions in the bond and stocks.

There is a central bank that sets the nominal interest rate by paying interest on base

money in the cashless limit, as in Woodford (2003). There is no fiscal spending, so no need

for the government to issue bonds or levy taxes (so we assume it does neither). Fiscal

policy is therefore “Ricardian” (in the terminology of Woodford (2001)) or “passive” (in

the terminology of Leeper (1991)).

Unlike the standard New Keynesian model, in this setup it becomes important to

spell out the financial assets available in the economy. There are two types of stocks

in positive net supply: the stocks of banks and the stocks of the intermediate good

producers. Because banks receive identical aggregate shocks, we can group them into

a single banking sector stock; for the same reason, we can group all intermediate good

producer stock into a single intermediate good producer sector stock. We can therefore

assume that there are exactly two stocks in positive net supply. The banking sector

stock pays the aggregate dividends of all banks and the producer sector stock pays the

aggregate dividends of all producers5.

3It does not matter whether they are riskless in real or nominal terms, so we henceforth assume they
are real accounts.

4That the Modigliani-Miller theorem holds for banks follows at once by using the results in (Merton,
1977).

5We could allow for unrestricted trade among households and banks of a complete set of Arrow-
Debreu securities in zero net supply that span all risks in the economy and none of our results would
change. In our setup, markets will be complete in equilibrium even without introducing these Arrow-
Debreu securities, so adding any new securities would be redundant.
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We index the financial securities by j ∈ {0, goods, banks} and write their price, Sj,t,

and dividend processes, Dj,t, in real terms. The first security is a riskless bond with

price S0,t that follows

dS0,t = S0,tRtdt, (27)

where Rt is the equilibrium real riskless interest rate. The remaining two securities are

risky stocks that have equilibrium prices given by

dSj,t
Sj,t

= αj,tdt+ σj,tdZt, (28)

where αj,t is the real expected return (including any dividends6) and σj,t is the exposure

to the standard Brownian motion Zt. We can write the stock price processes in vector

notation

dSt = diag (St) (αtdt+ σtdZt) , (29)

where St is a 2× 1 vector (that does not include the bond), αt is a 2× 1 vector and σt

is a 2 × 1 vector. Because σt is endogenous, we do not yet know whether markets are

complete in equilibrium (but we show below they will be). If either stock has σj,t 6= 0

a.s., markets are complete. Because there is a single source of uncertainty and two stocks

and a bond, one of the stocks will be redundant in equilibrium, in that it can be fully

replicated by a portfolio of bonds and the other stock. However, although one of stocks

can be replicated, it is only the banks that can do so, since households can only trade

in the stock of good producers while the banks can trade in both stocks. It is therefore

important for our results to have both stocks in the economy.

We define real expected excess returns µt as the 2× 1 vector

µt ≡ αt −Rt, (30)

and the market price of risk (MPR) as the process ηt that satisfies

σTt ηt ≡ µt. (31)

where the superscript T denotes the transpose of a vector or a matrix. Equation (31)

has a solution iff there is no arbitrage, which is a necessary condition for equilibrium. If

6With some abuse of language, we refer to St as the “price” of the stock instead of using the sometimes
more precise “gain process” terminology.
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markets are complete, ηt is unique and given by

ηt =
(
σTt
)−1

µt. (32)

The MPR is closely related to the equivalent martingale measure Q. Indeed, ZQ
t

defined by

ZQ
t ≡ Zt + ηt, (33)

is a standard Brownian motion under the equivalent martingale measure (the “risk-

neutral measure”). Under Q, discounted stock prices are martigales, i.e.

EQ
t

[
d

(
Sj,t
S0,t

)]
= 0. (34)

We also define the real state price density (SPD) Qt as the solution to

dQt ≡ −QtRtdt−Qtη
T
t dZt, (35)

Q0 ≡ 1. (36)

and the nominal SPD, Q$
t , by

Q$
t ≡ QtPt.

Under the physical measure, stock prices are given by the SPD-deflated stream of divi-

dends

QtSj,t = Et

[∫ ∞
t

QsDj,sds

]
.

In equilibrium, we will find that markets are complete and that σj,t 6= 0 for j =

{goods, banks}. No arbitrage then requires

(σgoods,t)
−1 µgoods,t = (σbanks,t)

−1 µbanks,t. (37)

3.4 Banks

Bank liabilities consist of wealth (equity capital or net worth) and nominal deposits

issued to households. Denote real wealth of the bank by Xt. Bank assets consist of a

portfolio of the two traded stocks and bonds. Because banks can replicate one of the

stocks by trading on the other stock and the bond, the portfolio choice of the bank only

determines the allocation of wealth between the bond and a portfolio of the two stocks.

15



We therefore solve the portfolio problem of banks assuming for simplicity that there is a

single risky asset (a portfolio of the two stocks) instead of two risky assets. By equation

(37), this portfolio of stocks can be taken to have any portfolio weights in each of the

two stocks without affecting the optimal portfolio choice of banks. Therefore, µt and σt

in the portfolio choice problem of the bank described below should be interpreted as the

drfit and volatility of the protfolio of stocks and not as a vector of drifts and volatilities

that contain the drifts and volatilities of each stock. The actual equilibrium weights for

the portfolio of two stocks that banks invest in will be determined by the market clearing

condition that banks must hold the entire supply of good producers’ stock.

The bank solves a standard Merton portfolio problem augmented by a Value-at-Risk

constraint and preference shocks

max
{θt,δt}t≥s

Es

[∫ ∞
s

e−β(t−s)eζt log (δtXt) dt

]
(38)

s.t.
dXt

Xt

= (Rt − δt + θtµt) dt+ θtσtdZt, (39)

V aRτ ,α (t, θt, δt, Xt) ≤ aVXt, (40)

dζt = −1

2
s2tdt−mtdZt, ζ0 = 0, (41)

dmt = −κmt + σmdZt, (42)

Xs given, (43)

where ζt is a preference (risk aversion) or belief shock, δt is the share of wealth distributed

to the household, δtXt are real dividends distributed to the household, θt is the share of

wealth invested in the portfolio of risky assets, V aRτ ,α (t, θt, δt, Xt) is the value-at-risk

of the portfolio of the bank over the interval [t, t+ τ ] at level α ∈ (0, 1/2] with τ > 0

and aV ∈ (0, 1).

The dynamics of ζt in equations (41)-(42) imply that eζt is a Radon–Nikodym deriva-

tive (a change of measure). Changing to the measure defined by eζt , the bank problem
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can be restated as

max
{θt,δt}t≥s

Ebank
s

[∫ ∞
s

e−β(t−s) log (δtXt) dt

]
(44)

s.t.
dXt

Xt

= (Rt − δt + θt (µt − σtmt)) dt+ θtσtdZ
m
t , (45)

V aRτ ,α (t, θt, δt, Xt) ≤ aVXt, (46)

Xs given, (47)

where, under the new measure, Zm
t is a standard Brownian motion and Ebank

s [·] is the

expectation operator, with

Zm
t = Zt +mt.

As is the case in practice, the portfolio manager evaluates its V aR by assuming that

the portfolio weights remain constant between t and t+ τ . Let

Q (t, θt, δt) ≡ Rt − δt + θt (µt − σtmt)−
1

2
(θtσt)

2

be the drift of d logXt under the bank measure. Then, the dynamic budget constraint

of the bank has a strong solution7

Xt = X0 exp

{∫ t

0

Q (t, θs, δs) ds+

∫ t

0

θsσsdZ
m
s

}
,

X0 given.

Projected wealth loss between t and t+ τ when keeping the portfolio constant at (θt, δt)

for t ∈ [t, t+ τ ] is

Xt −Xt+τ = Xt

[
1− exp

{
Q (t, θt, δt) τ + θtσt

(
Zm
t+τ − Zm

t

)}]
Thus, the αth percentile of the projected wealth loss, Xt − Xt+τ , conditional on time-t

information is

Xt

[
1− exp

{
Q (t, θt, δt) τ +N−1 (α) |θtσt|

√
τ
}]

Value-at-risk is then defined by

V aRτ ,α (t, θt, δt, Xt) ≡ Xt

[
1− exp

{
Q (t, θt, δt) τ +N−1 (α) |θtσt|

√
τ
}]

7In this context, a solution is “strong” if it holds path by path.
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Define

gV (t, θt, δt) ≡ −Q (t, θt, δt) τ −N−1 (α) |θtσt|
√
τ

Then

V aRτ ,α (t, θt, δt, Xt) ≤ XtaV ⇐⇒ gV (t, θt, δt) ≤ V aR

where

V aR ≡ log
1

1− aV
The choice α ∈ (0, 1/2] guarantees that N−1 (α) ≤ 0 and that gV (t, θt, δt) is convex in

(θt, δt).

In Appendix A we show that the banks’ problem can be simplified to a non-stochastic

one. To maximize

Ebank
0

∫ ∞
0

e−βt log (δtXt) dt

over the constrained set, it suffices to maximize

h (t, θt, δt) ≡ log (δ) +
1

β
Q (t, θt, δt)

pathwise over the constrained set. For a fixed path and a fixed time t, the bank then

solves

max
θt,ft

h (t, θt, δt)

s.t.

gV (t, θt, δt) ≤ V aR (48)

The function h (t, θt, δt) is concave in (θt, δt) and maximized over (θt, δt) by

δM,t = β

θt = θM,t
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when the V aR constraint is not binding, where we derive θM,t, δM,t using the FOC

[ft] : 0 =
∂

∂δt
h (t, θt, δt)

: 0 =
1

δM,t

− 1

β

: δM,t ≡ β

[θt] : 0 =
∂

∂θt
h (t, θt, δt)

: 0 =
1

β

(
µt − σtmt − σ2

t θM,t

)
: θM,t ≡

1

σt

(
µt
σt
−mt

)
The solution (θM,t, δM,t) when the V aR constraint is not binding coincides with the

standard Merton portfolio solution for an agent that does not face a V aR constraint.

Using the definition of the market price of risk ηt in equation (31), we can also write

θM,t ≡ (σt)
−1 (ηt −mt)

As just derived, if (θM,t, δM,t) satisfy

gV (t, θM,t, δM,t) ≤ V aR

then (θ∗t , δ
∗
t ) = (θM,t, δM,t) is the solution to the bank’s problem with the V aR constraint

(and the V aR constraint does not bind). Otherwise, because the constraint set is com-

pact and convex, and the objective is continuous, there will be a unique solution (θ∗t , δ
∗
t ).

Moreover, (θ∗t , δ
∗
t ) must be such that the V aR holds with equality.

