# Is Who You Work for as Important as What You Know? The Role of Firms in Labour Market Outcomes

David Card - UC Berkeley

Economists' standard prescription for labor market success: go to school; work hard; acquire new skills...

But if you ask a typical person - getting a "good job" is the key to success.

Moreover, a lot of local development policies amount to trying to attract/retain "good jobs."

What do people mean by a "good job"? Do "good jobs" come from "good firms"?

#### Today I will argue that:

- a) getting a "good job" is mainly about working at a "good firm"
- b) firms offer systematic wage premiums (or discounts) relative to "the market"
- c) variation in these premiums is large (and growing)
- d) more productive firms pay higher wages (there also may be other sources of variation)
- e) firm wage premiums help explain many aspects of labor market behavior and outcomes

#### Outline

- I. Background
- II. How much do firms matter in wage outcomes?
- III. Interpretation: rent sharing, efficiency wages or ?
- IV. What other features of the labor market can be explained by firm wage premiums?

cyclical wage variation career progression gender gaps

V. What else *might* be explained?

#### I. Background

1a. In the standard model we use to study the labor market (CRS, integrated factor markets) firms don't matter

- firms face horizontal supply curves at the market wage; firm size is indeterminate
- working model for many questions: trade; immigration; SBTC; human capital; minimum wages; occupational choice; local labor markets

#### 1b. The "modern" version:

- multiple skill groups; workers perfectly mobile across firms
- firms differ in various attributes (entrepreneurial skill, management practices, ...) so there is a lot of systematic heterogeneity
- But each worker is paid his/her "market wage".
  - -No special link to current or past employers
  - -One good firm benefits all workers in the market (it doesn't matter if you actually work for Google)

- 2. What do we know from earlier work?
- a. Research using firm-level union contract data
  - rent sharing, pattern bargaining, slow adjustment
- b. Research using panel data (PSID, NLSY...)
  - big "job component" of wages
- c. Research on displaced workers
  - job losers have large, persistent wage losses
- d. Research on firm-level data sets (LRD...)
  - variance in TFP is huge (var=1) and persistent

- e. Theoretical research on "frictional markets"
- Burdett Mortensen: firms set wages to balance turnover costs and wage costs. High/low wages equally profitable
- DMP: firms post job openings. Workers have different "match productivities" (each firm has 1 job in canonical version)

#### extensions

- Cahuc et al: firms respond to outside offers
- Stole and Zwiebul: individual bargaining

- f. Modern rent-sharing literature
- worker-firm data, allows controls for worker heterogeneity
- very important, since higher skilled workers will lead to higher value-added/worker (VA/L)
- typical elasticities w.r.t VA/L: 0.05 to 0.10
- CCHK "replication": look at wage changes of job stayers in Portugal (QP data) as firm becomes more/less profitable. Elasticities in same range

Table 1: Summary of Estimated Rent Sharing Elasticities from the Recent (Preferred specification, adjusted to TFP basis)

|                                                              | Estimated  | Std.    |           |
|--------------------------------------------------------------|------------|---------|-----------|
| Study and country/industry                                   | Elasticity | Error   |           |
| Group 3: Firm-level profit measure, individual-specific wage |            |         |           |
| 9. Margolis and Salvanes (2001), French manufacturing        | 0.062      | (0.041) | )         |
| 9. Margolis and Salvanes (2001), Norwegian manufacturing     | 0.024      | (0.006) |           |
| 10. Arai (2003), Sweden                                      | 0.020      | (0.004) |           |
| 11. Guiso, Pistaferri, Schivardi (2005), Italy               | 0.069      | (0.025) |           |
| 12. Fakhfakh and FitzRoy (2004), French manufacturing        | 0.120      | (0.045) |           |
| 13. Du Caju, Rycx, Tojerow (2011), Belgium                   | 0.080      | (0.010) |           |
| 14. Martins (2009), Portuguese manufacturing                 | 0.039      | (0.021) |           |
| 15. Guertzgen (2009), Germany                                | 0.048      | (0.002) | Mean=0.08 |
| 16. Cardoso and Portela (2009), Portugal                     | 0.092      | (0.045) |           |
| 17. Arai and Hayman (2009), Sweden                           | 0.068      | (0.002) |           |
| 18. Card, Devicienti, Maida (2014), Italy (Veneto region)    | 0.073      | (0.031) |           |
| 19. Carlsson, Messina, and Skans (2014), Swedish mfg.        | 0.149      | (0.057) |           |
| 20. Card, Cardoso, Kline (2016), Portugal, between firm      | 0.156      | (0.006) |           |
| 20. Card, Cardoso, Kline (2016), Portugal, within-job        | 0.049      | (0.007) |           |
| 21. Bagger et al. (2014), Danish manufacturing               | 0.090      | (0.020) | J         |

