SCHUMPETER MEETS GOLDILOCKS: THE SCARRING EFFECTS OF FIRM DESTRUCTION 2022 BANCO DE **ESPAÑA** Eurosistema Documentos Ocasionales N.º 2216 Beatriz González, Enrique Moral-Benito and Isabel Soler # SCHUMPETER MEETS GOLDILOCKS: THE SCARRING EFFECTS OF FIRM DESTRUCTION (*) | Beatriz González | |----------------------| | BANCO DE ESPAÑA | | Enrique Moral-Benito | | BANCO DE ESPAÑA | | Isabel Soler | | BANCO DE ESPAÑA | (*) Beatriz González (Banco de España): beatrizgonzalez@bde.es. Enrique Moral-Benito (Banco de España): enrique.moral@bde.es. Isabel Soler (Banco de España): isabel.soler@bde.es. The opinions and analysis are the responsibility of the authors, and therefore, do not necessarily coincide with those of the Banco de España or the Eurosystem. All errors are our own. The Occasional Paper Series seeks to disseminate work conducted at the Banco de España, in the performance of its functions, that may be of general interest. The opinions and analyses in the Occasional Paper Series are the responsibility of the authors and, therefore, do not necessarily coincide with those of the Banco de España or the Eurosystem. Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged. The Banco de España disseminates its main reports and most of its publications via the Internet on its © BANCO DE ESPAÑA, Madrid, 2022 ISSN: 1696-2230 (on-line edition) website at: http://www.bde.es. #### **Abstract** The COVID-19 shock impacted firms severely all over the world. Governments were swift to implement policy measures to aid these firms, but these are coming to an end in the midst of a highly uncertain macroeconomic environment as a result of the war in Ukraine and the surge in energy prices. In this context, policymakers are worried about the potential increase in firm destruction after support policies are lifted, and what its macroeconomic consequences could be. Using data for Spain, we uncover an inverted U-shaped relationship between firm destruction and total factor productivity (TFP) growth: at low levels of firm exit, Schumpeterian cleansing effects dominate and the effect of firm destruction on TFP is positive, but when exit rates are very high, this effect turns negative. In order to rationalize this finding, we build on Asturias et al. (2017) and develop a model of firm dynamics with exit spillovers calibrated to match the non-linearity found in the data. This reduced-form spillover captures amplification effects from very high destruction rates that might force viable firms to exit, for example, due to disruptions in the production network and a generalised contraction in credit supply. Armed with the calibrated model, we perform counterfactual scenarios depending on the severity of the shock to firm exit. We find that when the shock is mild and firm destruction rates upon impact are similar to those observed during the Global Financial Crisis (GFC), TFP growth increases, and the recovery is faster. However, when the shock is severe and firm exit is well above that of the GFC, TFP growth decreases, since high efficiency firms are forced out of the market, which makes the recovery much slower. Overall, our results point to the importance of keeping exit rates low to avoid long term scarring effects. **Keywords:** firm exit, productivity. JEL classification: E22, G33, M21, O47. #### Resumen La crisis económica vinculada a la pandemia de COVID-19 supuso una perturbación sin precedentes para las empresas a nivel global, si bien se vio parcialmente mitigada por las medidas de apoyo desplegadas por las autoridades. Sin embargo, estas medidas están ahora llegando a su fin en medio de un entorno macroeconómico altamente incierto, como resultado de la guerra en Ucrania y del aumento de los precios de la energía. En este contexto, las consecuencias macroeconómicas de un incremento significativo de las tasas de destrucción de empresas suponen una fuente de preocupación que no debe minusvalorarse. Este trabajo documenta una relación en forma de U invertida entre la destrucción de empresas y el crecimiento de la productividad total de los factores (PTF): a niveles bajos de destrucción, la salida de empresas está asociada a aumentos de la productividad relacionados con el fenómeno de la destrucción creativa; sin embargo, a niveles elevados de destrucción, esta asociación se vuelve negativa y aumentos en las tasas de salida redundan en pérdidas de productividad. Asimismo, este trabajo considera un modelo de dinámica empresarial que incorpora una externalidad de la destrucción de empresas que genera la relación no lineal estimada en los datos. En particular, esta externalidad captura los efectos de amplificación asociados a una destrucción de empresas muy elevada que podría forzar la salida del mercado de empresas viables. Por ejemplo, debido a disrupciones en la cadena de suministros o a una contracción generalizada y muy acusada de la oferta de crédito ante un aumento muy significativo de las tasas de impago. Utilizando este modelo, se plantean dos escenarios distintos, dependiendo de la severidad de la perturbación sobre las tasas de destrucción de empresas en España. Si la perturbación acarrea una destrucción de empresas similar a la observada durante la crisis financiera global, el efecto sobre la productividad es positivo y la recuperación económica es más rápida que en ausencia de dicha perturbación. Sin embargo, si la perturbación acarrea una destrucción de empresas hasta cuatro veces superior a la observada durante la crisis anterior, el impacto sobre el crecimiento de la productividad es negativo, porque muchas empresas viables se verían obligadas a salir del mercado debido a la externalidad, lo que haría que la recuperación fuese más lenta. Palabras clave: salida de empresas, productividad. Códigos JEL: E22, G33, M21, O47. ### **Contents** | Abstract 5 | |--| | Resumen 6 | | 1 Introduction 8 | | 2 Data 11 | | 3 Empirical findings 12 | | 3.1 FHK decompositions 12 | | 3.2 Exit rates and TFP growth: uncovering a new non-linearity 14 | | 4 Model 15 | | 4.1 Household 16 | | 4.2 Firms 16 | | 4.3 Market clearing conditions 19 | | 4.4 Balanced Growth Path 20 | | 5 Calibration 20 | | 6 Counterfactual exercises 22 | | 7 Conclusions 27 | | References 28 | | Appendix 31 | ## 1 Introduction The COVID-19 pandemic brought an unprecedented economic disruption, halting for months most of the developed economies and forcing firms to close and/or operate below capacity due to social distancing measures. When the most acute phase of the pandemic was over, supply chain disruptions and turmoil in energy markets, recently aggravated by the war in Ukraine, originated an increase in firms' operating costs not seen in Spain over the last few decades. In this context, policymakers are starting to lift the extraordinary firm support measures that were in place during the COVID-19 pandemic, such as guaranteed loans or debt moratoriums.¹ Therefore, a key concern is what will happen in terms of firm survival when these policies are finally removed under the current circumstances. So far, the response to firm bankruptcy and exit rates has been muted worldwide, and Spain is no exception. However, as discussed in Blanco and García (2022), the recent increase in doubtful loans points to a latent risk for firm destruction that might materialize if the recovery of the Spanish economy is more fragile than currently anticipated.