In Appendix C we derive the optimal portfolio of the bank, which is given by

θt = min {1,max {0, ϕt}} θM,t (49)

δt = u (t,min {1, ϕt}) fM,t1{ϕt>0} (50)

+

(
Rt +

1

τ
log

1

1− aV

)
1{ϕt≤0}

ϕt such that: gV (t, ϕtθM,t, u (t, ϕt) fM,t) = V aR (51)
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where we omit the asterisks for ease of notation and

u (t, z) ≡ 1 +

√
τ |θM,tσt|
N−1 (α)

(1− z)

We see that under the bank measure, the V aR constraint does not distort the com-

position of the portfolio, as θt is a multiple of mean-variance efficient portfolio. It does

however change the amount invested in the mean-variance efficient portfolio. Instead of

θt = θM,t as would obtain without the V aR constraint, we now get θt = θM,t/γt where

γt =
1

min {1,max {0, ϕt}}
∈ [1,∞)

=


∞ , if ϕt ∈ (−∞, 0]
1
ϕt

, if ϕt ∈ (0, 1]

1 , if ϕt ∈ (1,∞)

Thus, the V aR constraint makes the agent behave as an agent with time-varying risk

aversion γt that is higher than its true risk aversion of 1. Under the physical measure,

the V aR constraint distorts the conditional composition of the portfolio but not its un-

conditional composition. In other words, the bank invests in the mean-variance efficient

portfolio on average, but not necessarily at any given point in time.

We can find an explicit expression for ϕt, as shown in Appendix D

ϕt = 1 +
N−1 (α)√
τ |ηt −mt|

±

√
2 (Rt − δt) τ + 2V aR + |ηt −mt|2 τ 2

(
1 +

N−1 (α)√
τ |ηt −mt|

)2

Evaluating the left-hand side of equation (48) at the optimal policies of the bank in

equations (195)-(197) gives

gV (t, θt, δt, ν) = −
(
Rt − δt + θtµt − θtσtmt −

1

2
(θtσt)

2

)
τ (52)

−N−1 (α) |θtσt|
√
τ (53)

= − (Rt − δt) τ (54)

−
(

min {1,max {0, ϕt}} −
1

2
min {1,max {0, ϕt}}

2

)
(ηt −mt)

2 τ (55)

−N−1 (α) min {1,max {0, ϕt}} |ηt −mt|
√
τ (56)

Of course, (53) evaluated at any ϕt ∈ [0, 1] gives gV (t, θt, δt) = V aR.
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Finally, we note that the Lagrange multiplier λ for the V aR constraint is

λ =
1

τ

(
1

δt
− 1

β

)
so the Lagrange multiplier for the original problem under the bank’s probability measure

is

λV aR,t,m = λe−βt

=
1

τ

(
1

δt
− 1

β

)
e−βt

and under the physical measure is

λV aR,t = λe−βteζt

=
1

τ

(
1

δt
− 1

β

)
e−βteζt

Note that since

δt ≤ β

we have

λV aR,t ≥ 0

3.5 Market Completeness and Banks’ SPD

So far, we have not used the fact that markets are complete. We can use market com-

pleteness to recover the bank’s SPD. The bank problem under the physical measure is

given by equations (38)-(43). Complete markets imply that the dynamic budget con-

straints of the bank in equation (39) is equivalent to the static budget constraint

X0 = E0

[∫ ∞
0

QtδtXtdt

]
(57)
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where the banks take the SPD Qt as given. The Lagrangian for the bank’s problem is

then

L = E0

[∫ ∞
0

e−βteζt log (δtXt) dt

]
+ λbc

(
X0 − E0

[∫ ∞
0

QtδtXtdt

])
+

∫ ∞
0

λV aR,t
(
gV (t, θt, δt)− V aR

)
dt

where λbc > 0 is a number but λV aR,t > 0 is a function of time since we have one V aR

constraint for each t. The FOC for an interior solution are

[Ft] : 0 =
e−βteζt

δtXt

− λbcQt + λV aR,t
τ

Xt

(58)

[θt] : 0 =
e−βteζt

β

∂Q (t, θt, δt)

∂θt
+ λV aR,t

∂gV (t, θt, δt)

∂θt
(59)

Re-arranging (58) gives the SPD of the bank

Qt =
e−βteζt

λbcδtXt

+
λV aR,t
λbc

τ

Xt

=
e−βteζt

λbc

1

δtXt

+
λV aR,tτ

λbc

1

Xt

(60)

=
1

λbcXt

[
e−βteζt

1

δt
+ λV aR,tτ

]
(61)

We can interpret the terms

λV aR,tτ

λbc

1

Xt

: Marginal value of relaxing the V aR constraint

e−βteζt

λbc

1

ftXt

: marginal value of issuing dividends

Using λV aR,t from equation (57)

λV aR,t =
e−βteζt

τ

(
1

δt
− 1

β

)
gives

Qt =
e−βteζt

λbcXt

(
2

δt
− 1

β

)
(62)
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The multiplier λbc can be found from noting that we must have Q0 = 1,

λbc =
2

X0

(
1

δ0
− 1

β

)
or from the budget constraint (57).

3.6 Households

3.6.1 Setup

The representative household maximizes utility subject to its budget constraint, a port-

folio constraint on its holdings of stocks of goods producers, and a solvency constraint

(transversality condition). For time s, the household problem is

max
{Ct(i),Nt,ωt}t≥s

Es

{∫ ∞
s

e−β(t−s)

(
C1−γ
t

1− γ
− N1+ξ

t

1 + ξ

)
dt

}
, (63)

subject to

d (PtFt) ≤ WtNtdt+ ωbanks,td (PtSbanks,t) + ω0,td (PtS0,t)− PtCtdt for all t ≥ s, (64)

lim
t→∞

Es [QtFt] = 0, (65)

Fs given, (66)

and the definition of the aggregator for consumption in equation (17). The household

maximizes utility by choosing the path {Ct (i) , Nt, ωt}t≥s of consumption of good i,

Ct (i), supply of labor, Nt, its position (number of shares) ωbanks,t in the stock of banks

and its position ω0,t in bonds. The variable Ft is the household’s real financial wealth

at time t, Wt is the nominal wage paid for labor supplied to the firms in an integrated

competitive market8, Sbanks,t is the real price of the stock of banks, S0,t is the real price

of riskless bonds, Pt is the aggregate price level and Qt is the nominal state-price density

(SPD).

The dynamic flow budget constraint in equation (64) states that changes in the

household’s nominal financial wealth must be less than or equal to nominal labor income

plus the nominal payoff on financial assets (which can be negative), minus nominal

consumption expenditures. We can write equation (64) in real terms and using portfolio

8It follows that all firms pay the same wage for homogeneous labor. This means that the household
picks Nt (i) = Nt for all i and thus we can simplify the household problem by optimizing directly over
Nt instead of over Nt (i).
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weights ω̃t instead of number of shares as follows

dFt
Ft

= Rtdt+ ω̃banks,tµbanks,t −
(
Ct
Ft
− Wt

Pt

Nt

Ft

)
dt

where ω̃banks,t is defined by

ω̃banks,t ≡
Sbanks,tωbanks,t

Ft
(67)

The portfolio weight on the bond, ω̃0,t, is then

ω̃0,t = 1− ω̃banks,t

since total wealth is

Ft = ωbanks,tSbanks,t + S0,tω0,t

The transversality condition in equation (65) is a no-Ponzi condition for the house-

hold. In its maximization, the household takes {Wt, Sbanks,t, S0,t, Pt (i) , Pt, Qt}t≥s and

Fs as given. We can also add a zero lower bound (ZLB) constraint on nominal interest

rates to the household problem

it ≥ 0 for all t ≥ s. (68)

where it is the interest rate on a riskless nominal bond. This condition would emerge as

a FOC for the household problem if we had money in the utility function, and money

paid no interest while providing the same risk profile as a riskless bond when the riskless

rate is at zero9. Here we consider the cashless limit of such an economy and thus can, if

desired, include what would have been the FOC it ≥ 0 directly as a constraint.

3.6.2 Solving Households’ Problem

We solve the problem of the household in two stages. First, we find the optimal allocation

Ct (i) across goods i for a given level of consumption expenditures. Second, we solve the

consumption/savings problem for the household who picks Ct (i) optimally according to

the first stage.

9Woodford and Eggertsson (2003).
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The Lagrangian for the first stage is

L =

(∫ 1

0

Ct (i)1−
1
ε di

) ε
ε−1

− µ
(
Et − E

)
. (69)

where

Et ≡
∫ 1

0

Pt (i)Ct (i) di (70)

are total nominal consumption expenditures and E is a given constant. The associated

first-order condition is

Ct (i)−
1
ε C

1
ε
t = µPt (i) for all i. (71)

Therefore,

Ct (i) = Ct (k)

(
Pt (i)

Pt (k)

)−ε
(72)

for any two goods i and k. Plugging in (72) into (70) gives

Ct (i) =

(
Pt (i)

Pt

)−ε
Zt
Pt

(73)

where we have defined the aggregate price level as

Pt ≡
(∫ 1

0

Pt (i)1−ε di

) 1
1−ε

. (74)

Multiplying (73) by Pt (i), raising both sides by the power 1 − 1
ε

and integrating over i

gives ∫ 1

0

Pt (i)Ct (i) di = PtCt, (75)

where we have also used the definition of Ct, equation (17). Combining (70), (73) and

(75) gives

Ct (i) =

(
Pt (i)

Pt

)−ε
Ct. (76)

Now we solve the second stage of the household maximization. We restate the optimiza-

tion problem of the household in a simplified way by doing three things. First, because

utility is increasing in consumption and decreasing in labor, the household’s budget con-

straint (64) holds with equality for all t ≥ s. Second, we replace (64) and (65) by an

equivalent intertemporal budget constraint.Note that to write down the intertemporal
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budget constraint, it is not necessary that financial markets are complete. Third, we

use the solution of the first stage so that the household now chooses {Ct}t≥s instead

of {Ct (i)}t≥s and allocates Ct (i) according to equation (76). With these changes, the

problem is

max
{Ct,Nt}t≥s

Es

{∫ ∞
s

e−β(t−s)

[
C1−γ
t

1− γ
− N1+ξ

t

1 + ξ

]
dt

}
(77)

subject to

QsFs = Es

[∫ ∞
s

Qt

(
Ct −

Wt

Pt
Nt

)
dt

]
(78)

Fs given (79)

The Lagrangian for the optimization is

L = Es

{∫ ∞
s

e−β(t−s)

[
C1−γ
t

1− γ
− N1+ξ

t

1 + ξ

]
dt

}
+

−λbc
[
Es

[∫ ∞
s

Qt

(
Ct −

Wt

Pt
Nt

)
dt

]
−QsFs

]
(80)

where λbc is the Lagrange multiplier associated with the constraint. The first order

conditions for the households problem are given by

[Nt] : −e−β(t−s)N ξ
t + λbcQt

Wt

Pt
= 0 (81)

[Ct] : e−β(t−s)C−γt − λbcQt = 0 (82)

Combining (81) and (82) to eliminate λbc gives the intra-temporal optimality condition,

which defines the labor supply curve

Cγ
t N

ξ
t =

Wt

Pt
(83)

Using equation (82) for times s and t gives

Qt

Qs

= e−β(t−s)
(
Ct
Cs

)−γ
(84)

26



We identify the real and nominal state price densities

Qt = e−βtC−γt , (85)

Q$
t = e−βt

C−γt
Pt

, (86)

the real stochastic discount factor

SDFt,s ≡
Qt

Qs

(87)

and the nominal stochastic discount factor SDF $
t,s ≡ Q$

t/Q
$
s.

