ESTIMATING NON-LINEAR MODELS WITH MULTIPLE FIXED EFFECTS: A COMPUTATIONAL NOTE

2011

Laura Hospido

Documentos de Trabajo N.º 1114

BANCO DE **ESPAÑA**

Eurosistema

ESTIMATING NON-LINEAR MODELS WITH MULTIPLE FIXED EFFECTS: A COMPUTATIONAL NOTE

ESTIMATING NON-LINEAR MODELS WITH MULTIPLE FIXED EFFECTS: A COMPUTATIONAL NOTE (1)

Laura Hospido
RESEARCH DIVISION, BANK OF SPAIN AND IZA
(*) This paper started in collaboration with Manuel Arellano, whose suggestions and encouragement are gratefully acknowledged. I would also like to thank Stéphane Bonhomme, two anonymous referees, the editor of the paper and seminar participants at the SAEe in Granada, the 15th International Conference on Panel Data in Bonn and the EEA-ESEM meetings in Barcelona, for useful suggestions. All errors are mine. The views in this paper are those of the author and do not represent the views of the Bank of Spain or the Eurosystem.

The Working Paper Series seeks to disseminate original research in economics and finance. All papers have been anonymously refereed. By publishing these papers, the Banco de España aims to contribute to economic analysis and, in particular, to knowledge of the Spanish economy and its international environment.

The opinions and analyses in the Working Paper Series are the responsibility of the authors and, therefore, do not necessarily coincide with those of the Banco de España or the Eurosystem.

The Banco de España disseminates its main reports and most of its publications via the INTERNET at the following website: http://www.bde.es.

Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged.

© BANCO DE ESPAÑA, Madrid, 2011

ISSN: 0213-2710 (print) ISSN: 1579-8666 (on line) Depósito legal: M. 29156-2011

Unidad de Publicaciones, Banco de España

Abstract

In this paper we consider estimation of nonlinear panel data models that include multiple individual fixed effects. Estimation of these models is complicated both by the difficulty of estimating models with possibly thousands of coefficients and also by the incidental parameters problem; that is, noisy estimates of the fixed effects when the time dimension is short contaminate the estimates of the common parameters due to the nonlinearity of the problem. We propose a simple variation of existing bias-corrected estimators, which can exploit the additivity of the effects for numerical optimization. We exhibit the performance of the estimators in simulations.

Keywords: Panel data, nonlinear models, multiple fixed exects, incidental parameters, bias reduction.

JEL classification: C23, C63.

Resumen

En este trabajo se estudia la estimación de modelos no lineales de datos de panel que incluyen efectos fijos múltiples. La estimación de estos modelos es complicada tanto por la dificultad de estimar especificaciones con miles de coeficientes, como por el problema de los parámetros incidentales, esto es, cuando la dimensión temporal del panel es corta la imprecisión en la estimación de los efectos individuales contamina la de los parámetros comunes debido a la no linealidad del modelo. En el artículo se propone una variación simple de los estimadores de verosimilitudes corregidas de sesgo, que permite explotar la aditividad de los efectos en la optimización numérica, evitando así el cálculo de los efectos estimados para valores dados de los parámetros comunes. Simulaciones muestran el rendimiento del estimador propuesto.

Palabras claves: Datos de panel, modelos no lineales, efectos fijos múltiples, parámetros incidentales, correción de sesgo.

Códigos JEL: C23, C63.

I. Introduction

In a typical nonlinear micropanel data model with fixed effects there are hundreds or thousands of individual coefficients to estimate together with a relatively small number of common parameters. A well known computational simplification in the linear model is to obtain first the maximum likelihood (ML) estimates of the common parameters from a regression on the data in deviations from individual means, and secondly retrieve ML estimates of the effects from averaged residuals one by one. A similar computational simplification is available for Newton-Raphson (NR) and related algorithms for nonlinear fixed effects models, which exploits the block-diagonal structure of the Hessian. This simplification has been discussed in Hall (1978), Chamberlain (1980), and Greene (2004) for nonlinear models with a scalar fixed effect. The first purpose of this work is to show how to use an iterated algorithm of this type, the so-called efficient Newton-Raphson iteration (ENR), in a nonlinear model with multiple fixed effects.

As first noted by Neyman and Scott (1948), when the time series dimension T is small relative to the cross-sectional dimension n, ML estimates of the common parameters can be severely biased, especially in dynamic models. This Incidental Parameters problem arises because the unobserved individual characteristics are replaced by noisy estimates, which bias estimates of model parameters. In particular, the bias of the ML estimator (MLE) is of order 1/T. In some special cases it is possible to obtain fixed T - large n consistent estimators of certain common parameters, but these situations are more the exception than the rule. Alternatively, a number of additional approaches have been proposed to obtain approximately unbiased estimators as opposed to estimators with no bias at all.¹ One of these approaches consists of estimation from an analytically bias corrected objective function relative to some target criterion.² In this paper we also discuss the application of computationally efficient algorithms to modified concentrated likelihoods of this type to obtain estimators without bias to order 1/T in nonlinear panel models with multiple fixed effects.

The main contribution of this note is to show how the computational simplification that exploits the block-diagonal structure of the Hessian can be used with bias corrected likelihoods of nonlinear panel data models with multiple fixed effects without affecting the finite sample properties of bias corrected estimators. The estimation of many fixed effects parameters (as many as individuals in the panel) does not pose a real computational problem nowadays for most applications. Computers are now much faster and efficient than at the end of the seventies when the simplification for nonlinear

¹See Arellano and Hahn (2007) for a review of this literature on bias-adjusted estimation methods for nonlinear panel data models with fixed effects.

²See Pace and Salvan (2006) for adjustments of this type for a generic concentrated likelihood with independent observations, Arellano and Hahn (2007) for static nonlinear panel models and Arellano and Hahn (2006), Bester and Hansen (2009), and Hospido (2010), for the dynamic case. For an automatic way of correcting the bias of the concentrated likelihood see Dhaene and Jochmans (2010).

models with a scalar fixed effect was originally discussed. This means that for reduced form panel data models with a fixed effect in the intercept, there is no significant gain in using an iterated algorithm exploiting the block diagonal structure of the Hessian.³ However, when the model has multiple fixed effects and it has the addition of a modification in the likelihood to correct the incidental parameters problem, the computational simplification matters.⁴ And if the model contain any additional complication (like a more structural model) then this simplification will be very helpful.⁵

The paper is organized as follows. Section II introduces the model and notation. Section III explains how the iterated algorithm works. Section IV discusses its application to bias corrected concentrated likelihoods. Section V presents some simulation results. Finally, Section VI concludes. Detailed derivations are given in the Appendix.

II. Model and Notation

Let us consider the following model for the joint density of T random vectors conditioned on initial observations, strictly exogenous variables, and fixed effects:

$$f(y_{i1},...,y_{iT} \mid y_{i0},x_{i1},...,x_{iT},\alpha_{i0}) = \prod_{t=1}^{T} f(y_{it} \mid y_{i(t-1)},x_{it},\alpha_{i0},\theta_0)$$

where θ_0 is a vector of common parameters and α_{i0} is a vector of fixed effects. We observe the random sample $\{y_{i0},...,y_{iT},x_{i0},...,x_{iT}\}_{i=1}^n$ and we denote $\alpha_0=(\alpha'_{10},...,\alpha'_{n0})'$ and $\delta_0=(\theta'_0,\alpha'_0)'$. Let the log likelihood of one observation be

$$\ell_{it}\left(\theta,\alpha_{i}\right) = \ln f\left(y_{it} \mid y_{i(t-1)}, x_{it}, \alpha_{i}, \theta\right)$$

and let $\ell_i(\theta, \alpha_i) = \sum_{t=1}^T \ell_{it}(\theta, \alpha_i)$.