² In particular, if there is a strong enough recovery in demand, exit rates might just modestly increase. However, if due to the worsening of current macroeconomic conditions, firms' demand does not fully recover and operating costs remain high, this might result in cascade failures and a sharp deterioration of financing conditions for all firms. This may also affect viable firms in a situation in which these firms have weakened balance sheets and are still weak at the time of the removal of policy support. What would be the impact of these developments on TFP? On the one hand, if it is low productivity firms exiting, it might be the case that resources are allocated towards more productive firms or products, hence increasing aggregate productivity (Caballero and Hammour, 1994). On the other hand, it may be the case that the magnitude of the shock is large enough to also hurt the position of productive and viable firms, forcing them to exit. Furthermore, a high exit rate could have negative effects even on other firms through input-output linkages, and also bankruptcies might make banks tighten their credit supply, amplifying the negative effects of the shock. These amplification effects might make productive firms exit and deter productive firms from entering (Hallward-Driemeier and Rijkers, 2013; Sedláček, 2020). Using data for Spain, we contribute to this strand of research by showing that the relationship between firm exit rates and aggregate TFP is an inverted U-shaped, and we show in a stylized model that features this non-linearity the implications for firm dynamics ¹For instance, the debt moratoriums are expected to be lifted in Spain in June 2022. ²See also the article of Carmen Reinhart and Leora Klapper stressing how forbearance policies made it more difficult for banking supervisors to detect the warning signs of rising loan defaults, which can result in a potentially disastrous non-performing loan (NPL) problem (see the article here) and aggregate TFP. Understanding these patterns is of paramount importance in the current juncture, especially for an economy such as the Spanish one, characterized by its sluggish productivity growth over the last two decades. First, we use firm-level data for Spanish non-financial firms from 2000 to 2018 to document the patterns of productivity growth in the last decades and to better understand the relationship
between productivity growth and exit rates in Spain. The data comes from Central de Balances Integrada (CBI), which includes the quasi-universe of Spanish firms. One caveat of this dataset (as is the case with many business registries), is that sometimes firms disappear and reappear in the dataset, without actually exiting the economy. In order to be able to capture the actual exit of firms, we match CBI with microdata on exit from the Spanish National Statistical Agency (Directorio Central de Empresas -DIRCE-) that combines data from the tax agencies, social security filings and the mercantile registry to create an exit indicator at the firm level. We follow Foster et al., 2001 in their methodology to decompose aggregate TFP growth into four different components: entry, exit, reallocation and within-firm growth. As it has been widely documented, Spain had a boom period until 2007 characterized by the increase in misallocation and the decrease in TFP (see for instance García-Santana et al., 2020, Díaz and Franjo, 2016 or Gopinath et al., 2017 for different explanations of this phenomenon). During the burst period (2008-2013), Spain suffered a deep crisis with TFP decreasing even further. In the last years of our sample (2013-2018), which we call the recovery period, TFP increased by 2.7%. One characteristic that is common to the three sub-periods is the positive (and modest) contribution of the exit margin to TFP growth, and this contribution seems to increase in times of crisis when exit rates are larger. This suggests that the 'cleansing effects' of exit are dominant in the aggregate and are thus a driver of TFP growth in Spain.³ Second, we study further this relationship between exit rates and TFP growth, and we document a new empirical fact. We show that, at the sector level, exit rates are non-linearly related to future TFP growth. More concretely, we uncover an inverted U-shaped relationship between firm exit rates and TFP growth. That is, when exit rates are low, an increase in exit rates is associated with higher TFP growth, which seems to point at the 'cleansing effects' previously discussed: less productive firms exit the economy and hence resources shift towards high productivity firms, increasing aggregate TFP growth. However, when exit rates are high, an increase in firm destruction is associated with a decrease in TFP, which seems to point at the 'scarring effects' of crises that induce large increases in exit. These results are robust to including controls, sector and year fixed effects, and running output-weighted regressions. ³We also show that, although the share of exiters seems to change with the cycle (it was higher during the boom, increased further during the crisis, and decreased during the recovery period), the difference in productivity between incumbents and exiters is increasing monotonically in time. Third, we build a firm dynamics model à la Hopenhayn with growth building on Asturias et al. (2017) that is able to match the non-linearity found in the data. In the model, firms face perfect competition, they are heterogeneous in their marginal efficiencies to produce, and they enter and exit endogenously, although there are also exogenous exits. The growth rate of the economy is exogenous, but the level underlying this balanced growth path (BGP) is endogenous and depends on three types of distortions: a) potential entrants face firm entry costs; b) these new firms face barriers that prevent them from adopting the most efficient technology; c) there is a fixed continuation cost that firms need to pay every period. We are going to focus on distortion c), that is, we think of the COVID-19 shock as a transitory increase in the cost of operation for firms, so all firms' profits fall. This shock is especially hurtful for small and low-efficiency firms since this fixed cost bears a larger weight on these firms' profits. In order to rationalize our empirical finding through the lens of the model, we add a fourth distortion: the exogenous exit rate depends on the level of the fixed cost for operation, which implies that the higher the fixed cost of operation is, the higher the exogenous exit rate is. We assume an exponential functional form for this relationship, and we calibrate the parameters to match the non-linearity we observe in the data, together with other targets of the Spanish economy. Fourth, we perform different counterfactual scenarios with the calibrated model. The scenarios depend on different assumptions on the impact of the COVID-19 shock and the subsequent developments (supply bottlenecks, surge in inflation, etc...) on exit rates. In particular, we make assumptions about two alternative scenarios for exit rates that we label as a mild and severe shock based on the increase in the cost of operation that delivers different exit rates in the model. In the case of the mild shock, we assume that the increase in the operation cost is moderate so that only those firms that were at risk of non-viability in 2020 exit. This would imply an increase in exit rates at impact that is close to that of the Great Recession. In this scenario, the increase in exit rates is accompanied by an increase in aggregate TFP: the increase in the cost of operation forces low-efficiency firms to exit, hence resources are allocated towards higher efficiency firms. In the case of the severe shock, we assume that all firms with a ratio of net worth to equity below 0.5 in 2020 exit (in Spain this is the condition to legally file for bankruptcy), and that this increase in exit rate is persistent. This shock is larger than the mild shock: it would imply an increase in exit rates at impact that is nearly four times as large as that of the most affected sector during the Great Recession, real estate. This large increase in exit rates increases significantly exit spillovers, which means that it is not only low-efficiency firms that exit, but also high-efficiency firms are forced out of the market, so aggregate TFP growth decreases. In the longer run, TFP decreases even further in the case of the severe scenario before converging back to the trend and the recovery is much slower, mainly due to the missing mass of firms that takes a long time to be substituted in the economy, especially those that are high-efficiency. The rest of the paper is organized as follows. Section 2 presents the data. Section 3.1 documents the TFP decomposition in Spain with a special focus on the exit rate term. Section 3.2 analyses the effect of the exit rates on the TFP at a sector level, uncovering a non-linear relationship. Section 4 presents the model à la Hopenhayn with endogenous and exogenous exit, which is calibrated with the Spanish economic data in Section 5. Section 6 presents the counterfactual exercises performed with the model, and Section 7 concludes. ### 2 Data Our analysis relies on the Integrated Central Balance Sheet Data Office (CBI), a detailed administrative dataset from the Bank of Spain obtained from obligatory filings of annual accounts in mercantile registries. The CBI is an unbalanced panel that includes firm-level