3.7 Firms

3.7.1 Final Good Sector

Firms in the final good sector produce a homogeneous good, Yt, using intermediate

goods, Yt (i), of different varieties i ∈ [0, 1]. There is continuum of competitive final

good producers of measure one. The production functions for all final good producers

are identical and given by

Yt =

(∫ 1

0

Yt (i)
ε−1
ε di

) ε
ε−1

(88)

where ε > 1 is the constant elasticity of substitution for differentiated goods (and taken

to be equal to the elasticity of substitution across goods for consumers). The production

function has constant returns to scale and diminishing marginal product.

The representative firm chooses inputs {Yt (i)}i∈[0,1] to maximize real profits

Yt −
1

Pt

∫ 1

0

Pt (i)Yt (i) di

where (1/Pt)
∫ 1

0
Pt (i)Yt (i) di are real costs and Yt is real total revenue. Because final

good producers are competitive, they take Pt (i) and Pt as given. Because of constant

returns and competition, the size of any one final goods firm is indeterminate. However,
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their input demand is determined by the following cost minimization problem

min
Yt(i)

∫ 1

0

Pt (i)Yt (i) di

s.t

Yt ≤
(∫ 1

0

Yt (i)
ε−1
ε di

) ε
ε−1

The cost minimization yields a demand for intermediate good i that is homogeneous of

degree one in total final output

Yt (i) =

(
Pt (i)

Pt

)−ε
Yt (89)

where ε turns out to be the elasticity of demand.

3.7.2 Intermediate Goods Sector

There is continuum of mass one of monopolistically competitive firms owned by the

households, indexed by i ∈ [0, 1]. Each firm faces a demand curve given by equation

(89). Firms use labor Nt (i) to produce output according to the technology

Yt (i) = ANt (i) (90)

Labor is hired in a competitive market with perfect mobility.

Firms set prices according to Calvo staggered pricing. The probability density of

receiving the signal to change prices after an amount of time h has elapsed is independent

of the last time the firm received the signal and across firms, and given by

δe−δh,

where δ > 0 is the Calvo parameter. Hence, the probability of not having received a

signal between t and τ is

1−
∫ τ

t

δe−δ(s−t)ds = e−δ(τ−t)

≈ 1− δ (τ − t)

Firms that are able to adjust the price choose the price optimally. These firms maximize
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expected real discounted profits subject to their production technology (90), the demand

curve (89) and the constraint on the frequency of price adjustment. Firms that cannot

change their price adjust output to meet demand at the pre-established price. Both

types of firms choose inputs to minimize costs, given output demand.

We characterize first the input choice problem conditional on output. We then char-

acterize the optimal price adjustment and output decisions. We start by deriving input

demand and marginal cost. Firm i chooses Nt (i) to minimize total cost, given by

Wt

Pt
Nt (i) (91)

subject to

ANt (i)− Yt (i) ≥ 0 (92)

where, as mentioned earlier, Wt/Pt is the real wage. Let MCt denote the Lagrange

multiplier with respect to the constraint. Note that MCt is the firm’s real marginal cost

(the derivative of total cost with respect to Yt (i)).

The FOC with respect to Nt (i) is

[Nt (i)] : MCt =
Wt

APt
(93)

Since the firm takes Wt/Pt as given, real marginal cost is constant across firms, a result

of constant returns to scale and perfect factor mobility. Equation (92) with equality

gives labor demand

Nt (i) =
Yt (i)

A
(94)

We next consider optimal price setting. A firm that is allowed to change its price at

time t picks Pt (i) to maximize

Et

∫ ∞
t

SDFs,t
(
δe−δ(s−t)

)(Pt (i)

Ps
Ys|t (i)−MCsYs|t (i)

)
ds (95)

subject to

Ys|t (i) =

(
Pt (i)

Ps

)−ε
Ys (96)

where Ys|t (i) is the demand of good i at time s conditional on having changed prices for

the last time at time t. In the optimal price setting decision, the firm takes as given the
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paths of SDFs,t, Ps, Ys and MCs. Plugging equation (96) into (95) gives

Et

∫ ∞
t

Qs

Qt

(
δe−δ(s−t)

)( Ys
P 1−ε
s

Pt (i)1−ε − YsMCs
P−εs

Pt (i)−ε
)
ds (97)

The FOC with respect to Pt (i) is

[Pt (i)] : Et

∫ ∞
t

Qs

Qt

(
δe−δ(s−t)

)( Ys
P 1−ε
s

(1− ε)P ∗t (i)−ε + ε
YsMCs
P−εs

P ∗t (i)−ε−1
)
ds = 0

or, rearranging,

P ∗t (i)

Pt
=

1

MC

Et
∫∞
t

Qs
Qt
δe−δ(s−t)

(
Pt
Ps

)−ε
Ys
Yt
MCsds

Et
∫∞
t

Qs
Qt
δe−δ(s−t)

(
Pt
Ps

)1−ε
Ys
Yt
ds

(98)

where P ∗t (i) is the optimal desired price and where we have defined

MC ≡
(

1− 1

ε

)
,

which is the steady-state level of the real marginal cost (the inverse of the steady-state

gross markup). We can also write

P ∗t (i) = (1 + µ)Et

∫ ∞
t

Υs,tMCsds

where

Υs,t ≡
Qse

−δsP−εs Ys
Et
∫∞
t
Qse−δsP ε−1

s Ysds

which shows that the optimal price is a weighted average of real marginal costs times

the markup (using that the nominal marginal cost MCn
s = PsMCs, the price is also a

weighted average of nominal marginal costs). Defining

x1,t ≡ Et

∫ ∞
t

Qs

Qt

δe−δ(s−t)
(
Pt
Ps

)1−ε
Ys
Yt
ds

x2,t ≡ Et

∫ ∞
t

Qs

Qt

δe−δ(s−t)
(
Pt
Ps

)−ε
Ys
Yt

MCs
MC

ds
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and

Πt ≡
P ∗t
Pt

we have

Πt =
x2,t
x1,t

and

dx1,t = d

(
Et

∫ ∞
t

Qs

Qt

δe−δ(s−t)
(
Pt
Ps

)1−ε
Ys
Yt
ds

)

= d

(
eδtP 1−ε

t

QtYt

)(
eδtP 1−ε

t

QtYt

)−1
x1,t + δdt (99)

dx2,t = d

(
Et

∫ ∞
t

Qs

Qt

δe−δ(s−t)
(
Pt
Ps

)−ε
Ys
Yt

MCs
MC

ds

)

= d

(
eδtP−εt
QtYt

)(
eδtP−εt
QtYt

)−1
x2,t +

δMCt
MC

dt (100)

Note that we dropped the index i from P ∗t (and hence from Πt) because the optimal

price P ∗t depends only on aggregate variables, so all firms that are allowed to change the

price pick the same optimal price. Since the price changes are stochastically independent

across firms, we have

P 1−ε
t =

∫ t

−∞
δe−δ(t−s) (P ∗s )1−ε ds

It follows that the price level is a predetermined variable at time t given by the past

price quotations. Differentiating with respect to time gives

d
(
P 1−ε
t

)
dt

= δ (P ∗t )1−ε − δ
∫ t

−∞
δe−δ(t−s) (P ∗s )1−ε ds

= δ
[
(P ∗t )1−ε − P 1−ε

t

]
(101)

and
d
(
P 1−ε
t

)
dt

= (1− ε)P−εt
dPt
dt

(102)

Combining (101) and (102) gives

dPt
Pt

=
δ

1− ε
(
Π1−ε
t − 1

)
dt (103)
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Defining inflation as

πt ≡
1

dt

dPt
Pt

we get

πt =
δ

1− ε
(
Π1−ε
t − 1

)
Using that Pt is locally deterministic by equation (103) and Ito’s lemma,equations (99)

and (100) become

dx1,t =
x1,tQtYt
eδt

d

(
eδt

QtYt

)
+ δdt+ (1− ε)x1,tπtdt (104)

dx2,t =
x2,tQtYt
eδt

d

(
eδt

QtYt

)
+
δMCt
MC

dt− εx2,tπtdt (105)

Therefore, the price dynamics are determined by the following four equations

πt =
δ

1− ε
(
Π1−ε
t − 1

)
(106)

Πt =
x2,t
x1,t

(107)

dx1,t = (x1,t + 1) δdt+ (1− ε)x1,tπtdt+ x1,tQtYtd

(
1

QtYt

)
(108)

dx2,t =

(
x2,t +

MCt
MC

)
δdt− εx2,tπtdt+ x2,tQtYtd

(
1

QtYt

)
(109)

where πt , Πt, x1,t and x2,t are all stationary.

Let us next turn to the determination of profits and dividends. The real profits for

the producer of intermediate good producer i is

Dt,goods (i) =
Pt (i)Yt (i)

Pt
−MCtYt (i) (110)

Aggregating across firms gives the aggregate profits for the sector, which are paid out as

dividends to shareholders

Dt,goods =

∫ 1

0

Dt,goods (i) di (111)

=
1

Pt

∫ 1

0

Pt (i)Yt (i) di−MCt

∫ 1

0

Yt (i) di (112)
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3.7.3 Aggregation

Integrating (89) over i gives ∫ 1

0

Yt (i) di = vtYt

where

vt ≡
∫ 1

0

(
Pt (i)

Pt

)−ε
di.

so

Yt 6=
∫ 1

0

Yt (i) di

unless all prices are identical across firms.

Itegrating (94) over i gives

Yt =
A

vt
Nt (113)

The term 1/vt gives the aggregate efficiency loss due to price distortions.