III. Efficient Newton-Raphson iteration

Let us consider the estimator

$$\left(\begin{array}{c} \widehat{\boldsymbol{\theta}} \\ \widehat{\boldsymbol{\alpha}} \end{array}\right) = \arg\max_{\boldsymbol{\theta}, \boldsymbol{\alpha}} \sum_{i=1}^{n} \ell_{i}\left(\boldsymbol{\theta}, \boldsymbol{\alpha}_{i}\right)$$

and let first and second derivatives be denoted by

$$\begin{split} d_{\theta i} &= \frac{\partial \ell_i \left(\theta, \alpha_i \right)}{\partial \theta}, \quad d_{\alpha i} = \frac{\partial \ell_i \left(\theta, \alpha_i \right)}{\partial \alpha_i} \\ H_{\theta \theta i} &= \frac{\partial^2 \ell_i \left(\theta, \alpha_i \right)}{\partial \theta \partial \theta'}, \quad H_{\alpha \alpha i} = \frac{\partial^2 \ell_i \left(\theta, \alpha_i \right)}{\partial \alpha_i \partial \alpha_i'}, \quad H_{\theta \alpha i} = \frac{\partial^2 \ell_i \left(\theta, \alpha_i \right)}{\partial \theta \partial \alpha_i'} \end{split}$$

 $^{^3}$ This can be seen in Section V, in tables 2, 4 and 6 that consider models with one fixed effect. 4 This is what tables 3, 5 and 7, in Section V, show for models with multiple fixed effects.

⁵We thank one referee for pointing this out.

The Kth step of the iteration of a computationally efficient algorithm for obtaining $\widehat{\theta}$ and $\widehat{\alpha}$ takes the form

$$\theta_{[K]} - \theta_{[K-1]} = -\left[\sum_{i=1}^{n} \left(H_{\theta\theta i} - H_{\theta\alpha i} H_{\alpha\alpha i}^{-1} H_{\alpha\theta i}\right)\right]^{-1} \sum_{i=1}^{n} \left(d_{\theta i} - H_{\theta\alpha i} H_{\alpha\alpha i}^{-1} d_{\alpha i}\right)$$

$$\alpha_{i[K]} - \alpha_{i[K-1]} = -H_{\alpha\alpha i}^{-1} \left[d_{\alpha i} + H_{\alpha\theta i} \left(\theta_{[K]} - \theta_{[K-1]}\right)\right], \quad (i = 1, ..., n)$$

where all derivatives are evaluated at $\theta_{[K-1]}$ and $\alpha_{i[K-1]}$.

This result can be easily proved using partitioned inverse formulae (a detailed derivation is in the Appendix). It is a standard result in nonlinear estimation of models with many group effects.

IV. Analytically Adjusted Concentrated Likelihood

When T is short we may be interested to consider an estimator that maximizes a bias corrected concentrated likelihood of the type reviewed in Arellano and Hahn (2007):

$$\widehat{\boldsymbol{\theta}}^{AH} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left[\ell_i \left(\boldsymbol{\theta}, \widehat{\boldsymbol{\alpha}}_i \left(\boldsymbol{\theta} \right) \right) + \beta_i \left(\boldsymbol{\theta}, \widehat{\boldsymbol{\alpha}}_i \left(\boldsymbol{\theta} \right) \right) \right]$$

where

$$\widehat{\alpha}_{i}(\theta) = \arg\max_{\alpha} \ell_{i}(\theta, \alpha)$$

and $\beta_i(\theta, \alpha_i)$ is an adjustment term.

As long as the adjustment term depends on α , the iterated algorithm discussed above cannot be directly used for estimating $\widehat{\theta}^{AH}$. Note that

$$\begin{pmatrix} \widehat{\boldsymbol{\theta}}^{AH} \\ \widehat{\boldsymbol{\alpha}}^{AH} \end{pmatrix} = \arg\max_{\boldsymbol{\theta}, \boldsymbol{\alpha}} \sum_{i=1}^{n} \left[\ell_{i} \left(\boldsymbol{\theta}, \boldsymbol{\alpha}_{i} \right) + \beta_{i} \left(\boldsymbol{\theta}, \widehat{\boldsymbol{\alpha}}_{i} \left(\boldsymbol{\theta} \right) \right) \right]$$

where $\widehat{\alpha}^{AH} = \widehat{\alpha}\left(\widehat{\theta}^{AH}\right)$. Thus, if we use the analysis of covariance algorithm discussed in the previous section we still need to calculate $\widehat{\alpha}_i(\theta)$ for given values of θ .

A Computationally Effective Estimator

Alternatively, we can consider an estimator of the form

$$\begin{pmatrix} \widetilde{\theta}^{AH} \\ \widetilde{\alpha}^{AH} \end{pmatrix} = \arg \max_{\theta, \alpha} \sum_{i=1}^{n} \left[\ell_{i} \left(\theta, \alpha_{i} \right) + \beta_{i} \left(\theta, \alpha_{i} \right) \right]$$

for which the iterated algorithm can be used. This is equivalent to:

$$\widetilde{\boldsymbol{\theta}}^{AH} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left[\ell_i \left(\boldsymbol{\theta}, \widetilde{\alpha}_i \left(\boldsymbol{\theta} \right) \right) + \beta_i \left(\boldsymbol{\theta}, \widetilde{\alpha}_i \left(\boldsymbol{\theta} \right) \right) \right] \tag{1}$$

where

$$\widetilde{\alpha}_{i}\left(\theta\right) = \arg\max_{\alpha} \left[\ell_{i}\left(\theta, \alpha\right) + \beta_{i}\left(\theta, \alpha_{i}\right)\right]$$

The statistic $\tilde{\alpha}_i(\theta)$ can be regarded as a Bayesian estimator that uses $e^{\beta_i(\theta,\alpha_i)}$ as the prior distribution of α_i for a given value of θ . Thus, under general conditions, $\tilde{\alpha}_i(\theta)$ will be asymptotically equivalent to $\hat{\alpha}_i(\theta)$, and $\tilde{\theta}^{AH}$ will have similar (bias reducing) properties as $\hat{\theta}^{AH}$ (see Severini, 1998, section 4, for a discussion on the use of adjusted concentrated likelihoods using alternative estimates of nuisance parameters).

It appears that $\widetilde{\theta}^{AH}$ is not only computationally convenient, but it may also exhibit improved finite sample properties in certain situations due to the replacement of $\widehat{\alpha}_i(\theta)$ by $\widetilde{\alpha}_i(\theta)$ (for instance, in regressions of individual effects estimates on strictly exogenous regressors). In fact, correcting the vector of common parameters, θ , and the vector of fixed effects, α_i , both at the same time, was the motivation for the penalty function independently obtained by Bester and Hansen (2009).

Estimation of the Bias

The form of the approximate bias (Arellano and Hahn, 2007) is

$$\beta_i(\theta) \approx \frac{1}{2} tr\left(H_i^{-1}(\theta, \alpha) \Upsilon_i(\theta, \alpha)\right)$$
 (2)

where

$$H_{i}\left(\theta,\alpha\right) \equiv -\frac{1}{T} \sum_{t=1}^{T} \frac{\partial^{2} \ell_{it}\left(\theta,\alpha\right)}{\partial \alpha \partial \alpha'}$$

$$\Upsilon_{i}\left(\theta,\alpha\right) \equiv \sum_{l=-m}^{m} \omega_{T,l} \Gamma_{l}\left(\theta,\alpha\right)$$

and

$$\Gamma_{l}\left(\theta,\alpha\right) \equiv \frac{1}{T} \sum_{t=\max\left(1,l+1\right)}^{\min\left(T,T+l\right)} \left[\frac{\partial \ell_{it}\left(\theta,\alpha\right)}{\partial \alpha_{i}} \cdot \frac{\partial \ell_{it-l}\left(\theta,\alpha\right)}{\partial \alpha_{i}'} \right]$$

The quantity m is a bandwidth parameter and $\omega_{T,l}$ denotes a weight that guarantees positive definiteness of $\Upsilon_i(\Gamma, \Theta_i)$.