Table 2: Cross-Sectional and Within-Job Models of Rent Sharing for Portuguese Male Workers

|                                                                                                                                         | BASIC<br>(1)     | +Major<br>Industry<br>(2) | +Detailed<br>Industry<br>(3) |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------|------------------------------|
| B. Within-Job Models (Change in Wages from 2005 to                                                                                      | to 2009 for stay | vers)                     |                              |
| 4. OLS: rent measure = change in log value added per worker from 2005 to 2009                                                           | 0.041            | 0.039                     | 0.034                        |
|                                                                                                                                         | (0.006)          | (0.005)                   | (0.003)                      |
| 5. OLS: rent measure = change in log sales per worker from 2005 to 2009                                                                 | 0.015            | 0.014                     | 0.013                        |
|                                                                                                                                         | (0.005)          | (0.004)                   | (0.003)                      |
| 6. IV: rent measure = change in log value added per worker from 2005 to 2009. Instrument = change in log sales per worker, 2004 to 2010 | 0.061 (0.018)    | 0.059<br>(0.017)          | 0.056<br>(0.016)             |
| First stage coefficient                                                                                                                 | 0.221            | 0.217                     | 0.209                        |
|                                                                                                                                         | [t=11.82]        | [t=13.98]                 | [t=18.63                     |

#### 3. Abowd Kramarz Margolis (AKM)

```
log(wage) = person effect (skills, ambition etc)
```

- + firm effect (firm-specific premium)
- + Xβ (age/time trends/returns to schooling)
- + error

error = job-match premium + transitory shocks (firm-wide or worker-specific)

note: job-match → heterogeneous treatment effect

#### Reality check - do firms really "post" different wages?

How do firms hire? Hall-Krueger survey

Q1: 'take it or leave it' offer or some bargaining?

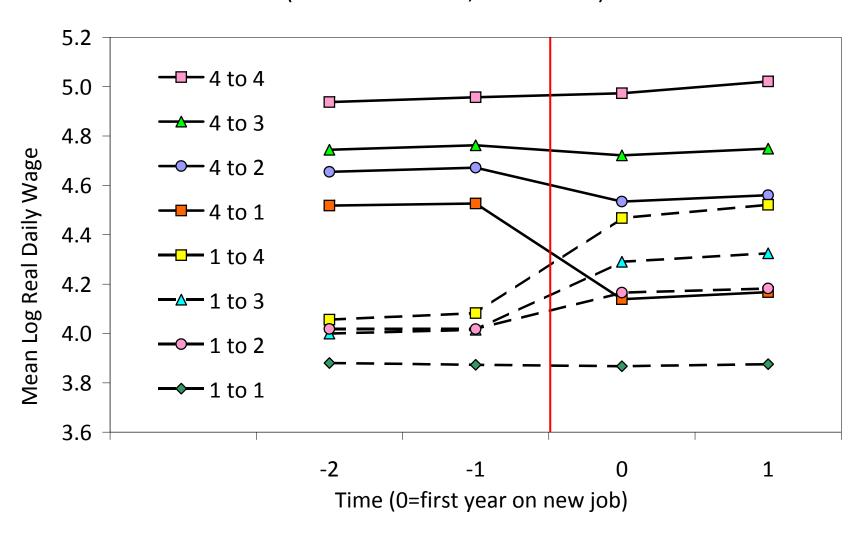
Q2: knew pay exactly at time of 1<sup>st</sup> interview