Because of Calvo pricing, we have

vt =

∫ t

−∞
δe−δ(t−s)

(
P ∗s
Pt

)−ε
ds

where recall that P ∗s is the optimal price chosen by firms that can reset their price at time

s given that the last time they were able to change their price was at t. Differentiating

this expression gives the dynamics of vt in terms of aggregate variables

dvt = d

[∫ t

−∞
δe−δ(t−s)

(
P ∗s
Pt

)−ε
ds

]

= d

[
e−δtP ε

t

∫ t

−∞
δeδsP ∗−εs ds

]
= d

[
e−δtP ε

t

] ∫ t

−∞
δeδsP ∗−εs ds+ e−δtP ε

t d

[∫ t

−∞
δeδsP ∗−εs ds

]
=

(
ε
dPt
Pt
− δdt

)∫ t

−∞
δe−δ(t−s)

(
P ∗s
Pt

)−ε
ds+ δ

(
P ∗t
Pt

)−ε
dt

so that

dvt = δΠ−εt dt+ (επt − δ) vtdt (114)
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We can also express equation (112) in terms of aggregate variables only

Dt,goods =
1

Pt

∫ 1

0

Pt (i)Yt (i) di−MCt

∫ 1

0

Yt (i) di (115)

= (1−MCtvt)Yt. (116)

4 Equilibrium

An equilibrium is a collection

E = {Ct, Ct (i) , Yt, Yt (i) , Nt, Ft, ωt,Wt, Pt, Qt, Dt, θt, Xt, δt, St, ηt, σt, Rt}t≥0 (117)

such that households, firms and banks optimize, and markets for labor, intermediate

goods, the final good and all financial assets clear. We now collect the first-order condi-

tions and market clearing conditions that determine an equilibrium, and then combine

them to have an explicit characterization of the equilibrium.

Household optimization gives

Labor supply: Nt =

(
Wt

Pt
C−γt

) 1
ξ

(118)

Intertemporal consumption: Qt = e−βtC−γt (119)

Budget constraint: Ft = Et

[∫ ∞
t

Qs

Qt

(
Cs −

Ws

Ps
Ns

)
ds

]
(120)

Demand for financial assets:
dFt
Ft

=

(
Rt + ωtµt −

Ct
Ft

+
Wt

Pt

Nt

Ft

)
dt+ ωtσtdZt (121)

(122)

Optimization for the final good produer gives

Demand of intermediate goods:Yt (i) =

(
Pt (i)

Pt

)−ε
Yt (123)

Supply of final goods:Yt =

(∫ 1

0

Yt (i)
ε−1
ε di

) ε
ε−1

(124)
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Intermediate good producers’ optimization for inputs of prodcution is characterized by

Labor demand: Nt (i) =
Yt (i)

A
(125)

Supply of goods: Yt (i) = ANt (i) (126)

Profits/Dividends: Dgoods,t (i) =
Pt (i)Yt (i)

Pt
−MCtYt (i) (127)

where we recall that MCt = Wt/APt. Intermediate good producers’ price setting decision

is given by

πt =
ϑ

1− ε
(
Π1−ε
t − 1

)
(128)

Πt =
x2,t
x1,t

(129)

dx1,t = (x1,t + 1)ϑdt+ (1− ε)x1,tπtdt+ x1,tQtYtd

(
1

QtYt

)
(130)

dx2,t =

(
x2,t +

MCt
MC

)
ϑdt− εx2,tπtdt+ x2,tQtYtd

(
1

QtYt

)
(131)

Optimization for banks is given by

Dividends: δt = u (t,min {1, ϕt}) fM,t1{ϕt>0} +

(
Rt +

1

τ
V aR

)
1{ϕt≤0}

(132)

Optimal portfolio: θt = min {1,max {0, ϕt}} θM,t (133)

Wealth accumulation:
dXt

Xt

= (Rt − δt + θtµt) dt+ θtσtdZt (134)

where

fM,t = β (135)

θM,t = (σt)
−1 (ηt −mt) (136)

are the dividends and portfolio positions of an unconstrained but otherwise identical
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bank, and ϕt is such that the V aR constraint holds with equality

ϕt = 1 +
N−1 (α)√
τ |ηt −mt|

±

√
2 (Rt − δt) τ + 2V aR + |ηt −mt|2 τ 2

(
1 +

N−1 (α)√
τ |ηt −mt|

)2

(137)

Market clearing for labor and goods are

Intermediate goods:

(
Pt (i)

Pt

)−ε
Yt = ANt (i) (138)

Final goods: Ct = Yt (139)

Labor:

(
Wt

Pt
C−γt

) 1
ξ

=
Yt (i)

A
(140)

and market clearing for financial assets are

Banks’ stock:
Ftωbanks,t
Sbanks,t

+
Xtθbanks,t
Sbanks,t

= 1 (141)

Good producers’ stock:
Xtθgoods,t
Sgoods,t

= 1 (142)

Bond:
Ftω0,t

S0,t

+
Xtθ0,t
S0,t

= 0 (143)

Since banks must hold the entire stock of good producers, ϕt > 0. Aggregation of output

gives ∫ 1

0

Yt (i) di = vtYt = ANt

where

dvt = ϑΠ−εt dt+ (επt − ϑ) vtdt (144)

Aggregation of dividends across good producers gives

Dgoods,t = (1−MCtvt)Yt

Finally, the central bank sets nominal interest it, which are linked to real interest rates

and inflation by it = Rt + πt.
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4.1 Equilibrium characterization

Combining labor demand, labor supply and clearing of labor markets gives real wages

and labor

Wt

Pt
=

(vt
A

)ξ
Y ξ+γ
t (145)

Nt =
vtYt
A

(146)

Equations (145) and (146) in turn imply that

MCt =
1

A

(vt
A

)ξ
Y ξ+γ
t (147)

Dgoods,t =

(
1−

(vt
A

)1+ξ
Y ξ+γ
t

)
Yt (148)

Defining the natural rate of output Y n
t , the natural rate of interes, rt, and the output

gap yt, as

Y n
t ≡ v

− ξ
ξ+γ

t A
1+ξ
ξ+γMC

1
ξ+γ

yt ≡ log Yt − log Y n
t

rt ≡ β − ϕσ

ϕ+ σ

Et [d log vt]

dt

equations (85), (119) and (139) give the dynamic IS equation

dyt =
1

γ

(
Rt − rt +

1

2
η2t

)
dt+

ηt
γ
dZt (149)

Because the household and the bank trade in complete markets, their SPD must agree,

e−βtY −γt =
e−βteζt

λbcXt

(
2

δt
− 1

β

)
Taking derivatives,

−γd log Yt = dζt − d logXt + d log

(
2

δt
− 1

β

)
(150)
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Matching drift and stochastic parts of the left and right-hand sides of (150) gives

dδt =

(
δt − β +

1

2

(
η2t −m2

t

)
− θtµt +

1

2
(θtσt)

2

)(
2 (2β − δt)

β

)
dt

+ (ηt −mt − θtσt)2
(

1

2
−
δt
(
12β2 − δ2t − 2βδt

)
16β3

)
dt

+ (ηt −mt − θtσt)
(

2β − δt
2β

)
dZt (151)

Using Ito’s lemma, equations (132), (137) and (151) give

dϕt = G (ϕt, Rt) dt+ S (ϕt, Rt) dZt (152)

for two functions G, S. Any three of the four equations (132), (137), (151), (152)

characterize the optimal decision of the banks.

Using the definition of vulnerability in equation (5) and the dynamic IS in equation

(156), we obtain

Vt = −1

γ

(
Rt − rt +

1

2
η2t

)
τ −N−1 (α)

ηt
γ

√
τ (153)

Solving (153) for Rt gives

Rt (Vt, ηt) = −1

2
η2t −

N−1 (α)√
τ

ηt −
γVt
τ

+ rt (154)

Assuming10 ηt −mt > 0, plugging (154) into (137) and using (132), we can solve for ηt

as a function of ϕt, mt and Vt

ηt = η (ϕt,mt, Vt) (155)

10We later linearize the model around a steady-state with ηt −mt > 0 so that small perturbations
always preserve the sign of ηt−mt. With that in mind, we simplify at this point by assuming ηt−mt >
0 to simplify exposition. Solving the non-linear version of the model allowing for ηt − mt < 0 is
straightforward.
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where the function η is given by

η (ϕt,mt, Vt) = − 1

2A

(
B −

√
−4AC +B2

)
A = −1

2
τ (ϕt − 1)2

B = τϕ2
tmt + (−2τ)ϕtmt +

(
N
√
τ − 1

N
βτ

3
2

)
ϕt − τ

(
N√
τ
− 1

N
β
√
τ

)
C = V aR +

(
−1

2
τ

)
ϕ2
tm

2
t + τϕtm

2
t +

(
1

N
βτ

3
2 −N

√
τ

)
ϕtmt

+

(
− 1

N
βτ

3
2

)
mt + (−γ)Vt + τ (rt − β)

The characterization of the equilibrium is then given by the following equations:

dyt =
1

γ

(
it − πt − rt +

1

2
η2t

)
dt+

ηt
γ
dZt (156)

dπt
dt

= ((1− ε) πt + ϑ)

[(
ε

ε− 1

Y ξ+γ
t

A

(vt
A

)ξ (1− ε
ϑ

πt + 1

) 1
ε−1

− 1

)
ϑe1,t

]
(157)

− ((1− ε)πt + ϑ) πt (158)

dϕt = Gϕ (ϕt, Rt) dt+ Sϕ (ϕt, Rt) dZt (159)

it = f (yt, πt, ϕt) (160)

ηt = η (ϕt,mt, Vt) (161)

Vt = −αV
[
dyt
dt
|Ft
]√

τ − E
[
dyt
dt
|Ft
]
τ (162)

Equation (156) is the dynamic IS equation, the demand block of the model. Equation

(158) gives inflation dynamics, the supply side of the model. The inflation dynamics

depend on the present discounted value of nominal output for firms that can reset their

price, x1,t, with dynamics given by e1,t ≡ x−11,t

de1,t
e1,t

= −
[
(1 + e1,t)ϑ+ (1− ε) πt + β +

(γ − 1)

2γ2
η2t +

(γ − 1)

γ
(Rt − β)

]
dt (163)

−(γ − 1) ηt
γ

dZt (164)

Inflation dynamics also depend on and the output losses due to inefficient price disper-
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sion, vt , with dynamics

dvt = ϑ

(
1− ε
ϑ

πt + 1

)− ε
1−ε

dt+ (επt − ϑ) vtdt (165)

Equation (159) corresponds to the financial sector block of the model and gives the

dynamics of the tightness of the VaR constraint of the bank, ϕt. Equation (160) is the

monetary policy rule for the central bank. Equation (161) connects the household and

bank behavior through the market price of risk, vulnerability and the tightness of the

VaR constraint.

4.2 Deterministic Steady State

Variables without their time subscript denote their values in a deterministic steady state.