The bias corrected estimator in (1) that uses an analytical approximation like (2) is equivalent to one of the proposals independently obtained by Bester and Hansen (2009).⁶

Automatically Adjusted Concentrated Likelihood

The half-panel split jackknife provides an automatic way of correcting the bias of the MLE (Dhaene and Jochmans, 2010). The bias corrected estimator is defined as

$$\widehat{\boldsymbol{\theta}}^{DJ} = 2\widehat{\boldsymbol{\theta}} - \overline{\boldsymbol{\theta}}_{1/2}$$

where $\hat{\theta}$ is the MLE from the full panel, and $\bar{\theta}_{1/2}$ is the average of the two half-panel MLEs, each using T/2 time periods and all n cross-sectional units.

⁶More specifically, to the HS penalty that they consider.

V. Monte Carlo Study

The practical importance of the bias corrections depends on how much bias is removed for the small T that is often relevant in econometric applications. However, since the bias-corrected methods used in this paper, either analytically or automatically adjusted, are all asymptotically equivalent, there are no known theoretical reasons to prefer one to another. A particular method may still be preferable for convenience of implementation. In this section, the small-sample performance of the fixed-effects MLE and the bias-corrected estimators is explored in static and dynamic probit models. We present results for different models, keeping the simulation design as consistent as possible across them.⁷

Data Generating Processes

Four probit models are considered:

$$y_{it} = \mathbf{1} \left[w_{it} + \epsilon_{it} > 0 \right]$$

and

$$\epsilon_{it} \sim N\left(0,1\right)$$

• Static model with scalar fixed effects:

$$w_{it} = \alpha_{1i0} + \theta_{10}x_{it} + \theta_{20}d_{it}; \ (\theta_0 = [\theta_{10}, \theta_{20}]'; \alpha_{i0} = \alpha_{1i0})$$

• Static model with multiple fixed effects:

$$w_{it} = \alpha_{1i0} + \theta_{10}x_{it} + \alpha_{2i0}d_{it}; \ (\theta_0 = \theta_{10}; \alpha_{i0} = [\alpha_{1i0}, \alpha_{2i0}]')$$

• Dynamic model with scalar fixed effects:

$$w_{it} = \alpha_{1i0} + \theta_{10}x_{it} + \theta_{20}y_{it-1}; \ (\theta_0 = [\theta_{10}, \theta_{20}]'; \alpha_{i0} = \alpha_{1i0})$$

• Dynamic model with multiple fixed effects:

$$w_{it} = \alpha_{1i0} + \theta_{10}x_{it} + \alpha_{2i0}y_{it-1}; \quad (\theta_0 = \theta_{10}; \alpha_{i0} = [\alpha_{1i0}, \alpha_{2i0}]')$$

The data were generated with $x_{it} \sim N(0,1)$, $d_{it} = \mathbf{1}[x_{it} + h_{it} > 0]$, and $h_{it} \sim N(0,1)$. For the dynamic designs, the data were generated with $y_{i0} = \mathbf{1}[\alpha_{1i0} + \theta_{10}x_{it} + \epsilon_{i0} > 0]$, and $x_{i0} \sim N(0,1)$, $\epsilon_{i0} \sim N(0,1)$. We set n = 100; $T = \{6, 8, 12, 20\}$; $\theta_{10} = 1$, and $\theta_{20} = 0.5$; and ran 1,000 Monte Carlo replications for each design, with just ϵ_{it} redrawn in each replication.

With respect to the individual parameters three alternative scenarios are considered:

⁷Other studies, that consider nonlinear designs with scalar fixed effects (Carro, 2007; Fernández-Val, 2009), show that the bias in the MLE is similar in magnitude for the logit and the probit models and that bias corrections also perform similarly. Here, we focus on probit designs and extend the analysis to consider multiple fixed effects.

- (i) the DGP is a model without fixed effects (or, with a little abuse of notation, with constant fixed effects): $\alpha_{1i0} = 0$, $\forall i$; and $\alpha_{2i0} = 0.5$, $\forall i$;
- (ii) the DGP is a model with normally distributed fixed effects: $\alpha_{1i0} \sim N(0,1)$; and $\alpha_{2i0} \sim N(0.5,0.1)$;⁸
- (iii) the DGP is a model with fixed effects correlated with both x and d: $\alpha_{1i0} = \frac{1}{\sqrt{3}} (x_{i1} + x_{i2} + x_{i3})$; and $\alpha_{2i0} \sim \left[\frac{0.1}{\sqrt{2}} (\alpha_{1i0} + z_i) \right] + 0.5$, where $z_i \sim N(0, 1)$.

Table 1 below summarizes all this information.

TABLE 1

	DGP	summary				
	$y_{it} = 1 \left[\alpha_{1i0} + \theta_{10} x_{it} + \eta \right]$	$r_{it} + \epsilon_{it} > 0$	$]; \epsilon_{it} \sim N(0,1)$			
\overline{T}	{6, 8, 12, 20}	θ_{10}	1			
n	100	α_{1i0} (i):	$0, \forall i$			
rep	1,000	α_{1i0} (ii):	$N\left(0,1\right)$			
x_{it}	$N\left(0,1\right)$	α_{1i0} (iii):	$\frac{1}{\sqrt{3}}\left(x_{i1}+x_{i2}+x_{i3}\right)$			
	Static scalar		Dynamic scalar			
	$r_{it} = \theta_{20} d_{it}$	$r_{it} = \theta_{20} y_{it-1}$				
d_{it}	$1\left[x_{it} + h_{it} > 0\right]$	y_{i0}	$1 \left[\alpha_{1i0} + \theta_{10} x_{i0} + \epsilon_{i0} > 0 \right]$			
h_{it}	$N\left(0,1\right)$	m	1			
θ_{20}	0.5	θ_{20}	0.5			
	Static multiple	$Dynamic\ multiple$				
	$r_{it} = \alpha_{2i0} d_{it}$	$r_{it} = \alpha_{2i0} y_{it-1}$				
d_{it}	$1\left[x_{it} + h_{it} > 0\right]$	y_{i0}	$1 \left[\alpha_{1i0} + \theta_{10} x_{i0} + \epsilon_{i0} > 0 \right]$			
h_{it}	$N\left(0,1\right)$	m	1			
α_{2i0} (i):	$0.5, \forall i$	α_{2i0} (i):	$0.5, \forall i$			
α_{2i0} (ii):	N(0.5, 0.1)	α_{2i0} (ii):	N(0.5, 0.1)			
α_{2i0} (iii):	$\left[\frac{0.1}{\sqrt{2}}\left(\alpha_{1i0}+z_i\right)\right]+0.5$	α_{2i0} (iii):	$\left[\frac{0.1}{\sqrt{2}}\left(\alpha_{1i0}+z_i\right)\right]+0.5$			
z_i	$N\left(0,1\right)$	z_i	$N\left(0,1\right)$			

Simulation results

We estimate the common parameter θ_0 by maximum likelihood, MLE; applying the analytically bias-corrected estimator of Arellano and Hahn (2006, 2007), AH; and the automatically bias-corrected estimator of Dhaene and Jochmans (2010), DJ; both using the usual Newton-Raphson algorithm (NR) and the efficient version of the iteration (ENR).

Tables 2 to 7 report the effective computation time (in seconds) for each design, along with the median absolute errors and root mean squared errors. Failure refers to the percentage of cases of divergence or failure to converge in the nonlinear solution over the 1,000 Monte Carlo replications.¹⁰

⁸The distributional parameters are chosen so that the variability of each term $(\alpha_{1i0}, \alpha_{2i0}d_{it}, \text{ or } \alpha_{2i0}y_{it-1})$ is approximately the same.

⁹The design tries to mimic DGP (ii) in terms of the variability across individuals.

 $^{^{10}{\}rm Those}$ cases are excluded from calculations.