26% pay known/no bargaining

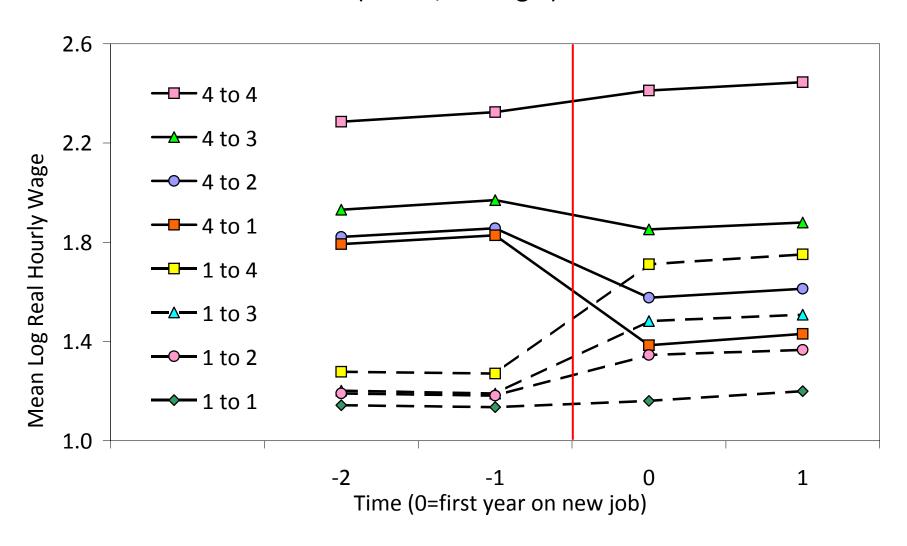
37% pay uncertain/no bargaining

25% pay uncertain/bargaining

#### Other evidence:


- van Ours and Ridder (inventory of applications)
- job fairs
- network lit: workers know where the good jobs are

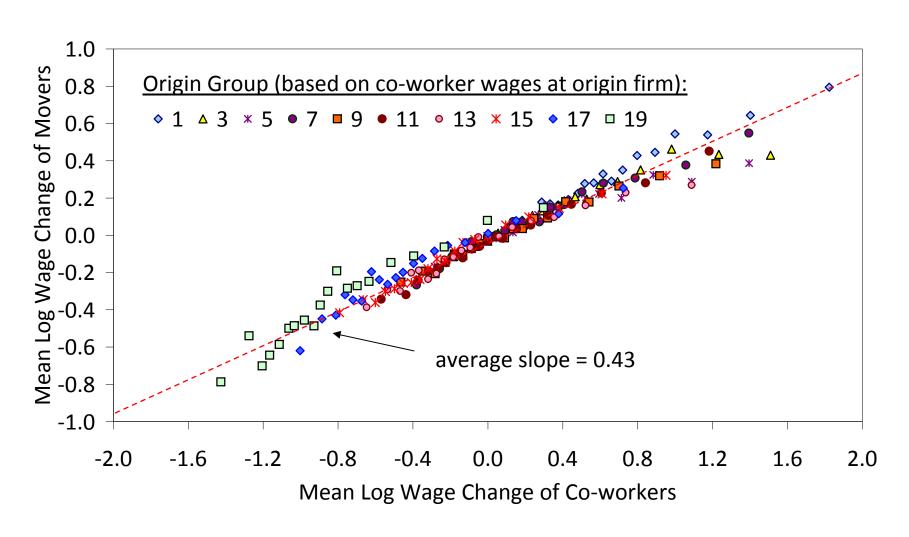
#### Non-parametric evidence of "firm effects"


#### CHK event study design:

- classify jobs in a year by average coworker wage (into 4 quartiles)
- select workers who change establishments;
   classify changes by quartile of co-worker
   wages in last year of old job/first year of new job
- focus on workers with 2+ years pre/post

### Mean Wages of Job Changers by Origin/Destination (German FT Men, 2002-2009)




# Mean Wages of Job Changers by Origin/Destination Group (Males, Portugal)



Closer examination of the wage changes of job changers (Portuguese male job changers)

- classify jobs into 20 groups using coworker wages
- for each of 400 origin/destination cells calculate
  - change in mean log co-worker wage =  $\Delta w^{coworker}$
  - change in mean wages of movers =  $\Delta w$
- plot: Δw vs. Δw<sup>coworker</sup>
- looks like  $E[\Delta w | \Delta w^{coworker}] = 0.4 \Delta w^{coworker}$

## Wage Changes of Movers vs. Changes of Co-workers (Classifying origin/destination firms into 20 bins)



#### Take-aways:

- 1) wages rise/fall when you join a firm with higher/lower-paid coworkers
- 2) large gaps lots of 40% wage losses/gains
- 3) no average mobility premium
- 4) approximately symmetric gains/losses
  - (→ not much sorting on match component)
- 5) no clear trends in pre/post-transition wages
- 6) upwardly mobile workers have higher wages given their origin quartile
  - (→ sorting on 'permanent' ability component)