In a deterministic steady state, we have

v = 1

P = 1

π = 0

MC = 1− 1

ε

Y = Y n = A
1+ϕ
ϕ+σ

(
1− 1

ε

) 1
ϕ+σ

W

P
= A

(
1− 1

ε

)
N =

Y

A

Dgoods =
1

ε

(
1− 1

ε

) 1
ϕ+σ

A
1+ϕ
ϕ+σ

r = β

R = i = r = β

s = 0

η = 0

δ = β

θ = 0

gV (t, θ, δ) = 0
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4.3 Linearized Version

We linearize η (ϕt, Vt) , η (ϕt, Vt)
2 , Gϕ (ϕt, Rt) , Sϕ (ϕt, Rt) in

dyt =
1

γ

(
Rt − rt +

1

2
η2t

)
dt+

ηt
γ
dZt

dϕt = Gϕ (ϕt, Rt) dt+ Sϕ (ϕt, Rt) dZt

ηt = η (ϕt, Vt)

Vt = V (ηt, Rt)

around the deterministic steady state

ηt = Φ0 + ΦvVt + Φϕϕt + Φmmt

η2t = −η̂2 + 2η̂ (Φ0 + ΦvVt + Φϕϕt + Φmmt)

dϕt = (Υ0 + ΥrRt + Υϕϕt + Υmmt) dt+ (Ψ0 + ΨrRt + Ψϕϕt + Ψmmt) dZt

where η̂ is the point around which η̂ is linearized, i.e. η̂ = η
(
ϕ̂, V̂ , m̂

)
where the Taylor

expansion of η was performed on (ϕt, Vt,mt) around
(
ϕ̂, V̂ , m̂

)
. Also note that to first

order, vt = 1 and thus the natural rate rt is constant at r.

Using the linearizations, we get

dyt =
1

γ

(
Rt − r +

1

2
η2t

)
dt+

ηt
γ
dZt

dϕt = (Υ0 + ΥrRt + Υϕϕt + Υmmt) dt

+ (Ψ0 + ΨrRt + Ψϕϕt + Ψmmt) dZt

ηt = Φ0 + ΦvVt + Φϕϕt + Φmmt

η2t = −η̂2 + 2η̂ (Φ0 + ΦvVt + Φϕϕt + Φmmt)

Vt = V (ηt, Rt)
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Rearrange

dyt =
1

γ

(
Rt − r +

1

2
η2t

)
dt+

ηt
γ
dZt

dyt =
1

γ

(
Rt − r +

1

2

(
−η̂2 + 2η̂Φv

(
Vt +

Φϕ

Φv

ϕt +
Φ0

Φv

+
Φm

Φv

mt

)))
dt

+
1

γ
Φv

(
Vt +

Φϕ

Φv

ϕt +
Φ0

Φv

+
Φm

Φv

mt

)
dZt

dyt =
1

γ

(
Rt − r + η̂Φv

(
Vt +

Φϕ

Φv

ϕt +
Φ0

Φv

+
Φm

Φv

mt −
1

2

η̂2

η̂Φv

))
dt

+
1

γ
Φv

(
Vt +

Φϕ

Φv

ϕt +
Φ0

Φv

+
Φm

Φv

mt

)
dZt

Define

ϕt ≡ −Φϕ

Φv

ϕt

st ≡ −
(

Φ0

Φv

+
Φm

Φv

mt

)
s ≡ −Φ0

Φs

ξ ≡ Φv

γ

α ≡ N−1 (α)

d (rpt) ≡ η̂ξ

(
Vt − χt − st −

1

2

η̂

ξγ

)
dt

+ξ (Vt − χt − st) dZt

and (
−ΦϕΥ0

Φv

)
≡ a0,

(
−ΦϕΥr

Φv

)
≡ ar,

(
−ΦϕΥm

Φv

)
≡ as,Υϕ ≡ aϕ(

−ΦϕΨ0

Φv

)
≡ b0,

(
−ΦϕΨr

Φv

)
≡ br,

(
−ΦϕΨm

Φv

)
≡ bs,Ψϕ ≡ aϕ
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Then we get

dyt =
1

γ
(Rt − r) dt+ d (rpt)

d (rpt) = η̂ξ

(
Vt − ϕt − st −

1

2

η̂

ξγ

)
dt+ ξ (Vt − ϕt − st) dZt

Vt = − 1

dt
E [dyt|Ft] τ − αV [dyt|Ft]

√
τ

dϕt = (a0 + Υϕϕt + arRt + asst) dt+ (b0 + bϕϕt + brRt + bsst) dZt

dst = −κ (st − s) + σsdZt

4.4 No Direct Feedback from Monetary Policy to ϕt

We consider the simpler case of ϕt = 0 and fixed prices. The case with ϕt = 0 corresponds

to monetary policy not affecting the bank’s VaR constraint directly, but only through

general equilibrium (discount rate) effects. We can analyze the case in which ϕt 6= 0 and

a Phillips curve is present in the same way that we analyze the simpler case; the control

problem for monetary policy is still linear-quadratic even in the general case.

Without a Phillips curve and with ϕt = 0, the linearized equilibrium is characterized

by

dyt =
1

γ

(
Rt − r + γη̂ξ

(
Vt − st −

1

2

η̂

ξγ

))
dt+ ξ (Vt − st) dZt (166)

Vt = −Et [dyt] τ − αV [dyt|Ft]
√
τ (167)

dst = −κ (st − s) + σsdZt (168)

so that

Et [dyt] =
1

γ

(
Rt − r + γη̂ξ

(
Vt − st −

1

2

η̂

ξγ

))
V [dyt|Ft] = ξ (Vt − st)

Solve for Rt and Vt in (167) to get

Rt = r − γ

τ

(
ξ
√
τ
(
α +
√
τη
)

+ 1
)
Vt + γξ

(
α√
τ

+ η

)
st +

1

2
η2 (169)
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Plug in (169) into (166) to get

dyt = −α
√
τξ + 1

τ

(
Vt −

α
√
τξ

α
√
τξ + 1

st

)
dt+ ξ (Vt − st) dZt (170)

Use

E [dyt|Ft] = −α
√
τξ + 1

τ

(
Vt −

α
√
τξ

α
√
τξ + 1

st

)
V [dyt|Ft] = ξ (Vt − st)

and then eliminating Vt to get

E [dyt|Ft] = −1 + α
√
τξ

τξ
V [dyt|Ft]−

1

τ
st (171)

We have thus obtained the mean-volatility line of Figure 2. Equation (171) also makes

clear that the shocks st are shifts to vulnerability that shift the mean-volatility line

up and down, while all other changes in the economy involve moving along the mean-

volaitlity line. Empirically, slope is negative and intercept is positive on average

−1 + α
√
τξ

τξ
< 0

−s
τ

> 0

This implies s < 0 and

ξ > 0 and 1 + α
√
τ > 0

or

ξ < 0 and 1 + α
√
τ < 0

To match empirical estimates, we set

α = −1.645
√
τ = 1
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To match the actual slope and intercept

−1 + α
√
τξ

τξ
= −1.15

s = −0.67τ

which gives

ξ = 0.36

s = −0.67

We identify st − s with the residuals of the regression of E [dyt|Ft] on V [dyt|Ft]. The

standard deviation and AR(1) coefficient of these residuals then identify σs and κ, re-

spectively. Since

Std

(
−1

τ
(st − s)

)
= 0.62

AR(1) = 0.12

we get, converting to annualized values

κ = − log (0.12) = 2.12

σs = 0.31

5 Monetary Policy

5.1 Optimal Monetary Policy

The central bank is minimizing a quadratic loss function over the output gap and inflation

L (yt, πt) = min
it

Et
∫ ∞
t

e−tβ
(
y2t + π2

t

)
dt. (172)

subject to the dynamics of the economy (166), (167), (168). Minimizing the quadratic

loss function is a standard approach in the NK literature, as Rotemberg and Wood-

ford (1997), Rotemberg and Woodford (1999) and Woodford (2003) have shown that

aggregate welfare can be approximated by such a loss function.

We focus on the case described in the last section for ease of exposition. The interest
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rate Rt can be eliminated from the optimization problem, so that the central bank’s

problem can be written as

L (yt, st) = min
{Vs}∞s=t

Et
∫ ∞
t

e−sβy2sds (173)

s.t.

Vt =
−γ−1 (Rt − rt) + αξst

√
τ + η̂ξ

(
st + 1

2
η̂
ξγ

)
τ

1 + αξ
√
τ + η̂ξτ

(174)

dyt = −α
√
τξ + 1

τ

(
Vt −

α
√
τξ

α
√
τξ + 1

st

)
dt+ ξ (Vt − st) dZt (175)

dst = −κ (st − s) + σsdZt (176)

The central bank thus effectively picks Vt, which is connected to Rt in a one-to-one

fashion by

Rt = r − γ

τ

(
ξ
√
τ
(
α +
√
τη
)

+ 1
)
Vt + γξ

(
α√
τ

+ η

)
st +

1

2
η2

The Hamilton-Jacobi-Bellman (HJB) equation for the central banker’s optimization

is

0 = min
V

{
y2 − βL− ∂L

∂y

α
√
τξ + 1

τ

(
V − α

√
τξ

α
√
τξ + 1

s

)
+

1

2

∂2L

∂y2
ξ2 (V − s)2

}
−κ (s− s) ∂L

∂s
+

1

2

∂2L

∂s2
σ2
s

Intuitively, the HJB takes into account the current value of welfare, as well as the change

in welfare associated with changes in the state variables y and s.

The first order condition is

0 = −∂L
∂y

α
√
τξ + 1

τ
+
∂2L

∂y2
ξ2 (V − s) (177)

V =
∂L

∂y

α
√
τξ + 1

τξ2

(
∂2L

∂y2

)−1
+ s (178)

Hence at the optimum, vulnerability is proportional to s, and depends on the first and

second derivative of welfare with respect to output. It is also noteworthy that α
√
τξ+1

τξ2
,

which defines the slope of output volatility with respect to expected output, appears in

the FOC.
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We look for a quadratic solution of the form

L (y, x) = c0 + c1y + c2y
2 + c3s+ c4s

2 + c5ys

where c· are constants.