DGP with constant fixed effects

Table 2 reports the results corresponding to the DGP with scalar constant fixed effects and $\theta = (\theta_1, \theta_2)'$.

TABLE 2

Probit with scalar constant fixed effects

			170	STO WOOLD	$\frac{scalar\ con}{NR}$	scuree ju	,ca ejject	ENR		Time
				\overline{MAE}	RMSE	Time	MAE	RMSE	Time	NR/ENR
Static	T=6	θ_1	MLE	0.303	0.357	1.633	0.304	0.357	0.336	4.860
	_ ,	- 1	AH	0.168	0.232	2.421	0.167	0.232	0.545	4.442
			$_{\mathrm{DJ}}$	0.196	0.277	0.900	0.178	0.261	0.297	3.030
		θ_2	MLE	0.153	0.251		0.178	0.251		
		2	AH	0.176	0.200		0.135	0.201		
			DJ	0.134	0.261		0.184	0.270		
	T=12	θ_1	MLE	0.118	0.143	2.342	0.116	0.148	0.444	5.275
		-	AH	0.052	0.079	3.763	0.051	0.084	0.701	5.368
			DJ	0.089	0.113	1.594	0.082	0.106	0.457	3.488
		θ_2	MLE	0.082	0.150		0.088	0.127		
		_	AH	0.072	0.085		0.074	0.106		
			DJ	0.082	0.114		0.077	0.112		
	T=20	θ_1	MLE	0.073	0.094	3.307	0.071	0.092	0.620	5.334
			AH	0.040	0.060	5.475	0.039	0.059	1.003	5.459
			DJ	0.044	0.067	2.113	0.040	0.059	0.549	3.849
		θ_2	MLE	0.056	0.084		0.058	0.086		
		_	AH	0.049	0.075		0.049	0.075		
			DJ	0.061	0.090		0.051	0.076		
Dynamic	T=6	θ_1	MLE	0.269	0.315	1.400	0.269	0.314	0.283	4.947
v			AH	0.182	0.238	2.251	0.182	0.238	0.538	4.184
			DJ	0.305	0.482	0.558	0.287	0.459	0.183	3.049
		θ_2	MLE	0.438	0.468		0.440	0.470		
			AH	0.195	0.245		0.198	0.247		
			DJ	0.201	0.299		0.204	0.309		
	T=12	θ_1	MLE	0.114	0.136	2.355	0.114	0.136	0.443	5.316
			AH	0.055	0.083	3.566	0.055	0.082	0.749	4.761
			DJ	0.058	0.086	1.430	0.056	0.083	0.415	3.446
		θ_2	MLE	0.199	0.224		0.202	0.226		
			AH	0.077	0.110		0.080	0.112		
			DJ	0.079	0.119		0.077	0.111		
	T=20	θ_1	MLE	0.065	0.081	3.072	0.065	0.081	0.607	5.061
			AH	0.032	0.049	4.915	0.032	0.049	1.006	4.886
			DJ	0.033	0.049	2.024	0.032	0.049	0.677	2.990
		θ_2	MLE	0.111	0.130		0.116	0.133		
			AH	0.048	0.069		0.050	0.071		
			DJ	0.058	0.085		0.050	0.072		

Notes: MAE=median absolute error, RMSE = root mean squared error, Time = average computation time across replications (in seconds). Scalar fixed effects: α_{1i0} (i) in Table 1.

In the static probit, the MLE of both θ_1 and θ_2 are seriously biased even for T=12. After applying the corrections, the estimates are closer to the true value of the parameters, especially for the AH estimator. In addition, we can see that the ENR algorithm provides a significant computational time

improvement with respect to the NR algorithm (from 3.03 to 5.46 times faster). However, when the standard iteration takes 3 seconds there is no really need for a computational simplification.

In the dynamic probit, the MLE of θ_2 is more heavily biased than the one of θ_1 . Once again, after applying the corrections, the estimates are closer to the true value of the parameters, but now AH estimator does not always dominate DJ. Also, we can see that the ENR algorithm still provides a substantial improvement in terms of computational time (from 2.99 to 5.32 times faster).

Table 3 reports the results corresponding to the DGP with multiple constant fixed effects and $\theta = \theta_1$.

TABLE 3

	Probit with multiple constant fixed effects NR ENR Time									
					NR ENR					
				\overline{MAE}	RMSE	Time	MAE	RMSE	Time	NR/ENR
Static	T=6	θ_1	MLE	0.547	0.618	9.234	0.622	0.683	0.353	26.159
			AH	0.401	0.477	29.207	0.484	0.548	1.156	25.266
			DJ	0.371	27.899	1.599	0.328	0.660	0.072	22.208
			ure (%)		0.0			0.0		
	T=8	θ_1	MLE	0.407	0.450	12.393	0.425	0.463	0.484	25.605
			AH	0.270	0.319	35.678	0.286	0.330	1.483	24.058
			DJ	0.181	0.309	3.572	0.162	0.251	0.164	21.780
		Fail	ure (%)		0.0			0.0		
	T=12	θ_1	MLE	0.266	0.293	18.118	0.262	0.289	0.736	24.617
			AH	0.158	0.191	48.762	0.154	0.187	2.138	22.807
			DJ	0.114	0.162	6.837	0.082	0.124	0.335	20.409
		Fail	ure (%)		0.0			0.0		
	T=20	θ_1	MLE	0.148	0.163	25.439	0.148	0.164	1.131	22.492
			AH	0.079	0.101	67.290	0.079	0.101	3.219	20.904
			DJ	0.085	0.106	9.896	0.050	0.073	0.636	15.560
		Fail	ure (%)		0.0			0.0		
Dynamic	T=6	θ_1	MLE	0.541	0.604	14.378	0.537	0.601	0.542	26.528
			AH	0.465	0.533	60.186	0.464	0.532	2.342	25.698
			DJ	0.345	21.488	3.383	0.303	51.306	0.160	21.144
			ure (%)		0.0			1.1		
	T=8	θ_1	MLE	0.400	0.437	14.238	0.398	0.435	0.534	26.663
			AH	0.318	0.355	50.997	0.318	0.355	2.625	19.427
			DJ	0.152	0.241	5.081	0.132	0.216	0.213	23.854
			ure (%)		0.0			0.3		
	T=12	θ_1	MLE	0.251	0.274	20.291	0.251	0.273	0.743	27.309
			AH	0.164	0.192	62.687	0.164	0.191	2.776	22.582
			DJ	0.150	0.150	8.186	0.073	0.114	0.376	21.771
			ure (%)		0.0			0.3		
	T=20	θ_1	MLE	0.137	0.149	22.428	0.137	0.148	1.048	21.401
			AH	0.078	0.092	70.917	0.077	0.092	3.322	21.348
			DJ	0.057	0.076	10.012	0.040	0.058	0.656	15.262
		Fail	ure (%)		0.0			0.0		

Notes: MAE=median absolute error, RMSE = root mean squared error, Time = average computation time across replications (in seconds). Multiple fixed effects: α_{1i0} (i) and α_{2i0} (i) in Table 1.

As expected, with multiple fixed effects the incidental parameter problem gets worse, both for the static and the dynamic probit. Now, the MAE of the MLE is sizable even for values of T such as 12 or 20. Again, the bias-corrected estimators can remove a substantial part of that bias, although the addition of the correction in the likelihood increases the computation time substantially. Interestingly, in this case, the improvements in terms of computational time are very large. These results are encouraging because, in many empirical studies that consider complicated models, the goal is not only to obtain an estimator with a good finite sample performance, but also in a reasonable computing time, especially when bootstrap methods are used for inference.

DGP with normal fixed effects

Table 4 reports the results corresponding to the DGP with scalar normal fixed effects and $\theta = (\theta_1, \theta_2)'$. The magnitude of the biases, both in the static and in the dynamic probit, are comparable to those of the previous design in which the fixed effects were constant across individuals. As before, after applying the corrections, the estimates are closer to the true value of the parameters. Again, we can see that the ENR algorithm provides a significant computational time improvement with respect to the NR algorithm (from 2.86 to 5.79 times faster in the static case, and from 2.73 to 6.00 times faster in the dynamic case).