data from 2000 to 2018 and it covers almost all Spanish firms, therefore it is a representative sample. Each year, every firm reports its number of workers, its quantity of tangible capital and output, the value-added generated, and its ratio of leverage, among other variables. Using this data, we compute the total factor productivity à la Wooldridge (2009). Appendix A provides a brief description of all the used variables and the cleaning process performed. Table 1 reports the descriptive statistics of the full sample. Table 1: Summary statistics | | 01 | | | 0.5 | 1 | |------------------|-----------------|-------|-------|-------|---------------------| | | Obs | mean | p50 | p95 | sd | | Employment | 6,951,552 | 15 | 4 | 35 | 249 | | Tangible capital | $6,\!951,\!552$ | 368 | 48 | 1,692 | 1,070 | | Value added | 6,951,552 | 408 | 114 | 1,524 | 1,075 | | Output | 6,951,508 | 1,445 | 339 | 5,766 | $3,\!823$ | | Leverage | 6,944,962 | 0.23 | 0.098 | 0.78 | 0.35 | | TFP | 6,951,552 | 7.2 | 3.8 | 23 | 11 | Notes: Employment is the average number of employees. All nominal variables are in thousands of euros in 2015. Leverage is the ratio of debt to total assets. TFP is in levels. For more information about the cleaning procedure, see Appendix A. The year of the constitution of each firm is provided in CBI, however, the year of exit is not given in CBI thus we obtain it from a different database, the Directorio Central de Empresas (DIRCE). The DIRCE shows the firms that have exited and the year when this event occurs.⁴ We define the exit/entry rate of a group as the number of firms ⁴According to the DIRCE, a firm may exit (and enter) the market several times throughout the years. Thus, to obtain the exit for each firm, we take the last year of the exits provided for each firm. At this point, the two databases are merged and observations before the entrance and after the exit are dropped. that exit/entry in that group divided by the number of firms that are present in our dataset and belong to that group. During the Great Recession, all sectors experienced an increase in exit rates: the median sectoral exit rate increased 1.6 percentage points and the greatest increase in exit rate was that of the real estate sector, with a 3.9 percentage points increase in exit rate in 2008. The aggregate exit rate increased 2.4 percentage points (see Figure 1). # 3 Empirical findings ### 3.1 FHK decompositions One of the most widely used decompositions is that of Foster et al. (2001) (FHK henceforth), which takes into account not only changes in the productivity distribution of incumbents but also changes due to the exit-entry margin. We start performing the Entry rates Exit rates (%) and the second of o Figure 1: Entry and exit rates in Spain: 2000-2018 Notes: The leftihand side figure shows the entry
rate in percentage by year. The right-hand side figure shows the exit rate in percentage by year. FHK decomposition on Spanish firms for three different 5-year sub-periods in the sample: 2003-2008, 2008-2013 and 2013-2018. TFP growth of industry industry i at time t is defined as $$\Delta log Z_{it} = \sum_{e \in i} s_{eit} log(z_{eit}) - \sum_{e \in i} s_{ei,t-1} log(z_{ei,t-1})$$ where Z_{it} is the TFP of industry i at time t, z_{eit} is the firm e's TFP, s_{eit} is the share of firm e's output in industry i. FHK decomposes TFP growth in the within term, the reallocation term, the entry term and the exit term as follows. $$\Delta log Z_{it} = \underbrace{\sum_{e \in C_{it}} s_{ei,t-1} \Delta log(z_{eit})}_{\text{within term}} + \underbrace{\sum_{e \in C_{it}} \Delta s_{eit}(log(z_{eit}) - log(Z_{i,t-1}))}_{\text{within term}} + \underbrace{\sum_{e \in N_{it}} s_{eit}(log(z_{eit}) - log(Z_{i,t-1}))}_{\text{entry term}} + \underbrace{\sum_{e \in X_{it}} s_{ei,t-1}(log(z_{ei,t-1}) - log(Z_{i,t-1}))}_{\text{exit term}},$$ where C_{it} is the set of continuing firms in the industry i at time t, N_{it} is the set of entrants and X_{it} is the set of exiters. Table 2 shows the FHK decomposition to firm-level data for Spain. As other papers in the literature have shown (see for instance Díaz and Franjo (2016); García-Santana et al. (2020); Fu and Moral Benito (2018) or Gopinath et al. (2017)), the period of the boom in Spain (2003-2008) is characterized by negative TFP growth, with the within term contributing the most to the negative TFP growth. During the burst (2008-2013), TFP growth is still negative, but there is an increase in the positive impact of the reallocation and the exit term. During the recovery period (2013-2018), TFP growth turns positive, especially because the within term becomes positive. When we look at the whole period (2003-2018), we can observe that the two components that remain always positive are the reallocation term and the exit term. The patterns observed here are similar to those of Riley et al. (2015) for the UK, who also find a negative contribution of the within term and the entry term, but a positive impact of the exit term and the reallocation term. However, the positive contribution of exit is not large enough to counteract the negative contribution of entry. Table 2: FHK decomposition for Spain. | year | TFP growth | Within | Reallocation | Entry | Exit | |-------------|------------|---------|--------------|---------|--------| | 2003-2008 | -0.0493 | -0.1355 | 0.1022 | -0.0172 | 0.0012 | | 2008 - 2013 | -0.0245 | -0.1640 | 0.1462 | -0.0124 | 0.0056 | | 2013-2018 | 0.0271 | 0.0059 | 0.0268 | -0.0094 | 0.0039 | Notes: This table shows our calculations of the FHK decomposition with Spanish data, according to the equation 3.1. For this calculus, we consider three different groups in each period: continuers, entrants and exiters. For example, in 2003-2008, continuers are firms that have observations in 2003 and 2008, entrants are firms that have an observation in 2008 and have started in the market before 2008 but after 2003, and exiters are firms that have observations in 2003 but exit before 2008; the rest of the firms that do not meet these conditions are not considered. This evidence points to a mal-functioning creative destruction process in Spain since entry is contributing negatively to TFP growth and the positive contribution of exit is not enough to counteract this negative impact. It is noteworthy to realize how the contribution of exit increases during the burst, and decreases (slightly) during the recovery. This could be due to differences in the productivity of exiters, or due to changes in the share of exiters. Looking at Table 3, it turns out that the difference in productivity between stayers and exiters has been increasing during the whole sample, but, while the share of exiters was especially large during the burst, it was much lower during the recovery period. According to this evidence, it seems that the exit margin positive contribution is low but relevant, especially during bursts when exit rates are larger, which is supportive of the well-known 'cleansing effects' of crises (Caballero and Hammour (1994),Osotimehin and Pappadà (2017)). But is this always the case? An increase in exit rates might Table 3: Exit shares vs productivity of exiters. | Year | Share exit | Productivity: | | | |------|------------|--------------------|--|--| | | | continuers-exiters | | | | 2003 | 0.011 | 0.270 | | | | 2008 | 0.018 | 0.487 | | | | 2013 | 0.008 | 0.639 | | | Notes: This table shows the share of the exiters in each period and the difference in the productivity of continuers and exiters in the indicated year. We consider continuers the firms that are observed in the database after 5 years after the indicated year, while exiters are the firms that exit at some point in the 5 years after the indicated year. be beneficial for productivity growth since it forces low-productivity firms out of the market. However, if the shock is too large, it might trigger additional channels that might affect negatively TFP. These channels might encompass supply-demand disruptions and macroprudential risks that make banks cut financing to viable businesses. All of these channels would increase exit rates while decreasing TFP. Hence, the relationship between exit rates and TFP growth might be non-linear, an issue we will explore in the next section. ### 3.2 Exit rates and TFP growth: uncovering a new non-linearity We next turn to use sector-level data to test whether the relationship between exit rates and TFP growth is non-linear.