Plugging into the HJB, and using

∂L

∂y
= c1 + 2c2y + c5s

∂2L

∂y2
= 2c2

∂L

∂s
= c3 + 2c4s+ c5y

∂2L

∂s2
= 2c4

we get the following system of equations on the coefficients c0, ..., c5

[
y2
]

: 0 =

(
−β − 1

τ 2ξ2
(
α
√
τξ + 1

)2)
c2 + 1

[ys] : 0 =

(
−2

τ

)
c2 +

(
− 1

τ 2ξ2
(
2α
√
τξ + α2τξ2 + βτ 2ξ2 + 1

))
c5

[y] : 0 = − 1

τ 2ξ2
c1
(
2α
√
τξ + α2τξ2 + βτ 2ξ2 + 1

)
[
s2
]

: 0 = − 1

4τ 2ξ2c2

(
c25
(
2α
√
τξ + α2τξ2 + 1

)
+ 4τξ2c2c5 + 4βτ 2ξ2c2c4

)
[s] : 0 = − 1

2τ 2ξ2c2

(
c1c5

(
2α
√
τξ + α2τξ2 + 1

)
+ 2τξ2c1c2 + 2βτ 2ξ2c2c3

)
[const] : 0 = − 1

4τ 2ξ2c2

(
c21
(
2α
√
τξ + α2τξ2 + 1

)
+ 4βτ 2ξ2c0c2 − 4τ 2ξ2σ2

sc2c4
)
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with solution

c0 =
τ 2ξ4σ2

s

(
(α
√
τξ + 1)

2
+ 2βτ 2ξ2

)
β2
(

(α
√
τξ + 1)

2
+ βτ 2ξ2

)3 > 0

c1 = 0

c2 =
τ 2ξ2

τ 2ξ2β + (α
√
τξ + 1)

2 > 0

c3 = 0

c4 =
ξ4τ 2

(
(α
√
τξ + 1)

2
+ 2βτ 2ξ2

)
β
(

(α
√
τξ + 1)

2
+ βτ 2ξ2

)3 > 0

c5 = − 2τ 3ξ4(
(α
√
τξ + 1)

2
+ βτ 2ξ2

)2 < 0

To pick the optimal initial conditions, we minimize L with respect to y0 taking s0 as

given

L (y0, s0) = c0 + c1y0 + c2y
2
0 + c3s0 + c4s

2
0 + c5y0s0

FOC :
∂L

∂y0
= 0

SOC :
∂2L

∂y20
> 0

The FOC and SOC can be solved to get

y∗0 = −
(
c1
2c2

+
c5
2c2

s0

)
=

τξ2s0

(α
√
τξ + 1)

2
+ βτ 2ξ2

c2 > 0

The optimal policy in terms of Vt is given by plugging in the optimal solution into

the FOC in equation (177):

V =
(α
√
τξ + 1)

τξ2
y +

(
1− (α

√
τξ + 1)

(α
√
τξ + 1)

2
+ βτ 2ξ2

)
s (179)
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This can be viewed as a “flexible inflation targeting rule” (see Svensson (1999), Svens-

son (2002) and Rudebusch and Svensson (1999)) or, more generally, as a linear optimal

targeting criterion (Giannoni and Woodford (2012)). Even though vulnerability and its

shocks, Vt and st, are not target variables, i.e., they do not appear in the loss function

equation (172), they still enter the inflation targeting rule, the first-order condition given

by equation (179). There are no independent target values for Vt and st that the central

bank hopes to achieve. The reason Vt and st enter the targeting rule is that they fore-

cast the conditional mean and variance of yt even after controlling for the information

already contained in the mean of yt itself (more generally, in the means of yt and πt

when a Phillips Curve is included). This is consistent with the empirical results in Table

1 and with the findings in Adrian, Boyarchenko, and Giannone (2016), who show that

financial conditions are excellent predictors of the tail of the GDP distribution in a way

that non-financial variables are not. Alternatively, equation (179) can be interpreted

as a traditional flexible inflation targeting rule in which the targets for inflation and/or

output are time-varying and depend on Vt and st. It also important to note that even

if a central bank decided not to condition its actions on Vt and st, the tradeoff between

inflation and output –reflected in the coefficients of the rule in equation (179)– now de-

pends on γ and ξ, the parameters that dictate the strength of the mean-variance tradeoff

of output.

Using the optimal solution in the process for the output gap in equation (175), we

then find that

dyt = −α
√
τξ + 1

τ

(
Vt −

α
√
τξ

α
√
τξ + 1

st

)
dt+ ξ (Vt − st) dZt

= −

(
(α
√
τξ + 1)

2

τ 2ξ2
yt +

βτξ2

(α
√
τξ + 1)

2
+ βτ 2ξ2

st

)
dt

+

(
(α
√
τξ + 1)

τξ
yt −

ξ (α
√
τξ + 1)

(α
√
τξ + 1)

2
+ βτ 2ξ2

st

)
dZt

Recalling that

E [dyt|Ft] = −1 + α
√
τξ

τξ
V [dyt|Ft]−

1

τ
st (180)

And defining the slope as

M ≡ −1 + α
√
τξ

τξ
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we get

V = −M
ξ
y +

(
1 +

M

τξ (M2 + β)

)
s

and

dyt = −
(
M2 × yt +

β/τ

M2 + β
× st

)
dt−

(
M × yt −

M/τ

M2 + β
× st

)
dZt (181)

The last equation makes clear that the magnitude of the tradeoff between stabilizing

the mean and variance of the output gap is given by the slope M of the mean-volatility

line in Figure 2.

We can also express monetary policy as an interest rate rule. Using the FOC for V ,

the optimal interest rate is

Rt = r − γ

τ

(
ξ
√
τ
(
α +
√
τη
)

+ 1
)
Vt + γξ

(
α√
τ

+ η

)
st +

1

2
η2

= r +
1

2
η2 − γξ

(
α√
τ

+
1

τ
+ η

)
Vt + γξ

(
α√
τ

+ η

)
st

= γM

(
η +

α√
τ

)
M2 + β

β +M2 +M/τξ
yt − γξ

((
η +

α√
τ

)
M/τξ

β +M2 +M/τξ
+

1

τ

)
Vt

+

(
1

2
η2 + r

)
The optimal interest rule can thus be viewed as an augmented Taylor rule. In addition

to the output gap y and the equilibrium rate of interest r (and inflation πt in the

more general case), the level of vulnerability V enters the optimal rule. As before, the

coefficients on y (and π in the more general case) depend on the parameters that define

vulnerability ξ and γ and thus monetary policy is different from the typical NK model

without vulnerabilities not only because vulnerability enters the augmented Taylor rule

directly, but also because the presence of vulnerabilities alter the optimal response of

interest rates to changes in output and inflation.

5.2 Alternative Monetary Policy Rules

In general, the central bank might follow other monetary policy rules. We consider

alternative linear rules that do not explicitly condition on vulnerability or its shocks:

it = ψ0 + ψyyt (182)
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We show that even after picking the coefficients ψ0, ψy in an optimal way, the rule

in equation (182) implies quantitatively large welfare losses compared to the optimal

monetary policy found in the last section. To find the coefficients ψ0, ψy that minimize

welfare losses, we solve

min
(ψ0,ψy)

L (y0, s0) (183)

s.t.

dyt =
1

γ

(
it − r + γη̂ξ

(
Vt − st −

1

2

η̂

ξγ

))
dt+ ξ (Vt − st) dZt (184)

it = ψ0 + ψyyt (185)

Vt = −Et [dyt] τ − αV [dyt|Ft]
√
τ (186)

dst = −κ (st − s) + σsdZt (187)

Figure 4 shows the steady-state distribution of the output gap yt using the optimal

policy rule that explicitly takes vulnerability into account (using equation (181)), and the

Taylor-type rule that does not condition on vulnerability Vt, given by equation (182) with

coefficients found by solving (183)-(187). Intuitively, shocks to vulnerability s contain

information about the conditional distribution of the output gap that the policy maker

should take into account in setting optimal policy. For a given level of the output gap,

a higher vulnerability –a larger VaR of output– calls for higher interest rates. Higher

interest rates induce the private sector to save more and consume less, thus shifting the

conditional future distribution of yt upwards by shifting its conditional mean upwards.

Given the link between the expected mean and the expected volatility of output induced

by the presence of vulnerability, a higher conditional mean induces a lower volatility of

yt. Together, higher mean and lower volatility mean lower vulnerability – lower VaR for

output. For the suboptimal Taylor rule that ignores vulnerability, interest rates remain

unchanged when, for a given level of yt, Vt changes. Compared to the optimal rule,

when Vt increases but it remains unchanged, the conditional mean of output is lower

and its conditional volatility is higher. Over time, more frequent visit to states of lower

mean and higher volatility create an unconditional distribution that is more negatively

skewed. When instead Vt decreases, the optimal rule and the suboptimal Taylor rule

produce similar right tails for the unconditional distribution of output. The reason is

that lower Vt induces both higher mean and lower volatility of output. Therefore, even

though the changes in mean and volatility of yt are different for the two different rules,
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the actual differences in outcomes for yt are small because the lower volatility minimizes

all fluctuations.

Figure 4: Probability Density Functions of the Output under the Optimal Policy Rule and
a Standard Taylor Rule. The figure shows the PDFs using the optimal policy rule and the standard
Taylor rule. The standard Taylor rule coefficients are calculated for the economy assuming that the
policy maker is ignoring the presence of financial vulnerability.
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6 Conclusion

The degree to which financial stability considerations should be incorporated in the con-

duct of monetary policy has long been debated, see Adrian and Liang (2016) for an

overview. In this paper, we extend the basic, two equation New Keynesian model to

incorporate a notion of financial vulnerability. Shocks to risk premia impact aggregate

demand via the Euler equation. The shocks to risk premia are assumed to impact the

volatility of output, which is motivated from the empirical observation by Adrian, Bo-

yarchenko, and Giannone (2016) that financial conditions forecast both the mean and

the volatility of output. Importantly, our framework reproduces the stylized fact that

the conditional mean and the conditional volatility of output are strongly negatively
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correlated, giving rise to a sharply negatively skewed unconditional output distribution.

Vulnerability thus captures movements in the conditional GDP distribution that corre-

spond to the downside risk of growth.

We further assume that the central bank minimizes the expected discounted sum of

squared output gaps and squared inflation, which is standard in the literature. This

is therefore a central bank that is subject to a dual mandate, without an independent

financial stability objective. Despite that narrow objective function, the optimal flexible

inflation targeting rule conditions on the level of vulnerability. Intuitively, all variables

that provide information about the conditional distribution of GDP should be taken into

account in setting optimal monetary policy. This translates into an augmented Taylor

rule, where financial vulnerability—as measured by output gap tailrisk as a function of

financial variables—is an input into the Taylor rule. Furthermore, the magnitude of

the Taylor rule coefficients on output gap and inflation depend on the parameters that

determine vulnerability.