Table 5 reports the results corresponding to the DGP with multiple normal fixed effects and $\theta = \theta_1$. As in Table 3, with multiple fixed effects the incidental parameter problem gets worse, both for the static and the dynamic probit. Again, the MAE of the MLE is sizable even for values of T such as 12 or 20, and the bias-corrected estimators can remove a substantial part of that bias. The improvements in terms of computational time are still very large. Now, however, estimation becomes more unstable, with higher percentages of cases of divergence or failure to converge in the nonlinear solution.

TABLE 4 $Probit\ with\ scalar\ normal\ fixed\ effects$

					NR	· · · · · · · · · · · · · · · · · · ·	Ja 0 JJ 0000	ENR		Time
				\overline{MAE}	RMSE	Time	MAE	RMSE	Time	NR/ENR
Static	T=6	θ_1	MLE	0.328	0.388	1.626	0.327	0.388	0.396	4.106
			AH	0.189	0.260	2.304	0.188	0.256	0.655	3.517
			DJ	0.199	0.311	0.857	0.181	0.292	0.300	2.857
		θ_2	MLE	0.212	0.294		0.212	0.295		
			AH	0.154	0.231		0.156	0.232		
			DJ	0.196	0.388		0.200	0.348		
	T=12	θ_1	MLE	0.141	0.173	3.234	0.141	0.172	0.596	5.426
			AH	0.061	0.099	4.705	0.062	0.099	0.935	5.032
			DJ	0.096	0.124	1.907	0.080	0.108	0.507	3.761
		θ_2	MLE	0.097	0.144		0.100	0.145		
			AH	0.081	0.121		0.082	0.122		
			DJ	0.093	0.136		0.088	0.128		
	T=20	θ_1	MLE	0.075	0.099	5.079	0.074	0.098	0.877	5.791
			AH	0.042	0.061	7.852	0.042	0.060	1.392	5.641
			DJ	0.058	0.080	2.871	0.045	0.064	0.736	3.901
		θ_2	MLE	0.066	0.098		0.066	0.099		
			AH	0.058	0.088		0.058	0.088		
			DJ	0.076	0.111		0.063	0.090		
Dynamic	T=6	θ_1	MLE	0.307	0.353	1.257	0.306	0.352	0.291	4.319
			AH	0.231	0.281	2.075	0.231	0.281	0.579	3.584
			DJ	0.209	1.429	0.423	0.202	0.400	0.155	2.729
		θ_2	MLE	0.475	0.516		0.476	0.517		
			AH	0.220	0.284		0.223	0.285		
			DJ	0.209	0.431		0.217	0.390		
	T=12	θ_1	MLE	0.125	0.150	2.916	0.125	0.149	0.545	5.350
			AH	0.062	0.094	4.588	0.062	0.093	0.964	4.759
			DJ	0.077	0.102	1.463	0.072	0.099	0.446	3.280
		θ_2	MLE	0.199	0.224		0.228	0.254		
			AH	0.077	0.110		0.091	0.129		
			$_{\mathrm{DJ}}$	0.079	0.119		0.082	0.123		
	T=20	θ_1	MLE	0.074	0.091	4.788	0.074	0.091	0.798	6.000
			AH	0.037	0.056	7.456	0.037	0.055	1.363	5.470
			DJ	0.036	0.054	2.386	0.034	0.052	0.647	3.688
		θ_2	MLE	0.133	0.158		0.135	0.159		
			AH	0.057	0.087		0.058	0.088		
			DJ	0.080	0.113		0.056	0.084		

Notes: MAE=median absolute error, RMSE = root mean squared error, Time = average computation time across replications (in seconds). Scalar fixed effects: α_{1i0} (ii) in Table 1.

TABLE 5

Probit with multiple normal fixed effects ENRTime \overline{MAE} RMSETimeMAERMSETimeNR/ENRMLE T=6 θ_1 0.5540.637 8.1740.6250.707 0.330 24.770 Static AH 0.4120.50126.4460.4880.5811.09324.196DJ0.43644.115 1.298 0.3860.920 0.06220.935 Failure (%) 0.2 0.1 T=812.289 0.423 θ_1 MLE 0.403 0.455 0.470 0.513 23.955 AH0.2660.32333.744 0.2840.3371.613 20.920 0.200 2.9770.15519.206 DJ0.3490.1890.288Failure (%) 0.10.0T=12 θ_1 0.281 0.302 19.629 0.2810.302 23.909 MLE 0.821AH0.1680.19652.207 0.1700.1972.394 21.807 DJ0.1180.1726.8230.1140.1720.30522.307 Failure (%) 0.00.0T=20MLE 0.15233.358 0.152 0.1711.359 24.546 θ_1 0.171AH0.077 0.104 88.639 0.078 0.1043.868 22.916 DJ0.0940.11312.7400.0890.1240.607 20.988 Failure (%) 0.0 0.0Dynamic T=6 θ_1 MLE 0.607 0.6898.478 0.6020.6860.308 27.526 AH0.5400.62640.277 0.5390.6261.597 25.220 DJ 0.35327.5322.0730.34384.883 0.07926.240Failure (%) 0.00.6T=8 θ_1 MLE 0.4260.477 12.515 0.4250.4750.46227.089 AH0.3350.39043.959 0.3370.3912.49117.647 DJ 0.1390.1940.3083.7150.1830.29126.727Failure (%) 0.0 0.5T=12 θ_1 MLE 0.276 0.302 20.667 0.275 0.301 0.68530.171 AH0.1860.21762.5220.1850.2172.57224.309 DJ 0.1046.8530.28224.3010.1550.1140.170Failure (%) 0.0 0.4T=20 θ_1 MLE 0.152 0.168 34.830 0.137 0.148 1.138 30.606 0.1070.092AΗ 0.086103.955 0.0773.767 27.596

Notes: MAE=median absolute error, RMSE = root mean squared error, Time = average computation time across replications (in seconds). Multiple fixed effects: α_{1i0} (ii) and α_{2i0} (ii) in Table 1.

0.091

0.0

10.607

0.058

0.1

0.556

0.040

19.077

 DJ

Failure (%)

0.072

DGP with correlated fixed effects

Table 6 reports the results corresponding to the DGP with scalar correlated fixed effects and $\theta = (\theta_1, \theta_2)'$.

TABLE 6

Probit with scalar correlated fixed effects ENRTimeNRMAERMSETimeMAERMSENR/ENRTimeT=6MLE 0.3730.370Static θ_1 0.4421.4920.4410.2945.075AH0.2312.2010.2304.3330.3110.3100.508 DJ 0.2350.3970.7300.2170.3760.2233.273 θ_2 MLE 0.2020.3060.2030.3070.1620.166 AH0.2490.250DJ0.213 0.4270.2360.396T=12 θ_1 MLE 0.149 0.186 2.970 0.147 0.185 0.572 5.192 AH0.070 0.1084.4910.070 0.1070.8994.995DJ0.0990.1351.5670.0860.119 0.4683.348MLE 0.1000.1520.1010.1540.0830.1250.083 AH0.126DJ0.0970.1460.091 0.133T=20 θ_1 MLE 0.088 0.111 5.5980.088 0.8726.420 0.111AH0.0450.0688.126 0.0440.0681.371 5.927 DJ 0.0492.821 0.0460.6934.0710.0710.065 θ_2 MLE 0.068 0.0990.0690.099 0.058AH0.0570.0870.088 DJ0.0690.1020.0620.092Dynamic T=6 θ_1 MLE 0.2850.3531.084 0.2840.3530.2025.366 0.210 0.209AH0.2821.679 0.2820.3944.261DJ0.32411.295 0.3930.3130.6820.1213.248 MLE 0.4980.5000.5390.540AH 0.2410.3030.2430.305DJ0.2530.25536.330 0.428T=12 θ_1 MLE 2.878 0.146 0.1460.1750.1740.5105.643 AH 0.079 0.078 0.900 5.063 0.113 4.5570.113 DJ 0.0650.0960.0640.3803.2821.247 0.095MLE θ_2 0.2290.2590.2290.259AH0.093 0.1340.0930.135DJ0.1020.089 0.1480.129T=20 θ_1 MLE 0.079 0.079 0.814 6.309 0.0985.1360.0987.948AH0.0410.0411.373 5.789 0.0610.061DJ0.0390.0592.4040.0380.0570.6233.859 MLE 0.1330.133 θ_2 0.1590.159AH0.0590.0870.0590.087DJ0.0740.1090.057 0.085

Notes: MAE=median absolute error, RMSE = root mean squared error, Time = average computation time across replications (in seconds). Scalar fixed effects: α_{1i0} (iii) in Table 1.