Applying AKM framework: Germany, Portugal, Brazil

Table 3: Summary of Estimated Models for Male and Female Workers

|                                             | Males       | Females | German Mei | n Brazil - WM |
|---------------------------------------------|-------------|---------|------------|---------------|
| Summary of Parameter Estimates: AKM Mo      | <u>odel</u> |         |            |               |
| Std. dev. of pers. effects (person-yr obs.) | 0.420       | 0.400   | 0.357      | 0.448         |
| Std. dev. of firm effects (person-yr obs.)  | 0.247       | 0.213   | 0.230      | 0.304         |
| Std. dev. of Xb (across person-yr obs.)     | 0.069       | 0.059   | 0.084      | 0.222         |
| Correlation of person/firm effects          | 0.167       | 0.152   | 0.249      | 0.239         |
| Adjusted R-squared                          | 0.934       | 0.940   | 0.927      | 0.899         |
| Correlation male / female firm effects      |             | 0.590   |            |               |
| Comparison job-match effects model:         |             |         |            |               |
| Adjusted R-squared                          | 0.946       | 0.951   | 0.949      | 0.928         |
| Std. deviation match effect in AKM model    | 0.062       | 0.054   | 0.075      | 0.120         |
| Share of variance of log wages due to:      |             |         |            |               |
| person effects                              | 57.6        | 61.0    | 51.2       | 44.5          |
| firm effects                                | 19.9        | 17.2    | 21.2       | 20.5          |
| covariance of person/firm effects           | 11.4        | 9.9     | 16.4       | 14.4          |
| Xb and associated covariances               | 6.2         | 7.5     | 5.2        | 13.1          |
| residual                                    | 4.9         | 4.4     | 5.9        | 7.5           |

#### III. Interpretation

- high-wage firms survive longer
   (so they are more profitable, despite higher wages)
- Fr/Italy/PT: premiums correlated with profits
- jobs at high-wage firms survive longer
   (wage premium is not just an offset for hours/effort)
- modest widening of premiums over time
   BUT: new firms (post-1996) have big lower tail
  - → emergence of low wage firms that specialize in hiring low-wage workers

- a. Is the wage premium simply rent-sharing?
- wide variation across firms in profit/worker (TFP, ...)
- CCHK: relate components of AKM to log(VA/L)
- person effect correlated with VA/L sorting
- firm effect correlated with VA/L rent sharing (or?)
- ALSO: check that firm effects for different groups have similar elasticity

Table 4: Relationship Between Components of Wages and Mean Log VA/N

|                                   | BASIC<br>(1) | +Major<br>Industry<br>(2) | +Detailed<br>Industry<br>(3) |
|-----------------------------------|--------------|---------------------------|------------------------------|
| A. Combined Sample (n=2,252,436 p |              |                           |                              |
| • • • •                           | •            | -                         | -                            |
| 1. Log Hourly Wage                | 0.250        | 0.222                     | 0.187                        |
|                                   | (0.018)      | (0.016)                   | (0.012)                      |
| 2. Estimated Person Effect        | 0.107        | 0.093                     | 0.074                        |
|                                   | (0.010)      | (0.009)                   | (0.006)                      |
|                                   | (0.010)      | (0.003)                   | (0.000)                      |
| 3. Estimated Firm Effect          | 0.137        | 0.123                     | 0.107                        |
|                                   | (0.011)      | (0.009)                   | (0.008)                      |
| 4. Fatimanta di Carramiata Index  | 0.001        | 0.004                     | 0.004                        |
| 4. Estimated Covariate Index      | 0.001        | 0.001                     | 0.001                        |
|                                   | (0.000)      | (0.000)                   | (0.000)                      |