⁵ To do so, we regress the TFP output weighted growth (in 5 years) of each sector on the exit share and the square of the exit share in that economic sector. The general specification is $$\Delta y_{it} = \beta_0 + \beta_1 exit_{it} + \beta_2 exit_{it}^2 + \beta_3 C_{it} + \delta_i + \mu_t + v_{it}$$ (1) where Δy_{it} is the TFP growth in the industry i from year t-1 to year t+5, here the TFP is weighted by each firm output. $exit_{it}$ is the main variable of interest measured as the exit rate in the sector i and year t. C_{it} is a vector of controls: the lagged TFP weighted by the output, the lagged TFP unweighted and the rate of entry. And finally, fixed effects of sector and year are included (δ_i, μ_t) . In Table 4, different versions of this specification are shown. In column 1, we observe that the coefficient of the exit rate is positive whereas the coefficient of the exit rate squared is negative (and both of them are significant). This ⁵For this analysis, we drop the observations of the sectors with zero exit rate, so we can look at the extensive margin. Besides, we exclude sectors where the growth of the TFP is smaller than -0,4 (just two observations) to avoid outliers driving results. Table 4: Regressions. Non-linear effect of the exit rate on the TFP growth. | | (1) | (2) | (3) | (4) | (5) | |----------------|------------|------------|------------|------------|------------| | | TFP growth | | | (5 years) | | Exit rate | 6.08*** | 8.64** | 5.62** | 8.12** | 2.95* | | | (1.96) | (3.24) | (1.96) | (3.22) | (1.44) | | Exit rate 2 | -99.48** | -197.79** | -89.59** | -182.88** | -36.66* | | | (36.62) | (67.42) | (34.96) | (60.02) | (17.65) | | Observations | 712 | 712 | 711 | 711 | 711 | | R-squared | 0.06 | 0.07 | 0.08 | 0.22 | 0.62 | | Sector FE | No | No | No | No | Yes | | Year FE | No | No | No | No | Yes | | Controls | No | No | Yes | Yes | Yes | | Weighted | No | Yes | No | Yes | No | Notes: This table shows 5 different regressions where the dependent variable is the TFP growth in each sector-year group, and the independent variables of interest are the exit rate of each sector-year group and the squared exit rate, for a more detailed explanation of the specification, look at the equation (1). Different versions of the main specification are included in order to assure the robustness of the result. Considered controls are the lagged TFP weighted by the output, the lagged TFP unweighted and the rate of entry. When the regression is weighted, it is weighted by the output of each year-sector. Standard errors are denoted in the parentheses. Asterisks denote statistically significant coefficients at 10% (*), 5% (**) and 1% (***), respectively. means that when the exit rate is low then the effect of the exit is pro-competitive, however, when the exit rate is too high, then the TFP declines. Furthermore, this non-linearity is still present when including the output weights of the sectors (column 2). We also find the described inverted U-shape relationship in columns 3, 4 and 5, where we include the lagged TFP weighted by the output, the lagged TFP unweighted and the rate of entry as controls. In column 4 the regression is weighted by the output and in column 5 the sector and year fixed effect are included to control for the business cycle and sector-specific characteristics. In conclusion, this evidence points at what we call the 'Goldilocks effect' of the exit rate in the TFP, that is, for increases in exit rate to have 'cleansing effects', we need that the levels of exit rates are not too high. ## 4 Model Our baseline model is based on Asturias et al. (2017), who build a simple dynamic general equilibrium model of firm entry and exit based on Hopenhayn (1992). The model features a balanced growth path (BGP), where aggregate variables grow at an exogenous rate. Time is discrete. There is a continuum of firms in a closed economy. Firms are heterogeneous in their marginal efficiencies to produce, and all firms produce the same good in competitive markets. Entry and exit in the economy is endogenous, but there exists exogenous exit too. Although the growth rate of the economy is exogenous, the *level* underlying this BGP is endogenous and depends on distortions. In Asturias et al. (2017), there are three types of distortions: a)
potential entrants face firm entry costs; b) these new firms face barriers that prevent them from adopting the most efficient technology; c) there is a fixed continuation cost that firms need to pay every period. The distribution from which potential entrants draw their efficiencies exogenously improves each period; and the efficiency of existing firms improves both through an exogenous process and spillovers from the rest of the economy. Finally, we extend the model with a fourth distortion in line with the empirical evidence discussed in the previous section: the exogenous exit rate depends on the level of the fixed cost for operation, which implies that the higher the fixed cost of operation is, the higher exogenous exit is. We assume an exponential functional form for this relationship, and we calibrate the parameters to match the non-linearity we observe in the data. One key distinction in linking this model to the data is that firm efficiency is not the same as productivity, so we compute firm level productivity in the model following closely Asturias et al. (2017).⁶ ### 4.1 Household There is a representative household that supplies labor L_t inelastically to firms. She receives the dividends D_t paid by firms net of the entry costs needed to finance the firm, consumes C_t and saves in bond holdings B_t maximizing utility according to the following maximization problem, where β is the discount factor of the household: $$\max_{C_t, B_t} \sum_{t=0}^{\infty} \beta^t log C_t. \tag{2}$$ s.t. $$P_tC_t + q_{t+1}B_{t+1} = w_tL_t + B_t + D_t$$ $$C_{t>0}; B > \underline{B}; B_0 \ given.$$ ### 4.2 Firms As previously explained, there is a continuum of firms producing the same final good. Note that all firms are owned by the household, so any inflow of funds to firms is financed by the household, entitling her to the dividends of the firms. The problem solved by incumbent firms and firms entering is the following. #### Incumbents Firms have access to a decreasing return to scale technology to operate ⁶See Appendix B for further details about the notion of firm-level capital in this model, and the computation of TFP. $$y = xl^{\alpha}, \quad 0 < \alpha < 1; \tag{3}$$ where l is the amount of labor used to produce, and x is firms' efficiency. The profit maximization problem is static, and solves this maximization problem, where w are the wages paid: $$\pi_t(x) = \max_{l} x l^{\alpha} - wl. \tag{4}$$ The dynamic problem of the firm is $$V_t(x) = \max \{ \pi_t(x) - f_t + q_{t+1}(1 - \delta(f_t)) V_{t+1}(x g_{c,t+1}), 0 \}.$$ (5) Several terms deserve an explanation here. Firms need to pay a fixed cost of operation each period, f_t , so that dividends distributed to the household each period are $d_t(x) = \pi_t(x) - f_t$. The fixed cost of operation is assumed to grow at rate g_e . The stochastic discount factor coincides in equilibrium with the price of the one-period bond, q_{t+1} . The main modelling difference with Asturias et al. (2017) is the exogenous exit term δ : while in their paper it is a constant, here it is an increasing function of the fixed cost of operation f_t . Further below in this section, we provide further details about the choice of functional form for this equation and the rationale for it. The efficiency growth factor is characterised by $$q_{ct} = \bar{q}q_t^{\varepsilon},\tag{6}$$ where \bar{g} is a constant, g_t is the growth factor from t-1 to t of the unweighted mean efficiency of all firms that operate in each period. The degree of spillovers from the aggregate economy to the firm is given by ε .⁷ As equation (5) states, a firm continues to operate only if the continuation value is greater than 0. Since the continuation value is increasing in x, one can show that there exists a \hat{x} such that $$V_t(\hat{x_t}) = 0. (7)$$ Firms decide to continue operating if $x > \hat{x_t}$, and they decide to exit endogenously otherwise. ### **Entrants** Each period, the mass of potential entrants can decide to pay a fixed cost $\kappa_t > 0$ to draw a marginal efficiency x_t from the Pareto distribution $$F_t(x) = 1 - \left(\frac{\varphi_t x}{g_e^t}\right)^{-\gamma} \quad x \ge g_e^t / \varphi_t \tag{8}$$ ⁷In order to ensure endogenous exit in the balanced growth path, we assume that $\bar{g} < g_e^{^{1-\varepsilon}}$. The mean of this distribution is proportional to g_e^t/φ_t , so it grows at an exogenous rate $g_e > 1$. This implies that each cohort that enters has higher average efficiency than the previous one, crowding out low-efficiency firms from previous cohorts.