In this design, in which the fixed effects are correlated with the observed variables, the bias of the MLE is in general bigger than in previous designs. Even in this case, the bias-corrected estimators are able to remove a substantial part of that bias. Once again, the ENR algorithm provides a significant

computational time improvement with respect to the NR algorithm (from 3.27 to 6.42 times faster in the static case, and from 3.25 to 6.31 times faster in the dynamic case).

Table 7 reports the results corresponding to the DGP with multiple correlated fixed effects and $\theta = \theta_1$.

TABLE 7

Probit with multiple correlated fixed effects

			Probi	t with m	ultiple con	rrelated fix	ed effect	s		
					NR			ENR		Time
				\overline{MAE}	RMSE	Time	MAE	RMSE	Time	NR/ENR
Static	T=6	θ_1	MLE	0.609	0.691	7.433	0.603	0.689	0.458	16.229
			AH	0.462	0.551	23.587	0.458	135.614	1.908	12.362
			DJ	0.481	35.400	1.087	0.433	1.033	0.079	13.759
		Fail	ure (%)		0.2			0.2		
	T=8	θ_1	MLE	0.482	0.537	13.458	0.480	0.535	0.590	22.810
			AH	0.343	0.406	38.193	0.346	0.409	1.882	20.294
			DJ	0.217	0.394	3.350	0.237	0.367	0.159	21.069
		Fail	ure (%)		0.0			0.0		
	T=12	θ_1	MLE	0.311	0.342	28.177	0.307	0.337	0.809	34.829
			AH	0.194	0.231	73.644	0.191	0.226	2.384	30.891
			DJ	0.114	0.176	8.970	0.156	0.218	0.283	31.696
		Fail	ure (%)		0.0			0.0		
	T=20	θ_1	MLE	0.159	0.184	40.455	0.160	0.183	1.372	29.486
			AH	0.083	0.114	107.338	0.083	0.114	3.948	27.239
			DJ	0.092	0.116	14.383	0.097	0.135	0.583	24.671
		Fail	ure (%)		0.1			0.0		
Dynamic	T=6	θ_1	MLE	0.515	0.597	6.801	0.511	0.596	0.255	26.671
			AH	0.436	0.526	31.404	0.435	0.530	1.293	24.288
			DJ	0.398	25.833	1.706	0.356	11.191	0.074	23.054
		Fail	ure (%)		0.2		1.1			
	T=8	θ_1	MLE	0.424	0.476	17.030	0.418	0.465	0.509	33.458
			AH	0.333	0.390	66.115	0.330	0.384	2.450	26.986
			DJ	0.192	0.351	5.041	0.176	0.302	0.179	28.162
		Fail	ure (%)		0.0			0.3		
	T=12	θ_1	MLE	0.270	0.304	28.687	0.286	0.311	0.832	34.480
			AH	0.181	0.219	89.077	0.197	0.226	3.145	28.523
			DJ	0.114	0.164	9.097	0.124	0.179	0.344	26.445
		Fail	ure (%)		0.0			0.1		
	T=20	θ_1	MLE	0.150	0.167	45.555	0.152	0.168	1.097	41.527
			AH	0.085	0.108	141.078	0.087	0.108	3.833	36.806
			DJ	0.060	0.087	13.981	0.074	0.104	0.555	25.191
		Fail	ure (%)		0.0			0.0		
Notos, MAI	1.		. ,	NA CCT		1	m:	077070 00 007		. •

Notes: MAE=median absolute error, RMSE = root mean squared error, Time = average computation time across replications (in seconds). Multiple fixed effects: α_{1i0} (iii) and α_{2i0} (iii) in Table 1.

As in the scalar case, also with multiple correlated fixed effects the bias of the MLE is in general bigger than in previous designs. Even though, the bias-corrected estimators are able to remove a comparable part of the bias in this case. Also here, the ENR algorithm provides very large computational time improvement with respect to the NR algorithm.

VI. Conclusions

In this paper we consider estimation of nonlinear panel data models that include multiple individual fixed effects. Estimation of these models is complicated both by the difficulty of estimating models with possibly thousands of coefficients and also by the incidental parameters problem; that is, noisy estimates of the fixed effects when the time dimension is short contaminates the estimates of the common parameters due to the nonlinearity of the problem. We show how to use an iterated algorithm which simplifies estimation in a nonlinear model with multiple fixed effects and we also discuss its application to bias corrected concentrated likelihoods.

Simulations results show that the simplification that exploits the block-diagonal structure of the Hessian not only is computationally convenient, but it also provides adjustments of the likelihood function that result in bias corrected estimators that perform comparably to other bias corrections proposed in the literature. We can think in many microeconometric applications that use nonlinear panel data models. The results of the paper suggest that bias corrected estimates will be very useful in relevant empirical settings given the sample sizes of the panels more often used by researchers and, moreover, because they allow us to introduce more individual heterogeneity to address endogeneity concerns in a robust way.

References

- [1] Arellano, M. and Hahn, J. (2006). 'A likelihood-based approximate solution to the incidental parameter problem in dynamic nonlinear models with multiple effects', unpublished manuscript.
- [2] Arellano, M. and Hahn, J. (2007). 'Understanding Bias in Nonlinear Panel Models: Some Recent Developments', in R. Blundell, W. Newey, and T. Persson (eds), Advances in Economics and Econometrics, Vol. 3, pp. 381-409, Cambridge University Press.
- [3] Bester, A. and C. Hansen (2009): "A Penalty Function Approach to Bias Reduction in Nonlinear Panel Models with Fixed Effects", *Journal of Business and Economic Statistics*, 27 (2), 131-148.
- [4] Carro, J. (2007). 'Estimating Dynamic Panel Data Discrete Choice Models with Fixed Effects', Journal of Econometrics, Vol. 140, pp. 503-528.
- [5] Chamberlain, G. (1980). 'Analysis of Covariance with Qualitative Data', Review of Economic Studies, Vol. 47, pp. 225–238.
- [6] Dhaene, G., and Jochmans, K. (2010). 'Split-panel jackknife estimation of fixed effects models', unpublished manuscript.

- [7] Fernández-Val, I. (2009). 'Fixed effects estimation of structural parameters and marginal effects in panel probit models', *Journal of Econometrics*, Vol. 150, pp. 71-85.
- [8] Greene, W. (2004). 'The Behaviour of the Maximum Likelihood Estimator of Limited Dependent Variable Models in the Presence of Fixed Effects', The Econometrics Journal, Vol. 7, pp. 98–119.
- [9] Hall, B. H. (1978). 'A General Framework for Time Series-Cross Section Estimation', Annales de l'INSEE, Vol. 30-31, pp. 177-202.
- [10] Hospido, L. (2010). 'Modelling Heterogeneity and Dynamics in the Volatility of Individual Wages', Journal of Applied Econometrics, forthcoming, DOI: 10.1002/jae.1204.
- [11] Neyman, J. and Scott, E. L. (1948). 'Consistent Estimates Based on Partially Consistent Observations', *Econometrica*, Vol. 16, pp. 1-32.
- [12] Pace, L. and Salvan, A. (2006). 'Adjustments of the profile likelihood from a new perspective', Journal of Statistical Planning and Inference, Vol. 136, pp. 3554-3564.
- [13] Severini, T. A. (1998). 'Likelihood Functions for Inference in the Presence of a Nuisance Parameter', Biometrika, Vol. 85, pp. 507–522.