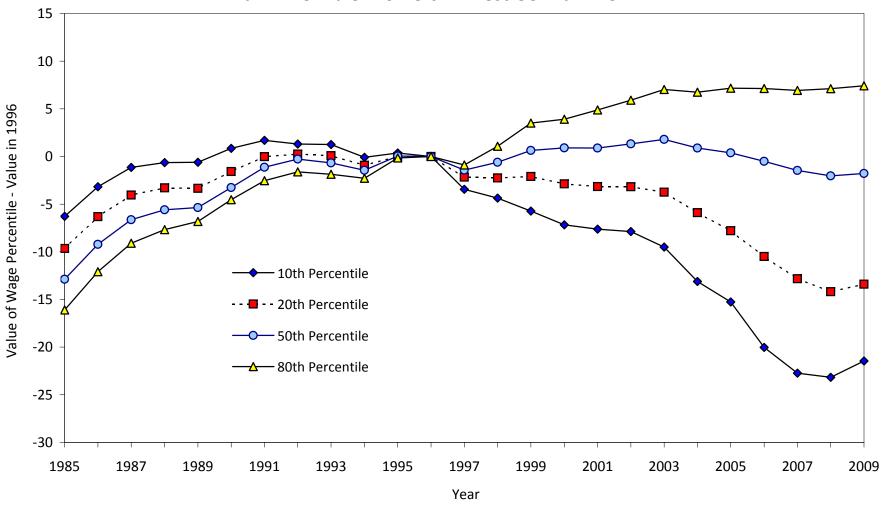
Table 4: Relationship Between Components of Wages and Mean Log VA/N

|                                    | BASIC<br>(1)         | +Major<br>Industry<br>(2) | +Detailed<br>Industry<br>(3) |
|------------------------------------|----------------------|---------------------------|------------------------------|
| B. Less-Educated Workers (n=1,674, | .676 person year obs | ervations at 36,17        | 79 firms)                    |
| 5. Log Hourly Wage                 | 0.239                | 0.211                     | 0.181                        |
|                                    | (0.017)              | (0.016)                   | (0.011)                      |
| 6. Estimated Person Effect         | 0.089                | 0.072                     | 0.069                        |
|                                    | (0.009)              | (0.009)                   | (0.005)                      |
| 7. Estimated Firm Effect           | 0.144                | 0.133                     | 0.107                        |
|                                    | (0.015)              | (0.013)                   | (0.008)                      |
| C. More-Educated Workers (n=577,   | 760 person year obse | ervations at 17,61        | 5 firms)                     |
| 9. Log Hourly Wage                 | 0.275                | 0.247                     | 0.196                        |
|                                    | (0.024)              | (0.020)                   | (0.017)                      |
| 10. Estimated Person Effect        | 0.137                | 0.130                     | 0.094                        |
|                                    | (0.016)              | (0.013)                   | (0.009)                      |
| 11. Estimated Firm Effect          | 0.131                | 0.113                     | 0.099                        |
|                                    | (0.012)              | (0.009)                   | (0.010)                      |

# IV. What features of the labor market can be explained by firm wage premiums?

- 1. Rise in wage inequality (CHK, Germany)
- FT male workers (main job each year) 1985-2009
- compare model in 4 periods:

```
1985-1991 - before reunification
```


1990-1996 - reunification, E-W migration

1996-2002 - the "sick man of Europe"

2002-2009 - the German economic miracle

```
V(log w_{ijt}) = V(person) + V(firm) + 2cov(p,f)
+ other components
```

### Trends in Percentiles of Real Log Daily Wages Relative to 1996: Full Time Male Workers in West German Men



#### Decompositions of Rise in Variance for Alternative Samples

|                                                   | FT Men | FT Males w/<br>Apprenticeship | FT Women |
|---------------------------------------------------|--------|-------------------------------|----------|
| 1. Rise in Variance<br>1985-91 to 2002-09         | 0.112  | 0.043                         | 0.095    |
| 2. Rise in Var(Person Effects) (percent of total) | 0.043  | 0.024                         | 0.048    |
|                                                   | (39)   | (55)                          | (50)     |
| 3. Rise in Var(Estab. Effects) (percent of total) | 0.027  | 0.018                         | 0.023    |
|                                                   | (25)   | (42)                          | (25)     |
| 3. Rise in 2×Cov(Pers,Estab) (percent of total)   | 0.038  | 0.014                         | 0.017    |
|                                                   | (34)   | (32)                          | (18)     |