⁸ The parameter φ_t characterizes the barriers to technology adoption: if $\varphi_t > 1$, the distribution is stochastically dominated by the frontier distribution, so the greater increasing the barriers to technology adoption lowers the mean efficiency of potential entrants. Once the firm observes the draw of x, the potential entrant chooses whether to establish the firm with that efficiency ($successful\ entrant$) or not ($failed\ entrant$). Once the entrant establishes the firm, she faces the problem of an incumbent firm. The mass of entrants, μ , is given by the free entry condition, which states that the expected value of entering equals the entry cost, $$E_x(V_t(x)) = \kappa_t. (9)$$ The cost of creating a firm, κ_t , is assumed to grow at rate g_e . #### Distribution The mass of firms in operation born in cohort j at time t is given by $$\eta_{jt} = \mu_{t+1-j} \left(\prod_{s=1}^{j-1} (1 - \delta(f_{t-s+1})) \right) \left(1 - F_{t+1-j}(\hat{x}_{jt}/\tilde{g}_{jt}) \right), \tag{10}$$ where $\tilde{g}_{jt} = \prod_{s=1}^{j-1} g_{c,t-s+1}$; and the total mass of firms operating at time t is given by $$\eta_t = \sum_{j=1}^{\infty} \eta_{jt}. \tag{11}$$ #### Dividends Firms distribute as dividend to the household all their dividends. The household also needs to finance the start-up costs of newly created firms. Hence, net dividends received from the corporate sector are given by $$D_{t} = \sum_{t=0}^{\infty} \left(\mu_{t+1-j} \left(\prod_{s=1}^{j-1} (1 - \delta(f_{t-s+1})) \right) \int_{\hat{x}_{jt}}^{\infty} d_{t}(x) dF_{t+1-j}(\hat{x}_{jt}/\tilde{g}_{jt}) \right) - \mu_{t} \kappa_{t}.$$ (12) #### Frictions and main mechanisms The model features 4 frictions, which could be technological, policy induced or brought by an exogenous shock: continuation costs f, exit spillovers $\delta(f)$, entry costs κ ⁸This feature of the model makes the economy grow at a rate g_e , because even though incumbents only grow at rate g_c , each period the remaining incumbents are more efficient than the previous cohort by a factor of g_e . and barriers to technology adoption φ . Neither of these frictions alters the growth rate of the economy, but they do alter the underlying levels of the BGP, hence generating dynamics in the short and medium run until the economy converges. Continuation costs f. Each period, firms need to pay a fixed cost of operation. This could be to due policy frictions, or to an exogenous shock. In this paper, we are going to think of an exogenous shock affecting this economy through a wedge in f, $f_t = f_t^{BGP}(1+\tau_t)$; $\tau_t \geq 0$. We are only going to look at transitory shocks to τ which is mean 0. This implies that suddenly and unexpectedly, it is more costly to operate, so all firms' profits fall. This shock is especially hurtful for small and low-efficiency firms, since this fixed cost bears a larger weight on firms' profits. Exit spillovers $\delta(f_t)$. We assume that there is an increasing relationship between the cost of operation, f_t , and exogenous exit. More concretely, we assume the following functional form for this relationship: $$\delta_t(f_t) = \theta exp(\phi f_t + \vartheta). \tag{13}$$ The rationale for this is that while small shocks improve selection, crowding out low-efficiency firms, a large shock can induce further distortions to viable firms, such as input-output disruptions or lack of financing due to macroprudential risks, that are captured in a reduced-form manner by the functional form of 13: for high values of f, not only low-efficiency firms exit, but it also increases the exit of productive firms. This functional form will be key to matching the non-linear relationship between exit rates and TFP growth. Entry costs κ . Potential entrants need to pay a fixed cost of operation before entering the economy and drawing efficiency x, hence preventing firms to enter. Entry costs could be due to technological reasons or policy distortions, affecting the number of firms that decide to enter and their efficiency. Barriers to technology adoption φ_t . Once firms pay the fixed cost of entry, they draw their efficiency from the Pareto distribution in equation (8). Hence, the parameter φ_t characterizes the barriers to technology adoption of firms that want to enter. Whenever $\varphi_t > 1$, the distribution from which firms draw their efficiencies is stochastically dominated by the frontier efficiency distribution. ### 4.3 Market clearing conditions In the closed economy equilibrium, all markets clear. Concretely, we have the following market clearing conditions. Labor market clearing condition. The supply of labor of the household equals the demand of labor of firms. The total amount of labor available, L_t , is normalized to 1, $$L_{t} = 1 = \sum_{t=0}^{\infty} \left(\mu_{t+1-j} \left(\prod_{s=1}^{j-1} (1 - \delta(f_{t-s+1})) \right) \int_{\hat{x}_{jt}}^{\infty} l_{t}(x) dF_{t+1-j}(\hat{x}_{jt}/\tilde{g}_{jt}) \right).$$ (14) Bond market clearing condition. Bonds are in zero net supply, hence $$B_t = 0. (15)$$ Goods market clearing condition. The good market clears, that is, $$Y_{t} = \sum_{t=0}^{\infty} \left(\mu_{t+1-j} \left(\prod_{s=1}^{j-1} (1 - \delta(f_{t-s+1})) \right) \int_{\hat{x}_{jt}}^{\infty} x l_{t}(x)^{\alpha} dF_{t+1-j}
(\hat{x}_{jt}/\tilde{g}_{jt}) \right) = C_{t} + \eta_{t} f_{t} + \mu_{t} \kappa_{t}.$$ (16) ### 4.4 Balanced Growth Path The balanced growth path is an equilibrium along which the sequence of output, consumption, wages, dividends and the efficiency threshold grow at rate $g_e - 1$; the mass of potential entrants η_t and the mass of active firms μ_t is constant, and the price of capital is given by $q_{t+1}=\beta/g_e$. # 5 Calibration We calibrate the economy such that it replicates key features of the Spanish economy. The model period is five years. Table 5 shows the main calibration parameters and its targets. First, we externally set some parameters. We make the entry cost to be 0.82 of the continuation cost, following Barseghyan and DiCecio, 2011. The parameter α matches the labor share in Spain, which is 0.6 according to Estrada et al., 2012. We set β equal to 0.98⁵, to match a real interest rate of 2%, and we set the empirical spillover ϵ to be 0.64 following Asturias et al., 2017. We calibrate internally in the model the following parameters. We set f to 2.9 to match the average firm size (employment) in Spain, 14.49; and we use the tail parameter of the Pareto distribution γ to match the standard deviation of firm size, 247.58. We set g_e equal to 1.008⁵ to match the BGP yearly TFP growth rate of 0.53%; and set g_c equal to 1.006⁵ to match the contribution of exit to TFP growth in the FHK decomposition, 14%. $^{^9\}mathrm{That}$ is, a 5-year TFP growth of 2.7% like the one observed in Spain for the period 2013-2018 (see Table 2) Table 5: Calibration | Source | | |-------------------------|--| | | | | Barseghyan | | | and DiCecio (2011) | | | ada, Valdeolivas (2012) | | | sturias et al (2021) | | | sturias et al (2021) | | | | | | CBI | | | CBI | | | CBI, DIRCE | | | | | | | | | CBI, DIRCE | | | CBI | | | CBI, DIRCE | | | | | | CBI, DIRCE | | | | | Notes: Internally set targets come from Central de Balances Integrada. The first four targets are for the period 2013-2018. The exit rate and the non-linearity are computed following Section 3 and the methodology explained in the main text of this Section. As explained before, we assume the following functional form for the exogenous exit rate, $$\delta(f) = \theta exp(\phi f + \vartheta).