Appendix A: Efficient Newton-Raphson iteration

The Kth step of the Newton-Raphson iteration takes the form

$$\delta_{K} = \delta_{K-1} - \left(\frac{\partial^{2} L\left(\delta_{K-1}\right)}{\partial \delta \partial \delta'}\right)^{-1} \frac{\partial L\left(\delta_{K-1}\right)}{\partial \delta}$$

or for shortness

$$\Delta \delta = -\left(\frac{\partial^2 L}{\partial \delta \partial \delta'}\right)^{-1} \frac{\partial L}{\partial \delta}$$

where $L\left(\delta\right) = \sum_{i=1}^{n} \ell_i\left(\theta, \alpha_i\right)$ and

$$\frac{\partial L}{\partial \delta} = \begin{pmatrix} \frac{\partial L}{\partial \theta} \\ \frac{\partial L}{\partial \alpha_1} \\ \vdots \\ \frac{\partial L}{\partial \alpha_n} \end{pmatrix} = \sum_{t=1}^{T} \begin{pmatrix} \sum_{i=1}^{n} \frac{\partial \ell_{it}(\theta, \alpha_i)}{\partial \theta} \\ \frac{\partial \ell_{1t}(\theta, \alpha_1)}{\partial \alpha_1} \\ \vdots \\ \frac{\partial \ell_{nt}(\theta, \alpha_n)}{\partial \alpha_n} \end{pmatrix} = \begin{pmatrix} d_{\theta} \\ d_{\alpha} \end{pmatrix}$$

$$\frac{\partial^2 L}{\partial \delta \partial \delta'} = \sum_{t=1}^T \begin{pmatrix} \sum_{i=1}^n \frac{\partial^2 \ell_{it}(\theta, \alpha_i)}{\partial \theta \partial \theta'} & \frac{\partial^2 \ell_{1t}(\theta, \alpha_1)}{\partial \theta \partial \alpha'_1} & \dots & \frac{\partial^2 \ell_{nt}(\theta, \alpha_n)}{\partial \theta \partial \alpha'_n} \\ \frac{\partial^2 \ell_{1t}(\theta, \alpha_1)}{\partial \alpha_1 \partial \theta'} & \frac{\partial^2 \ell_{1t}(\theta, \alpha_1)}{\partial \alpha_1 \partial \alpha'_1} & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \ell_{nt}(\theta, \alpha_n)}{\partial \alpha_n \partial \theta'} & 0 & \dots & \frac{\partial^2 \ell_{nt}(\theta, \alpha_n)}{\partial \alpha_n \partial \alpha'_n} \end{pmatrix} = \begin{pmatrix} H_{\theta\theta} & H_{\theta\alpha} \\ H'_{\theta\alpha} & H_{\alpha\alpha} \end{pmatrix}$$

and

$$d_{\alpha} = \begin{pmatrix} d_{\alpha 1} \\ \vdots \\ d_{\alpha n} \end{pmatrix}, \quad H_{\alpha \alpha} = \begin{pmatrix} H_{\alpha \alpha 1} & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & H_{\alpha \alpha n} \end{pmatrix}, \quad H_{\theta \alpha} = \begin{pmatrix} H_{\theta \alpha 1} & \dots & H_{\theta \alpha n} \end{pmatrix}$$

so that $d_{\theta} = \sum_{i=1}^{n} d_{\theta i}$ and $H_{\theta \theta} = \sum_{i=1}^{n} H_{\theta \theta i}$, and

$$H_{\theta\alpha}H_{\alpha\alpha}^{-1} = (H_{\theta\alpha1}H_{\alpha\alpha1}^{-1} \dots H_{\theta\alpha n}H_{\alpha\alpha n}^{-1})$$

$$H_{\theta\alpha}H_{\alpha\alpha}^{-1}H_{\alpha\theta} = \sum_{i=1}^{n} H_{\theta\alpha i}H_{\alpha\alpha i}^{-1}H_{\alpha\theta i}$$

Letting

$$\left(\begin{array}{cc} H_{\theta\theta} & H_{\theta\alpha} \\ H'_{\theta\alpha} & H_{\alpha\alpha} \end{array}\right)^{-1} = \left(\begin{array}{cc} H^{\theta\theta} & H^{\theta\alpha} \\ H^{\theta\alpha\prime} & H^{\alpha\alpha} \end{array}\right)$$

where

$$H^{\theta\theta} = (H_{\theta\theta} - H_{\theta\alpha}H_{\alpha\alpha}^{-1}H_{\alpha\theta})^{-1}$$

$$H^{\theta\alpha} = -H^{\theta\theta}H_{\theta\alpha}H_{\alpha\alpha}^{-1}$$

$$H^{\alpha\alpha} = H_{\alpha\alpha}^{-1} + H_{\alpha\alpha}^{-1}H_{\alpha\theta}H^{\theta\theta}H_{\theta\alpha}H_{\alpha\alpha}^{-1}$$

the partitioned formula gives

$$\left(\begin{array}{c} \Delta \theta \\ \Delta \alpha \end{array} \right) = - \left(\begin{array}{cc} H^{\theta \theta} & H^{\theta \alpha} \\ H^{\theta \alpha \prime} & H^{\alpha \alpha} \end{array} \right) \left(\begin{array}{c} d_{\theta} \\ d_{\alpha} \end{array} \right)$$

We have

$$H^{\theta\theta} = \left[\sum_{i=1}^{n} \left(H_{\theta\theta i} - H_{\theta\alpha i} H_{\alpha\alpha i}^{-1} H_{\alpha\theta i} \right) \right]^{-1}$$

$$H^{\theta\alpha} d_{\alpha} = -H^{\theta\theta} H_{\theta\alpha} H_{\alpha\alpha}^{-1} d_{\alpha} = -H^{\theta\theta} \sum_{i=1}^{n} H_{\theta\alpha i} H_{\alpha\alpha i}^{-1} d_{\alpha i}$$

and

$$-\Delta\theta = H^{\theta\theta}d_{\theta} + H^{\theta\alpha}d_{\alpha} = H^{\theta\theta}\left(d_{\theta} - \sum_{i=1}^{n} H_{\theta\alpha i}H_{\alpha\alpha i}^{-1}d_{\alpha i}\right)$$

so that

$$\Delta \theta = -\left[\sum_{i=1}^{n} \left(H_{\theta\theta i} - H_{\theta\alpha i} H_{\alpha\alpha i}^{-1} H_{\alpha\theta i}\right)\right]^{-1} \sum_{i=1}^{n} \left(d_{\theta i} - H_{\theta\alpha i} H_{\alpha\alpha i}^{-1} d_{\alpha i}\right)$$

Similarly, it is easy to see

$$\Delta \alpha = -H_{\alpha\alpha}^{-1} \left(d_{\alpha} + H_{\alpha\theta} \Delta \theta \right)$$

so that

$$\Delta\alpha_{i} = -H_{\alpha\alpha i}^{-1} \left(d_{\alpha i} + H_{\alpha\theta i}\Delta\theta\right), \quad (i = 1, ..., n)$$