The striking result from our setup is that the central bank should always condition

monetary policy on financial vulnerability. Relative to earlier literature that has made

similar arguments (e.g. Curdia and Woodford (2010), Cúrdia and Woodford (2016) and

Gambacorta and Signoretti (2014), our modeling approach is deeply rooted in empirical

observations which capture macoreconomic shocks of the 2008 crisis very well. Through

the negative correlation between conditional mean and conditional variance, our setup

captures nonlinearity in macro dynamics in a tractable linear-quadratic setting. The im-

plications of our results for the conduct of monetary policy are in line with the arguments

or Adrian and Shin (2010) and Borio and Zhu (2012).
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A Reformulating the Bank’s Problem

Log utility allows us to transform the bank’s optimization problem into a non-stochastic
problem. Indeed,

logXt = logX0 +

∫ t

0

Q (s, θs, fs, νs) ds+

∫ t

0

θTs σsdB
ν
s

Consider the following∫ ∞
0

e−βt log (ftXt) dt (188)

=

∫ ∞
0

e−βt log (Xt) dt+

∫ ∞
0

e−βt log (ft) dt

=

∫ ∞
0

e−βt log (X0) dt+

∫ ∞
0

e−βt
{∫ t

0

Q (s, θs, fs, νs) ds+

∫ t

0

θTs σsdB
ν
s

}
dt

+

∫ ∞
0

e−βt log (ft) dt

= log (X0)

∫ ∞
0

e−βtdt+

∫ ∞
0

e−βt log (ft) dt+

∫ ∞
0

∫ t

0

e−βtQ (s, θs, fs, νs) dsdt

+

∫ ∞
0

∫ t

0

e−βtθTs σsdB
ν
s dt (189)

= log (X0)

∫ ∞
0

e−βtdt+

∫ ∞
0

e−βt log (ft) dt+

∫ ∞
0

∫ ∞
s

e−βtQ (s, θs, fs, νs) dtds

+

∫ ∞
0

∫ t

0

e−βtθTs σsdB
ν
s dt (190)

= log (X0)

∫ ∞
0

e−βtdt+

∫ ∞
0

e−βt log (ft) dt+

∫ ∞
0

Q (s, θs, fs, νs)

[∫ ∞
s

e−βtdt

]
ds

+

∫ ∞
0

∫ t

0

e−βtθTs σsdB
ν
s dt (191)

where the change in the order of integration follows from Fubini’s theorem. We assume
all the usual regularity conditions. In particular, we will need that∫ ∞

0

∥∥σ−1t µt
∥∥2 dt <∞ (192)

Under the regularity condition in equation the stochastic part of the bank’s objective
function is a martingale and not just a local martingale, so

Ebank
0

∫ ∞
0

∫ t

0

e−βtθTs σsdB
ν
s dt = 0
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Therefore, taking expectations in (191) gives

Ebank
0

∫ ∞
0

e−βt log (ftXt) dt = log (X0)

∫ ∞
0

e−βtdt+ Ebank
0

∫ ∞
0

e−βt log (ft) dt

+Ebank
0

∫ ∞
0

Q (s, θs, fs, νs)

[∫ ∞
s

e−βtdt

]
ds

Ebank
0

∫ ∞
0

e−βt log (ftXt) dt =
log (X0)

β
+ E0

∫ ∞
0

e−βt log (ft) dt

+
1

β
E0

∫ ∞
0

Q (s, θs, fs, νs) e
−βsds

=
log (X0)

β
+ E0

∫ ∞
0

e−βt
(

log (ft) +
1

β
Q (t, θt, ft, νt)

)
dt

B Appendix: Finding the Lagrange Multiplier for

the VaR

We first compute some derivatives

θTt µt =
∑
j

θj,tµj,t

∂
(
θTt µt

)
∂θj,t

=
∂

∂θj,t

M∑
k=1

θk,tµk,t = µj,t

θTt σt =
[ ∑M

k=1 θk,tσk1,t
∑M

k=1 θk,tσk2,t ...
∑M

k=1 θk,tσkN,t
]

∥∥θTt σt∥∥2 =
N∑
n=1

(
M∑
k=1

θk,tσkn,t

)2

∂

∂θj,t

∥∥θTt σt∥∥2 = 2θTt σtσ
(j)
t =

[ ∑M
k=1 θk,tσk1,t

∑M
k=1 θk,tσk2,t ...

∑
k θk,tσkN,t

]

σj1,t
σj2,t

...
σjN,t


where σ

(j)
t is the jth column of σTt . Putting all the vectors together, we can write

∂
(
θTt µt

)
∂θt

= µt

∂

∂θt

∥∥θTt σt∥∥2 = 2σtσ
T
t θt
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The derivative of
∥∥θTt σt∥∥ now follows from

∂

∂θt

∥∥θTt σt∥∥2 = 2
∥∥θTt σt∥∥

(
∂
∥∥θTt σt∥∥
∂θt

)
= 2σtσ

T
t θt

=⇒
∂
∥∥θTt σt∥∥
∂θt

=
σtσ

T
t θt∥∥θTt σt∥∥

Using the above computations and the definitions

Q (t, θt, ft) ≡ Rt − ft + θTt µt −
1

2

∥∥θTt σt∥∥2
gV (t, θt, ft) ≡ −Q (t, θt, ft) τ −N−1 (α)

∥∥θTt σt∥∥√τ
h (t, θt, ft, ζt) ≡ e−βteζt log (ft) +

[∫ ∞
t

e−βsEt
[
eζs
]
ds

]
Q (t, θt, ft)

= e−βteζt log (ft) +
e−βteζt

β
Q (t, θt, ft)

we get

∂

∂θt
Q (t, θt, ft) = µt − σtσTt θt

∂

∂ft
Q (t, θt, ft) = −1

∇ftgV (t, θt, ft) = τ

∇θtgV (t, θt, ft) = −
(
µt − σtσTt θt

)
τ −N−1 (α)

σtσ
T
t θt∥∥θTt σt∥∥√τ

∇θth (t, θt, ft, ζt) =
e−βteζt

β

(
µt − σtσTt θt

)
∇fth (t, θt, ft, ζt) =

e−βteζt

ft
− e−βteζt

β

The FOC is
∇h (t, θt, ft, ζt) = λV aR∇gV (t, θt, ft)

i.e.

∇θth (t, θt, ft, ζt) = λV aR∇θtgV (t, θt, ft)

∇fth (t, θt, ft, ζt) = λV aR∇ftgV (t, θt, ft)
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Using the computations above,

∇θth (t, θt, ft, ζt) = λV aR∇θtgV (t, θt, ft)

e−βteζt

β

(
µt − σtσTt θt

)
= λV aR

(
−
(
µt − σtσTt θt

)
τ −N−1 (α)

σtσ
T
t θt∥∥θTt σt∥∥√τ

)

∇fth (t, θt, ft, ζt) = λV aR∇ftgV (t, θt, ft)

e−βteζt

ft
− e−βteζt

β
= τλV aR

So we have

λV aR =
e−βteζt

τ

(
1

ft
− 1

β

)
Now we solve

min l (λ1, λ2)

s.t.

gV (t, λ1θt,M , λ2ft,M) = log
1

1− aV
l (λ1, λ2) ≡ h (t, λ1θt,M , λ2ft,M , ζt)

∇λ1l (λ1, λ1) = γ∇λ1gV (t, λ1θt,M , λ2ft,M)

∇λ2l (λ1, λ1) = γ∇λ2gV (t, λ1θt,M , λ2ft,M)

∇λ1l (λ1, λ2) =
∂

∂λ1
h (t, λ1θt,M , λ2ft,M , ζt)

=
∂

∂λ1

(
e−βteζt log (λ2ft,M) +

[∫ ∞
t

e−βsEt
[
eζs
]
ds

]
Q (t, λ1θt,M , λ2ft,M)

)
=

e−βteζt

β

∂

∂λ1
Q (t, λ1θt,M , λ2ft,M)

=
e−βteζt

β

∂

∂λ1

(
Rt − λ2ft,M + (λ1θt,M)T µt −

1

2

∥∥∥(λ1θt,M)T σt

∥∥∥2)
=

e−βteζt

β

(
(θt,M)T µt − λ1

∥∥∥(θt,M)T σt

∥∥∥2)
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∇λ2l (λ1, λ2) =
∂

∂λ2
h (t, λ1θt,M , λ2ft,M , ζt)

=
∂

∂λ2

(
e−βteζt log (λ2ft,M) +

[∫ ∞
t

e−βsEt
[
eζs
]
ds

]
Q (t, λ1θt,M , λ2ft,M)

)
= e−βteζt

1

λ2
+
e−βteζt

β

∂

∂λ2
Q (t, λ1θt,M , λ2ft,M)

= e−βteζt
1

λ2
− e−βteζt

β
ft,M

∇λ1gV (t, λ1θt,M , λ2ft,M) =
∂

∂λ1

(
−Q (t, λ1θt,M , λ2ft,M) τ −N−1 (α)

∥∥∥(λ1θt,M)T σt

∥∥∥√τ)
=

∂

∂λ1

 −
(
Rt − λ2ft,M + (λ1θt,M)T µt − 1

2

∥∥∥(λ1θt,M)T σt

∥∥∥2) τ
−N−1 (α)

∥∥∥(λ1θt,M)T σt

∥∥∥√τ


= −
(

(θt,M)T µt − λ1
∥∥∥(θt,M)T σt

∥∥∥2) τ −N−1 (α)
∥∥∥(θt,M)T σt

∥∥∥√τ
∇λ2gV (t, λ1θt,M , λ2ft,M) =

∂

∂λ2

(
−Q (t, λ1θt,M , λ2ft,M) τ −N−1 (α)

∥∥∥(λ1θt,M)T σt

∥∥∥√τ)
=

∂

∂λ2

 −
(
Rt − λ2ft,M + (λ1θt,M)T µt − 1

2

∥∥∥(λ1θt,M)T σt

∥∥∥2) τ
−N−1 (α)

∥∥∥(λ1θt,M)T σt

∥∥∥√τ


= ft,Mτ −N−1 (α)
∥∥∥(θt,M)T σt

∥∥∥√τ
∇λ1l (λ1, λ1) = γ∇λ1gV (t, λ1θt,M , λ2ft,M)

∇λ2l (λ1, λ1) = γ∇λ2gV (t, λ1θt,M , λ2ft,M)

become

e−βteζt

β

(
(θt,M)T µt − λ1

∥∥∥(θt,M)T σt

∥∥∥2) = −γ


(

(θt,M)T µt − λ1
∥∥∥(θt,M)T σt

∥∥∥2) τ
+N−1 (α)

∥∥∥(θt,M)T σt

∥∥∥√τ


e−βteζt
1

λ2
− e−βteζt

β
ft,M = γ

(
ft,Mτ −N−1 (α)

∥∥∥(θt,M)T σt

∥∥∥√τ)
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(
ft,Mτ −N−1 (α)