$$ We use the parameter θ to match the annual exit rate in the BGP, which is 1.33%, and use the shape parameter ϕ and location parameter ϑ to minimize the distance between the model-generated relationship between exit rates and productivity growth and that of the data. To do so, we proceed in the following way. First, compute the value of δ^* that delivers an annualized exit rate of 1.33% in the BGP, which is the average exit rate in the data, given f^{BGP} from the BGP (that is, $\Delta=0$). Second, guess a value of ϕ and ϑ . For a given ϕ and ϑ , we obtain the θ that gives us δ^* . Third, compute the 5-year TFP change in the economy after eight pre-defined shocks Δ to f (that is, $f=(1+\Delta)f^{BGP}$), which delivers an endogenous exit rate. ¹⁰ We calculate $^{^{10}}$ Note the model gives us the 5-year cumulative exit rate after these predefined increases in f. To find the yearly exit rate of the first year, we assume that yearly exit rate goes back to its BGP value following an AR(1) process with a persistence of 0.88 during the 5-year period (this persistence is estimated in the data by estimating the AR(1) process of exit rates at the sector level via OLS). We find the exit rate in the initial period such that, under this assumption, we match the cumulative 5-year exit rate delivered by the model after the change in f. a loss function constructed as the difference between the model implied TFP and the data expected TFP for each of the exit rates. ¹¹ We use a minimization routine to find the parameters ϕ and γ that minimize these errors. S-year TFP growth 1. Constitution of the state st Figure 2: Relationship between exit rates and TFP growth in the model and data Notes: Source: Central de Balances Integrada and DIRCE. Blue dots are binned sectoral data relating exit rates with TFP growth. Orange dots are model outcomes: for exogenous changes in f, we plot the endogenous response of exit rates (annualized) and the 5-year TFP growth (see text). Figure 2 shows the binned sectoral data points of exit rates and 5-year TFP growth that we use for the calibration, and the orange connected dots show the model outcomes for different changes in f. Although there is a lot of dispersion in the data, the model does a relatively good job in matching the non-linearity pattern in the data. Note the model allows us to make out-of-sample predictions, which can be potentially very useful to understand the dynamics and composition after large and unprecedented shocks. ### 6 Counterfactual exercises The aim of this section is to perform counterfactual exercises for different scenarios of exit rates that might occur due to the COVID-19 crisis and the subsequent following events.¹² The way we perform the exercises is as follows: we increase the shock to the fixed cost of operation f for one model period (5 years), such that we match the ¹¹In order to compute the data expected TFP, we approximate the relationship between exit rates and TFP using a two-piecewise linear function, where the break is computed from the maximum in 2. ¹²Since the model period is five years, the shock would be encompassing the 'pure' COVID-19 shock, the lifting of the policy support and the impact of further macroeconomic disturbances, such as the increase in inflation and the supply problems brought by the war in Ukraine. cumulated 5-year exit rate for each scenario. Since the scenarios are going to give the exit rate at impact, we need to make assumptions on the evolution of this exit rate in the following 4 periods to compute the cumulative 5-year exit rate. We assume that yearly exit rate goes back to its long-run average with a yearly persistence of 0.88, ¹³ and then we cumulate them for 5 years. The key issue is how to choose these yearly exit rate scenarios. We use data provided by Central de Balances regarding the level of distressed firms in 2020. We use two measures that are defined by Central de Balances: firms in legal bankruptcy due to losses; and percentage of firms at risk of non-viability. - Percentage of firms in legal bankruptcy due to losses (empresas en causa legal de disolución por pérdidas). Firms fall into this category if net worth (patrimonio neto) over equity (capital social) is lower than one-half, i.e. networth / (equity/2) < 1. An indivual firm that fulfills this criterion is in condition to legally file for bankruptcy (causa legal de disolución) according to the law (artículo 363, Ley de Sociedades de Capital). - Percentage of firms at risk of non-viability (empresas en riesgo de inviabilidad). Firms fall into this category if net worth (patrimonio neto) over equity (capital social) is lower than one-half, i.e. networth / (equity/2) < 1; and their interest coverage ratio is lower than 1 in the two previous years. We present in Figure 3 these percentages at the aggregate level. The main assumption is that the shock is such that all these firms exit at impact. Note that firms falling within the non-viability definition are firms in profound distress, and this is why we believe that these firms exiting can be thought of as a 'mild scenario' for exit rates. In the aggregate, if all of them exit, it would imply an increase in the yearly exit rate of 2.7 percentage points, which is close to the increase of 2.4 percentage points increase observed in the aggregate during the Great Recession (in yellow). There are many more firms that fall within the category to fulfil for legal bankruptcy - nearly 20% of all firms. It is because of this reason we think of this as the 'severe scenario' fore exit rates, which would mean an increase in yearly exit rates of 17.7 percentage points, something that has never been experienced in the past, but which might still be feasible due to the magnitude of the COVID-19 and subsequent shock. This scenario would imply an exit rate nearly four times as big as the one in the real estate sector during the Great Recession (in brown).¹⁴ $^{^{13}}$ This persistence is estimated in the data by estimating the AR(1) process of exit rates at the sector level via OLS. $^{^{14}}$ The cumulated 5-year exit rate following the previous assumptions would be 16% in the case of the mild scenario, and 56.9% in the case of the severe scenario. During the Great recession, the actual 5-year cumulated rate in the aggregate was 4.63%, and that of the most affected sector -construction-was 19.17% Figure 3: Exit rates scenarios Notes: Source: Central de Balances and DIRCE. Scenarios based on the percentage of firms in distress in 2020. Mild scenario: percentage of firms at risk of non-viability (red bar). Severe scenario: percentage of firms in legal bankruptcy due to losses (grey bar). For the sake of comparison, we add the exit rate we would have seen in our baseline economy if the increase in exit rate was that of the average exit rate during the economy in the Great Financial crisis (yellow) and that of the most affected sector in the Great Financial crisis, the real estate sector (brown). Table 6 shows the 5-year changes in TFP and the mass of active firms under the mild and the severe shock. The balanced growth path is calibrated such that the 5-year TFP growth is 2.7%. Under the mild shock, the fixed cost of operation increases by 10.25%. TFP growth increases by 1.42 p.p., that is, up to 4.12%. The reason is that when the cost of operation is higher, exit rates increase (see Table 7, column 2), and the mass of active firms decreases 13.8% (Table 6, column 4). However, relatively less efficient firms are the ones that exit the market, so the
relative productivity of exiters increases compared to the BGP (see Table 7, column 3), which makes the contribution of exit to TFP growth increase (see Table 7, column 1). The exit spillovers are still low, so more productive firms are not forced out of the market. On the one hand, with the cost of operation being larger, it is less attractive to create a firm, hence the mass of potential entrants and general equilibrium prices decrease, pushing downwards the efficiency threshold. On the other hand, since there is an increase in the operating costs, only more efficient firms are the ones operating, decreasing the mass of firms of active firms and pushing upwards the efficiency threshold. In the case of the mild shock, the second force dominates, pushing up the efficiency threshold by 5.02% (see Table 7, column 4). Under the severe shock, the cost of operation increases 23.3%, and TFP growth Table 6: **Aggregate changes** | Δ | f | g_Z | Mass of firms | |--------------|-------|-------|---------------| | Mild shock | 10.25 | 1.42 | -13.80 | | Severe shock | 23.05 | -0.66 | -36.22 | Notes: Deviations in 5-year period. Values are deviations (in pp) from the BGP, except from the relative productivity of entrants/exiters, which are simple deviations; and the exit threshold, which is in percentage change. Under the severe shock, the cost of operation increases 23.3%, and TFP growth decreases by 0.66 p.p. The