BANCO DE ESPAÑA PUBLICATIONS

WORKING PAPERS¹

- 1001 JAVIER ANDRÉS, ÓSCAR ARCE AND CARLOS THOMAS: Banking competition, collateral constraints and optimal monetary policy.
- 1002 CRISTINA BARCELÓ AND ERNESTO VILLANUEVA: The response of household wealth to the risk of losing the job: evidence from differences in firing costs.
- 1003 ALEXANDER KARAIVANOV, SONIA RUANO, JESÚS SAURINA AND ROBERT TOWNSEND: No bank, one bank, several banks: does it matter for investment?
- 1004 GABRIEL PEREZ-QUIROS AND HUGO RODRÍGUEZ MENDIZÁBAL: Asymmetric standing facilities: an unexploited monetary policy tool.
- 1005 GABRIEL JIMÉNEZ, JOSE A. LOPEZ AND JESÚS SAURINA: How does competition impact bank risk-taking?
- 1006 GIUSEPPE BERTOLA, AURELIJUS DABUSINSKAS, MARCO HOEBERICHTS, MARIO IZQUIERDO, CLAUDIA KWAPIL, JEREMI MONTORNÈS AND DANIEL RADOWSKI: Price, wage and employment response to shocks: evidence from the WDN Survey.
- 1007 JAVIER MENCÍA: Testing non-linear dependence in the Hedge Fund industry.
- 1008 ALFREDO MARTÍN-OLIVER: From proximity to distant banking: Spanish banks in the EMU.
- 1009 GALO NUÑO: Optimal research and development expenditure: a general equilibrium approach.
- 1010 LUIS J. ÁLVAREZ AND PABLO BURRIEL: Is a Calvo price setting model consistent with micro price data?
- 1011 JENS HAGENDORFF, IGNACIO HERNANDO, MARÍA J. NIETO AND LARRY D. WALL: What do premiums paid for bank M&As reflect? The case of the European Union.
- 1012 DAVID DE ANTONIO LIEDO: General equilibrium restrictions for dynamic factor models.
- 1013 JAMES COSTAIN, JUAN F. JIMENO AND CARLOS THOMAS: Employment fluctuations in a dual labor market.
- 1014 LUIS M. VICEIRA AND RICARDO GIMENO: The euro as a reserve currency for global investors.
- 1015 PALOMA LÓPEZ-GARCÍA AND JOSÉ MANUEL MONTERO: Understanding the Spanish business innovation gap: The role of spillovers and firms' absorptive capacity.
- 1016 AITOR LACUESTA AND SERGIO PUENTE: El efecto del ciclo económico en las entradas y salidas de inmigrantes en España.
- 1017 REBEKKA CHRISTOPOULOU, JUAN F. JIMENO AND ANA LAMO: Changes in the wage structure in EU countries.
- 1018 THOMAS BREUER, MARTIN JANDAČKA, JAVIER MENCÍA AND MARTIN SUMMER: A systematic approach to multi-period stress testing of portfolio credit risk.
- 1019 LUIS J. ÁLVAREZ AND PABLO BURRIEL: Micro-based estimates of heterogeneous pricing rules: The United States vs. the euro area.
- 1020 ALFREDO MARTÍN-OLIVER AND VICENTE SALAS-FUMÁS: I.T. investment and intangibles: Evidence from banks.
- 1021 LUISA LAMBERTINI, CATERINA MENDICINO AND MARIA TERESA PUNZI: Expectations-driven cycles in the housing market.
- 1022 JULIÁN MESSINA, PHILIP DU CAJU, CLÁUDIA FILIPA DUARTE, NIELS LYNGGÅRD HANSEN AND MARIO IZQUIERDO: The incidence of nominal and real wage rigidity: an individual-based sectoral approach.
- 1023 ALESSIO MORO: Development, growth and volatility.
- 1024 LUIS J. ÁLVAREZ AND ALBERTO CABRERO: Does housing really lead the business cycle?
- 1025 JUAN S. MORA-SANGUINETTI: Is judicial inefficiency increasing the house property market weight in Spain? Evidence at the local level.
- 1026 MAXIMO CAMACHO, GABRIEL PEREZ-QUIROS AND PILAR PONCELA: Green shoots in the Euro area. A real time measure.
- 1027 AITOR ERCE AND JAVIER DÍAZ-CASSOU: Creditor discrimination during sovereign debt restructurings.
- 1028 RAFAEL REPULLO, JESÚS SAURINA AND CARLOS TRUCHARTE: Mitigating the pro-cyclicality of Basel II.
- 1029 ISABEL ARGIMÓN AND JENIFER RUIZ: The effects of national discretions on banks.
- 1030 GABRIEL JIMÉNEZ, STEVEN ONGENA, JOSÉ-LUIS PEYDRÓ AND JESÚS SAURINA: Credit supply: identifying balance-sheet channels with loan applications and granted loans.
- 1031 ENRIQUE MORAL-BENITO: Determinants of economic growth: A Bayesian panel data approach.

^{1.} Previously published Working Papers are listed in the Banco de España publications catalogue.

- 1032 GABE J. DE BONDT, TUOMAS A. PELTONEN AND DANIEL SANTABÁRBARA: Booms and busts in China's stock market: Estimates based on fundamentals.
- 1033 CARMEN MARTÍNEZ-CARRASCAL AND JULIAN VON LANDESBERGER: Explaining the demand for money by non-financial corporations in the euro area: A macro and a micro view.
- 1034 CARMEN MARTÍNEZ-CARRASCAL: Cash holdings, firm size and access to external finance. Evidence for the euro area.
- 1035 CÉSAR ALONSO-BORREGO: Firm behavior, market deregulation and productivity in Spain.
- 1036 OLYMPIA BOVER: Housing purchases and the dynamics of housing wealth.
- 1037 DAVID DE ANTONIO LIEDO AND ELENA FERNÁNDEZ MUÑOZ: Nowcasting Spanish GDP growth in real time: "One and a half months earlier".
- 1038 FRANCESCA VIANI: International financial flows, real exchange rates and cross-border insurance.
- 1039 FERNANDO BRONER, TATIANA DIDIER, AITOR ERCE AND SERGIO L. SCHMUKLER: Gross capital flows: dynamics and crises
- 1101 GIACOMO MASIER AND ERNESTO VILLANUEVA: Consumption and initial mortgage conditions: evidence from survey data.
- 1102 PABLO HERNÁNDEZ DE COS AND ENRIQUE MORAL-BENITO: Endogenous fiscal consolidations.
- 1103 CÉSAR CALDERÓN, ENRIQUE MORAL-BENITO AND LUIS SERVÉN: Is infrastructure capital productive? A dynamic heterogeneous approach.
- 1104 MICHAEL DANQUAH, ENRIQUE MORAL-BENITO AND BAZOUMANA OUATTARA: TFP growth and its determinants: nonparametrics and model averaging.
- 1105 JUAN CARLOS BERGANZA AND CARMEN BROTO: Flexible inflation targets, forex interventions and exchange rate volatility in emerging countries.
- 1106 FRANCISCO DE CASTRO, JAVIER J. PÉREZ AND MARTA RODRÍGUEZ VIVES: Fiscal data revisions in Europe.
- 1107 ANGEL GAVILÁN, PABLO HERNÁNDEZ DE COS, JUAN F. JIMENO AND JUAN A. ROJAS: Fiscal policy, structural reforms and external imbalances: a quantitative evaluation for Spain.
- 1108 EVA ORTEGA, MARGARITA RUBIO AND CARLOS THOMAS: House purchase versus rental in Spain.
- 1109 ENRIQUE MORAL-BENITO: Dynamic panels with predetermined regressors: likelihood-based estimation and Bayesian averaging with an application to cross-country growth.
- 1110 NIKOLAI STÄHLER AND CARLOS THOMAS: FiMod a DSGE model for fiscal policy simulations.
- 1111 ÁLVARO CARTEA AND JOSÉ PENALVA: Where is the value in high frequency trading?
- 1112 FILIPA SÁ AND FRANCESCA VIANI: Shifts in portfolio preferences of international investors: an application to sovereign wealth funds.
- 1113 REBECA ANGUREN MARTÍN: Credit cycles: Evidence based on a non linear model for developed countries.
- 1114 LAURA HOSPIDO: Estimating non-linear models with multiple fixed effects: A computational note.