∥∥∥(θt,M)T σt

∥∥∥√τ)
β

(
(θt,M)T µt − λ1

∥∥∥(θt,M)T σt

∥∥∥2)
=

(
ft,M
β
− 1

λ2

)((
(θt,M)T µt − λ1

∥∥∥(θt,M)T σt

∥∥∥2) τ +N−1 (α)
∥∥∥(θt,M)T σt

∥∥∥√τ)

γ =
e−βteζt(

ft,Mτ −N−1 (α)
∥∥∥(θt,M)T σt

∥∥∥√τ)
(

1

λ2
− ft,M

β

)

C Appendix: Solving the Banks’ Problem

First, assume that θt 6= 0 so that gV (t, θt, ft, νt) is differentiable. Set up the Lagrangian

L = h (t, θt, ft, νt)− λ
(
gV (t, θt, ft, νt)− log

1

1− aV

)
Direct computation (Appendix B) shows that ∇gV (t, θt, ft, νt) 6= 0. Thus, λ 6= 0 and
the FOC is

∇h (t, θt, ft, νt) = λ∇gV (t, θt, ft, νt) (193)

We compute

∇θth =
1

β

(
µt − σtνt − σtσTt θt

)
∇θtgV = −

(
µt − σtνt − σtσTt θt

)
τ −N−1 (α)

σtσ
T
t θt∥∥θTt σt∥∥√τ

∇fth =
1

ft
− 1

β
∇ftgV = τ

so that the FOC become

∇θth (t, θt, ft, νt) = λ∇θtgV (t, θt, ft, νt)

1

β

(
µt − σtνt − σtσTt θt

)
= λ

(
−
(
µt − σtνt − σtσTt θt

)
τ

−N−1 (α)
σtσTt θt

‖θTt σt‖
√
τ

)

(1 + βτλV aR) (µt − σtνt) =

(
1 +

(
τ −
√
τN−1 (α)∥∥θTt σt∥∥

)
βλV aR

)
σtσ

T
t θt
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and

∇fth (t, θt, ft, νt) = λ∇ftgV (t, θt, ft, νt)

1

ft
− 1

β
= λτ

ft =
β

βλτ + 1

Writing

θM,t =
(
σTt
)−1

σ−1t (µt − σtνt)

we see that θt is parallel to θM,t so all we need is to find λ1, λ2 that solve

max
λ1,λ2

h (t, λ1θM,t, λ2fM,t, νt)

s.t.

gV (t, λ1θM,t, λ2fM,t, νt) ≤ log
1

1− aV

Again, it can be checked that the constraint holds with equality. The Lagrangian is

L = h (t, λ1θM,t, λ2fM,t, νt)− γ
(
gV (t, λ1θM,t, λ2fM,t, νt)− log

1

1− aV

)
The FOC are

∂

∂λ1
h (t, λ1θM,t, λ2fM,t, νt) = γ

∂

∂λ1
gV (t, λ1θM,t, λ2fM,t, νt)

∂

∂λ2
h (t, λ1θM,t, λ2fM,t, νt) = γ

∂

∂λ2
gV (t, λ1θM,t, λ2fM,t, νt)

Computing the derivatives gives

∂

∂λ1
h (t, λ1θM,t, λ2fM,t, νt) = γ

∂

∂λ1
gV (t, θ, f, ν)

1

β

(
θTM,t (µt − σtνt)− λ1

∥∥θTM,tσt
∥∥2)

= γ
(
−
(
θTM,t (µt − σtνt)− λ1

∥∥θTM,tσt
∥∥2) τ −N−1 (α)

∥∥θTM,tσt
∥∥√τ)

and

∂

∂λ2
h (t, λ1θM,t, λ2fM,t, νt) = γ

∂

∂λ2
gV (t, θ, f, ν)

1

λ2
− fM,t

β
= γfM,tτ
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Eliminating γ and using

θTM,tσt =
((
σ−1t
)

(µt − σtνt)
)T∥∥θTM,tσt

∥∥ =
∥∥(σ−1t ) (µt − σtνt)

∥∥
θM,t (µt − σtνt) =

∥∥(σ−1t ) (µt − σtνt)
∥∥2 =

∥∥θTM,tσt
∥∥2

we get

λ2 = u (t, λ1) fM,t

u (t, z) ≡

[
1 +

√
τ
∥∥θTM,tσt

∥∥
N−1 (α)

(1− z)

]
(194)

and λ1 is the unique number that makes the V aR hold with equality

gV (t, λ1θM,t, u (t, λ1) fM,t, νt) = log
1

1− aV

If λ1 ≤ 0, then there is no investment in the risky asset and

θt = 0

ft = Rt +
1

τ
log

1

1− aV

Putting everything together, the optimal portfolio is then characterized by

θt = min {1,max {0, ϕt}} θM,t (195)

ft = u (t,min {1, ϕt}) fM,t1{ϕt>0} (196)

+

(
Rt +

1

τ
log

1

1− aV

)
1{ϕt≤0}

ϕt such that: gV (t, ϕtθM,t, u (t, ϕt) fM,t) = log
1

1− aV
(197)

θM,t =
(
σTt
)−1 (

σ−1t µt − νt
)

(198)

fM,t = β (199)

λ =
1

τ

(
1

ft
− 1

β

)
(200)
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D Appendix: Solving for ϕ

Solving for ϕt in (197) gives an explicit definition for ϕt. First, we express

∥∥θTM,tσt
∥∥ =

∥∥∥∥((σTt )−1 σ−1t (µt − σtνt)
)T

σt

∥∥∥∥
=

∥∥(σ−1t ) (µt − σtνt)
∥∥

= ‖ηt − νt‖

θTM,t (µt − σtνt) =
((
σTt
)−1

σ−1t (µt − σtνt)
)T

(µt − σtνt)

=
[
σ−1t (µt − σtνt)

]T (
σ−1t
)

(µt − σtνt)
=

∥∥(σ−1t ) (µt − σtνt)
∥∥2

= ‖ηt − νt‖
2

Then

− log (1− aV ) = gV (t, ϕtθM,t, u (t, ϕt) fM,t)

= −
(
Rt − ft + ϕt ‖ηt − νt‖

2 − 1

2
ϕ2
t ‖ηt − νt‖

2

)
τ −N−1 (α)ϕt ‖ηt − νt‖

√
τ

= −
(
Rt − ft + ‖ηt − νt‖

2

(
ϕt −

1

2
ϕ2
t

))
τ −N−1 (α)ϕt ‖ηt − νt‖

√
τ

and

0 = − log (1− aV ) + (Rt − ft) τ + τ ‖ηt − νt‖
2 ϕt +N−1 (α)

√
τ ‖ηt − νt‖ϕt −

1

2
τ ‖ηt − νt‖

2 ϕ2
t

ϕt ≡ 1 +
N−1 (α)√
τ ‖ηt − νt‖

±

√
2 (Rt − ft) τ − 2 log (1− aV ) + ‖ηt − νt‖

2 τ 2
(

1 +
N−1 (α)√
τ ‖ηt − νt‖

)2

E Appendix: Solving Stock Market Clearing

We solve for the case of two stocks (goods, bank) and a single shock from the point of
view of the bank, and one stock (bank) from the point of view of the household. The
supply of goods stocks is 1 share, i.e.

Xtθt
St

= 1 (201)

The demand comes from the bank’s problem

θt = min {1,max {0, ϕt}} θM,t (202)
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We will use the following

fM,t exogenous (203)

θM,t = σ−2t µt (204)

ηt = σ−1t µt (205)

dSt = St (µt +Rt) dt+ StσtdBt (206)

dXt = Xt (Rt − ft + θtµt) dt+XtθtσtdBt (207)

ft = u (t,min {1, ϕt}) fM,t (208)

Consider first the case ϕt > 1. Then (202),(205),(207),(208) give

θt = σ−2t µt (209)

ft = fM,t (210)

dXt = Xt

(
Rt − fM,t + σ−2t µ2

t

)
dt+Xtσ

−1
t µtdBt (211)

and (201), (206), (211) give

St = Xtθt (212)

dSt = θtdXt +Xtdθt + dXtdθt (213)

St (µt +Rt) dt+ StσtdBt = θt
(
Xt

(
Rt − fM,t + σ−2t µ2

t

)
dt+Xtσ

−1
t µtdBt

)
(214)

+Xtdθt +Xtσ
−1
t µt (dθtdBt) (215)

Matching the drift and stochastic parts of the left and hand side of equation (214) gives

St (µt +Rt) = θtXt

(
Rt − fM,t + σ−2t µ2

t

)
+Xt

1

dt
Et [dθt] (216)

+Xtσ
−1
t µt

(
1

dt
dθtdBt

)
(217)

Stσt = θtXtσ
−1
t µt +Xtstoch (dθt) (218)

Using (201) and (209) in (218) gives

stoch (dθt) = µtσ
−3
t

(
σ2
t − µt

)
(219)

Using (201), (209) and (219) in (216) gives

1

dt
Et [dθt] = σ−2t µtfM,t (220)

Equations (219) and (220) mean that

dθt = θtfM,tdt+ ηt (1− θt) dBt (221)
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Consider now the case of 0 < ϕ ≤ 1. Equations (202),(205),(207),(208) give

θt = ϕtσ
−2
t µt (222)

ft = u (t, ϕt) fM,t (223)

dXt = Xt

(
Rt − u (t, ϕt) fM,t + ϕtη

2
t

)
dt+XtϕtηtdBt (224)

Equations (201), (206), (224) give

St = Xtθt (225)

dSt = θtdXt +Xtdθt + dXtdθt (226)

St (µt +Rt) dt+ StσtdBt = θtXt

(
Rt − u (t, ϕt) fM,t + ϕtη

2
t

)
dt (227)

+θtXtϕtηtdBt +Xtdθt +Xtϕtηt (dBtdθt) (228)

Matching the drift and stochastic parts of the left and hand side of equation (227) gives

St (µt +Rt) = θtXt

(
Rt − u (t, ϕt) fM,t + ϕtη

2
t

)
+Xt

1

dt
Et [dθt] (229)

+Xtϕtηt
1

dt
(dBtdθt) (230)

StσtdBt = θtXtϕtηtdBt +Xtstoch (dθt) (231)

Using (201), (205) and (222) in (231) gives

stoch (dθt) = ηtϕt (1− θtϕt) (232)

Using (201), (205), (222) and (232) in (229) gives

1

dt
Et [dθt] = θtu (t, ϕt) fM,t + η2tϕt (ϕt − 1) (θt + θtϕt − 1) (233)

Equations (232) and (233) mean that

dθt =
(
η2tϕt (ϕt − 1) (θt (ϕt + 1)− 1) + θtϕtfM,t

)
dt+ ηtϕt (1− θtϕt) dBt (234)

Note that (221) and (234) match when ϕt = 1.
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