# Gender gap CCK- Portugal (QP = annual census of all jobs)

fit AKM models separately by gender

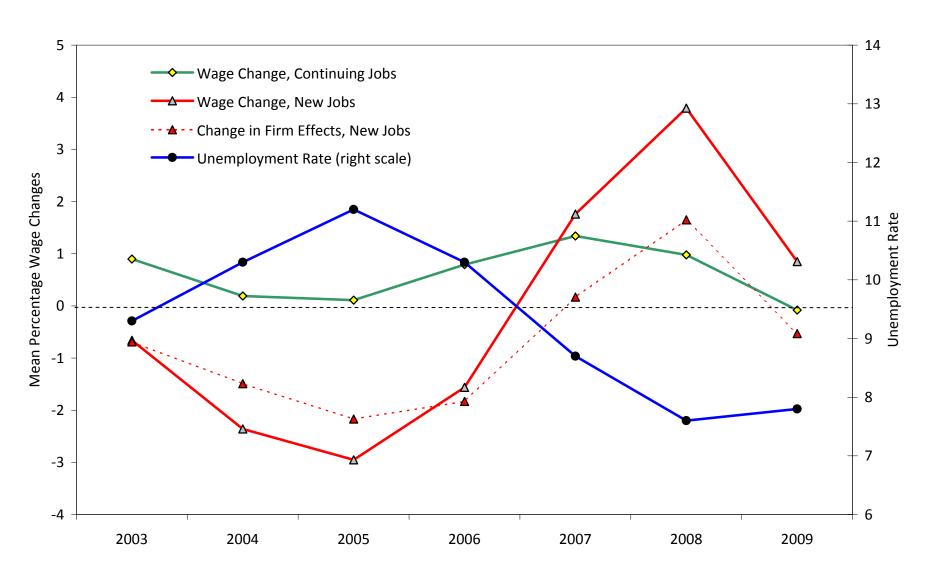
#### counterfactuals:

| - raw MF | wage gap | (hourly | y wages | = 0. | 23 |
|----------|----------|---------|---------|------|----|
|          |          |         | O       |      |    |

- give F's the male firm effects = 0.22

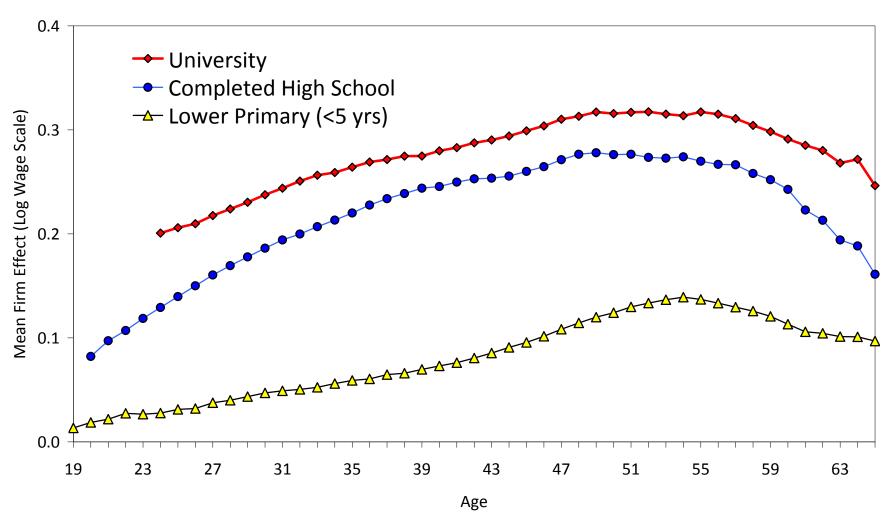
- give F's the male firm distribution = 0.18

20-25% of average gender gap is due to firm distribution


3. cyclical wage variation some part of cyclical wage adjustment arises from job-changers

Job changers:

 $\Delta \log w = \Delta \text{firm effects} + \Delta \text{match effects}$ 


"quality" of new jobs (based on firm effect) is cyclical

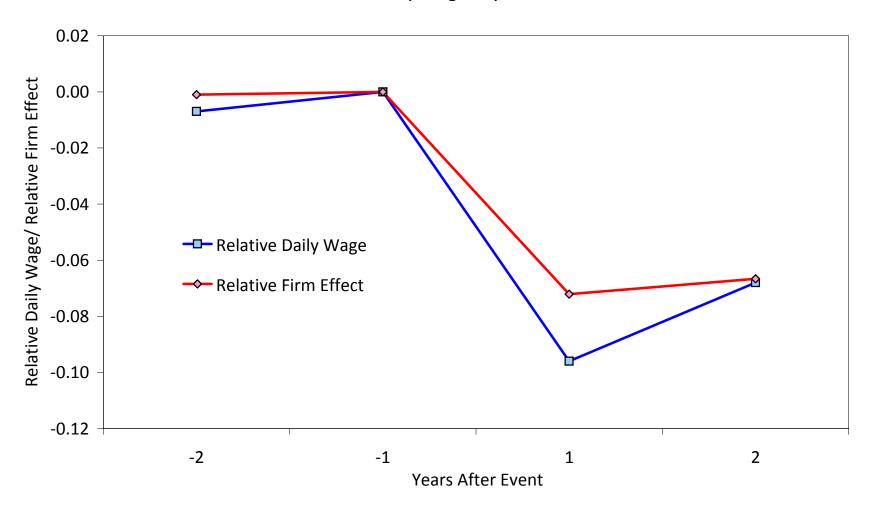
#### Cyclicality in Wage Changes for Continuting and New Jobs (Full Time Males Only)