higher shock induces more exit spillovers, which affect not only the least efficient firms, but also the more efficient ones that are forced out of the market, and increases very significantly exit rates - cumulative 5-year exit rates increase 50.3 p.p., from its BGP value of 6.5%. This huge increase in exit decreases the mass of active firms by 36.2%. The threshold for exiting \hat{x} increases 0.64% (see Table 7, column 4), much less than in the case of the mild shock, and the main reason is that the second force previously explained loses relevance against the first force (even though it still dominates): the decrease in the mass of firms, and especially that of high-efficiency firms due to exit spillovers, decreases significantly equilibrium prices and pushes down the exit threshold. This also makes the relative productivity of exiters compared to that of incumbents to be much higher (see Table 7, column 4). Because of all this, the exit margin is responsible for more than half of the fall in TFP (-0.38/-0.66). Table 7: Exit dynamics | | FHK exit | Exit rate | Relative exiter | Exit | |--------------|----------|-----------|-------------------------------|-----------| | | | | $\operatorname{productivity}$ | threshold | | Mild shock | 0.26 | 9.59 | 0.02 | 5.02 | | Severe shock | -0.38 | 50.31 | 0.06 | 0.64 | Notes: Deviations in 5-year period. All values are deviations (in pp) from the BGP, except from the relative productivity of entrants/exiters, which are simple deviations. This shock has effects not only at impact, but also in the longer run. Note that the growth rates are not affected by the temporary shock, just the underlying BGP level changes, which creates only a temporary deviation from the 'no shock' scenario. The persistence and depth of the downturn generated depend on the severity of the shock and the scarring effects it generates through the changes in the distribution of firms. Figure 4 shows longer-term dynamics for exit rates and the mass of firms, which are constant along the BGP; and Figure 5 shows the evolution of TFP, which grows at rate g_e along the BGP. They are all normalized to 1 in the year of reference before the shock (year 0). Panel a shows the evolution of exit rates. These increase significantly at impact, to then decrease below its BGP value: when the cost of operation goes back to its initial value, exogenous exit rates decrease. Furthermore, since in the previous period the least efficient firms exited the market, the remaining firms are further from the exit threshold, which also decreases exit. Nonetheless, the mass of active firms in the economy remains significantly below its BGP for nearly 25 years, and the missing mass of firms is significantly larger during all this period in the case of the severe shock. 15 ¹⁵This is due not only to the increase in exit rates, but also to the decrease in entry rates caused by the shock (not shown). Figure 4: Long-term responses after the shock: exit and the mass of firms (a) Exit rates (b) Mass of active firms Notes: Outcomes of the model for the mild shock (red); severe shock (grey) and no shock scenario (yellow). Model period is 5 years. All values are normalized to 1. Year 0 (before the shock hits) is the reference year for the normalization. Panel a: exit rates. Panel b: mass of firms. Figure 5 shows the evolution of TFP when the mild shock hits (red) or the severe shock hits (grey), against the counterfactual scenario of TFP growth when no shock occurs (yellow line). Remember the shock, that is, the increase in the cost of operation, lasts for only one model period. In the case of the mild shock, the medium-term increase in TFP is followed by a decrease in TFP, which falls slightly below the 'no shock' scenario before converging back. In the case of the severe shock, TFP decreases even further after the year of impact of the shock, and it takes much longer for TFP to recover: even though entry recovers after the shock, there are still not enough high-efficiency firms in the economy. Figure 5: Long-term responses after the shock: TFP 1,2 1,15 1,1 1,05 1 0,95 -5 0 5 10 15 20 25 Years since shock Notes: TFP of the model for the mild shock (red); severe shock (grey) and no shock scenario (yellow). Model period is 5 years. All values are normalized to 1. Year 0 (before the shock hits) is the reference year for the normalization. Summing up, in this section we have performed different counterfactual scenarios in a model that is consistent with the non-linear relationship of exit rates and TFP growth observed in the data. The likelihood of each scenario depends on the increase in exit in the aftermath of the COVID-19 crisis, which depends on a) the severity of the COVID-19 shock itself; b) the effectiveness of the support policies and the timing when they are lifted; and c) the subsequent shocks experienced, such as the increase in inflation and the input shortages recently aggravated by the war in Ukraine. In the mild scenario, the increase in exit is moderate and brings a short-term increase in TFP, which speeds up the recovery. In the severe scenario, there is a large increase in exit, not only of low-efficiency firms, but also of high-efficiency firms, which decreases significantly the mass of active firms, and causes a persistent decrease in TFP and a much slower recovery. ### 7 Conclusions Understanding whether increases in firm exit during crises foster creative destruction, or whether they rather induce scarring effects in the economy is of prime importance both for researchers and for the effective design of the economic policy. We contribute to this debate by reconciling both views. Empirically, we show that increases in exit rates are associated with higher TFP growth when the level of exit is low; in contrast, when exit rates are high, increases in firm exit are associated with decreases in TFP growth. We then build a model of firm dynamics with a balanced growth path following Asturias et al. (2017). This model features three main distortions: a fixed cost of operation, entry costs and barriers to technology adoption. We add a fourth feature, which we denominate exit spillovers: the exogenous exit rate depends on the shock to the fixed cost of operation. Exit spillovers are key to matching the inverted U-shaped relationship between exit rates and TFP. We calibrate the model using Spanish data targeting moments from the firm-size distribution and the Foster et al. (2001) productivity decomposition. We model the COVID-19 shock and the subsequent disruptions that followed it as an increase in the cost of operation of firms that reduces their profitability. In particular, we construct different counterfactual scenarios for this shock to the operation cost that could trigger increases in firm exit according to micro-level information from Central de Balances. As in the data, the relationship between exit rates and TFP growth is non-linear: if the shock is mild, an increase in exit rates is associated with an increase in TFP growth and a reallocation of resources towards higher efficiency units. However, if the shock is severe, a large increase in exit rates is accompanied by a decrease in TFP growth, since not only low-efficiency firms exit, but also high-efficiency ones, producing scarring effects in the distribution of firms that slow significantly the recovery. Overall, our results stress the importance of keeping exit rates at bay to avoid further scarring effects from the loss of productive firms in the economy that may entail longer and more severe recessions. ## References - Aghion, P., and P. Howitt (1992). "A model of growth through creative destruction", *Econometrica*, 60(2), pp. 2-51. - Aguiar, M., and G. Gopinath (2007). *The role of interest rates and productivity in emerging market fuctuations*, Working Papers Central Bank of Chile 445, Central Bank of Chile. - Albrizio, S., B. González and D. Kharnetshin (2021). *A tale of two margins: monetary policy and capital misallocation in Spain*, Working Paper. - Allen, T., S. Dées, C. M. Caicedo Graciano, V. Chouard, L. Clerc, A. de Gaye, A. Devulder, S. Diot, N. Lisack, F. Pegoraro, M. Rabate, R. Svartzman and L. Vernet (2020). Climate-related scenarios for financial stability assessment: an application to France, Banque de France Working Paper. - Archanskaia, E., E. Canton, A. Hobza, P. Nikolov and W. Simons (2022). *The sectoral nature of the COVID-19 shock: a novel approach to quantifying its economic impact,* European Economy Discussion Papers. -