- 3. Early career progression
- Topel and Ward: young (male) workers' wages rise by changing jobs
- does this arise through rising firm quality (as measured by firm effects), rising match quality, or both?
- do long term effects of recession (Oreopoulos von Wachter, Kahn) come from lack of openings at highwage firms?

#### Mean Firm Effects by Age: Portuguese Males




Note: Firm effects are normalized using the method in Card, Cardoso and Kline (2016).

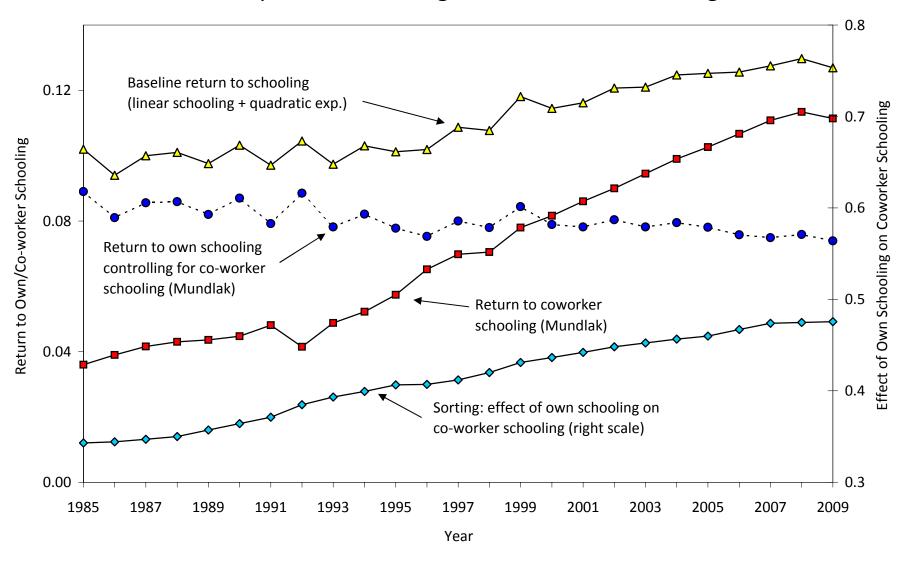
- 4. wage losses of displaced workers
- seminal JLS study: job losers in PA in early 1980s losses attributable to disappearing industry rents (and loss of union coverage)
- Davis + von Wachter: job losers with 3+ years tenure at plants with 50+ workers that shed 30% or more workers (*not closures*).

Earnings Losses (with 0's)

|               | 1 yr out | 5 yrs out | 10 yrs out |
|---------------|----------|-----------|------------|
| avg expansion | -10%     | -6%       | -4%        |
| avg recession | -17%     | -10%      | -6%        |

### Contribution of Firm Effects to Wage Changes: Workers Affected by Large Layoff Events, 2004-2007




Full time men with 2+ years of wage data before and after downsizing of 30% or more at firms with 50+ workers

- 5. Rising returns to education
- CHK find increased sorting of more highly educated workers to higher-premium firms
- this "explains" all of the rise in return to education in W. Germany
- can be cross-checked by simple CRE approach:

$$log wage (i,t) = a(t) + b(t)ED(i,t) + c(t)Co-wkr ED(i,t)$$

- c(t) and Corr(ED, Co-wkr ED) are is rising over time
- b(t) is actually falling slightly

#### Decomposition of Changes in Return to Schooling



# V. What else *might* be related to firm wage premiums?

- 1. Other "gaps"
  - a. racial wage gaps (Brazil)
  - b. immigrant assimilation (works in Portugal)
  - c. rise in incomes of the top 1% (Goldman effect)
- 2. Networks
  - network capital = mean( $\psi_i$ ) for friends
- 3. Intergeneration correlation in earnings (Kramarz-Skans)