Asturias, J., S. Hur, T. J. Kehoe and K. J. Ruhl (2017). *Firm entry and exit and aggregate growth,* Technical report, National Bureau of Economic Research, doc. 1, 4, 4.2, 5, 7, B. - Atalay, E. (2017). "How important are sectoral shocks?", *American Economic Journal: Macroeconomics*, 9(4), pp. 254-280. - Ayres, J., and G. Raveendranathan (2021). "Firm entry and exit during recessions", *Review of Economic Dynamics*. - Baqaee, D. R., and E. Farhi (2019). "The macroeconomic impact of microeconomic shocks: beyond Hulten's theorem", *Econometrica*, 87(4), pp. 1155-1203. - Barseghyan, L., and R. DiCecio (2011). "Entry costs, industry structure, and cross-country income and TFP differences", *Journal of Economic Theory*, 146(5) pp. 1828-1851. - Blanco, R., and M. García (2022). "La evolución de la solvencia y de la demografía empresarial en España desde el inicio de la pandemia", Artículos Analíticos, *Boletín Económico*, 3/2022, Banco de España. - Caballero, R. J., and M. L. Hammour (1994). "The cleansing effect of recessions", *American Economic Review*, 84(5), pp. 1350-1368. - Carreira, C., and P. Teixeira (2008). "Internal and external restructuring over the cycle: a firm-based analysis of gross flows and productivity growth in Portugal", *Journal of Productivity Analysis*, 29(3), pp. 211-220. - Clernenti, G. L., and B. Palazzo (2016). "Entry, exit, firm dynamics, and aggregate fluctuations", *American Economic Journal: Macroecomics*, 8(3), pp. 1-41. - Díaz, A., and L. Franjo (2016). "Capital goods, measured TFP and growth: the case of Spain", *European Economic Review*, 83, pp. 19-39. - Estrada, Á., E. Valdeolivas, et al. (2012). "La participación de las rentas del trabajo en el producto en las economías avanzadas", *Boletín Económico*, december, pp. 1-10. - Foster, L., J. C. Haltiwanger and C. J. Krizan (2001). "Aggregate productivity growth: lessons from microeconomic evidence", *New developments in productivity analysis*, pp. 303-372, University of Chicago Press. - Fu, C., and E. Moral-Benito (2018). *The evolution of Spanish total factor productivity since the global financial crisis*, Documentos Ocasionales, No. 1808, Banco de España. - García-Santana, M., E. Moral-Benito, J. Pijoan-Mas and R. Ramos (2020). "Growing like Spain: 1995-2007", *International Economic Review*, 61(1), pp. 383-416. - Gopinath, G., Ş. Kalemli-Özcan, L. Karabarbounis and C. Villegas-Sánchez (2017). "Capital allocation and productivity in South Europe", *The Quarterly Journal of Economics*, 13(4), pp. 1915-1967. - Hallward-Driemeier, M., and B. Rijkers (2013). "Do crises catalyze creative destruction? Firm-level evidence from Indonesia", *Review of Economics and Statistics*, 95(5), pp. 1788-1810. - Hopenhayn, H. A. (1992). "Entry, exit, and firm dynamics in long run equilibrium", *Econometrica: Journal of the Econometric Society*, pp. 1127-1150. - Melitz, M. J., and S. Polanec (2015). "Dynamic Olley-Pakes productivity decomposition with entry and exit", *The Rand Journal of Economics*, 46(2), pp. 362-375. - Nishimura, K. G., T. Nakajima and K. Kiyota (2005). "Does the natural selection mechanism still work in severe recessions?: Examination of the Japanese economy in the1990s", *Journal of Economic Bahavior and Organization*, 58(1), pp. 53-78. - Osotimehin, S., and F. Pappadà (2017). "Credit frictions and the cleansing effect of recessions", *The Economic Journal*, 127(602), pp. 1153-1187. - Riley, R., C. R. Bondibene and G. Young (2015). *The UK productivity puzzle 2008-2013: evidence from British businesses*, Bank of England Working Paper. - Sedláček, P. (2020). "Lost generations of firms and aggregate labor market dynamics", *Journal of Monetary Economics*, 111, pp. 16-31. - Wooldridge, J. M. (2009). "On estimating firm-level production functions using proxy variables to control for unobservables", *Economic Letters*, 104(3), pp. 112-114. # **Appendix** # A Cleaning of variables from CBI We use a similar cleaning as in Albrizio et al. (2021). Our sample data are firms that are active any year from 1996 to 2018. As we indicated in 2, any observation that is younger than the defined entry or older than the defined exit is excluded. There are 71 different economic sectors (CNAE with 2-digits) in the sample. The mining, primary sector, the financial sector, and the public administration are excluded, since they are too small or have a public character that might be cumbersome for our analysis. Each firm has been associated with the industry where that firm has spent most time and when a firm has no industry associated then it is excluded from the sample. Also, we just consider firms that are societies (Sociedad Anónima -SA- or Sociedad Limitada -SL-). Variables are cleaned by replacing the observations of capital, output, value added and leverage with a missing value when they are negative, also we do this replacement for too high values of leverage (over 10). Concerning employment, just observations in which employment is bigger than 0 and there is coherent employment are kept in the sample. Nominal variables are deflated. The tangible capital is deflated using the 2-digit industry capital investment deflator, whereas the value added and output are deflated with the 2-digit industry value added deflator, then we winsorize these three variables at 1%. Finally, we compute the total factor productivity à la Wooldridge (2009) and we drop from the sample any observation with a missing result, then TFP is winsorized at 1%. Table 8: Cleaning. Remaining observations. | | Remaining observations | |---|------------------------| | Total | 19,215,517 | | Drop of excluded sectors or firms without industry | 18,320,626 | | Drop of observations without employment or with incoherent employment | $10,\!422,\!715$ | | Drop of firms that are not societies | $10,\!371,\!185$ | | Drop of observations before entry and after exit | 9,903,533 | | Drop of observations that are out of the range 2000-2018 years | 9,018,418 | | Drop of observations where the TFP can't be computed | $6,\!951,\!552$ | Notes: This table shows the remaining observations in each step performed in the cleaning procedure. # B Capital and productivity in the model We follow Asturias et al. (2017) in the way of measuring productivity in the model. Note that we need to define the capital stock of firms to compute TFP. We think of the fixed costs of operation as an investment in the firm. This implies that the stock of capital of a newly created firm is $k_t = f_t + \kappa_t$, and each period the firm invests f_{t+1} . Assuming that capital depreciates each period by $f_t - (\kappa_{t+1} - \kappa_t)$. This implies that, if the firm continues operating, capital next period is given by $k_{t+1} = \kappa_{t+1} + f_{t+1}$. The productivity of a firm is given by $$log\left[z_{t}(x)\right] = log\left[y_{t}(x)\right] - \alpha_{lt}log\left[l_{t}(x)\right] - \alpha_{kt}log\left[k_{t}(x)\right], \tag{17}$$ where $\alpha_{lt}=w_t/Y_t$ is the labor share, $\alpha_{kt}=R_tK_t/Y_t$ is the capital share and $R_t=1/q_t-1+\delta_{kt}$ is the rental rate of capital. #### **BANCO DE ESPAÑA PUBLICATIONS** #### OCCASIONAL PAPERS - 2110 DMITRY KHAMETSHIN: High-yield bond markets during the COVID-19 crisis: the role of monetary policy. - 2111 IRMA ALONSO and LUIS MOLINA: A GPS navigator to monitor risks in emerging economies: the vulnerability dashboard. - 2112 JOSÉ MANUEL CARBÓ and ESTHER DIEZ GARCÍA: El interés por la innovación financiera en España. Un análisis con Google Trends. - 2113 CRISTINA BARCELÓ, MARIO IZQUIERDO, AITOR LACUESTA, SERGIO PUENTE, ANA REGIL and ERNESTO VILLANUEVA: Los efectos del salario mínimo interprofesional en el empleo: nueva evidencia para España. - 2114 ERIK ANDRES-ESCAYOLA, JUAN CARLOS BERGANZA, RODOLFO CAMPOS and LUIS MOLINA: A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico. - 2115 ÁNGEL LUIS GÓMEZ and ANA DEL RÍO: The uneven impact of the health crisis on the euro area economies in 2020. (There is a Spanish version of this edition with the same number). - 2116 FRUCTUOSO BORRALLO EGEA and PEDRO DEL RÍO LÓPEZ: Monetary policy strategy and inflation in Japan. (There is a Spanish version of this edition with the same number). - 2117 MARÍA J. NIETO and DALVINDER SINGH: Incentive compatible relationship between the ERM II and close cooperation in the Banking Union: the cases of Bulgaria and Croatia. - 2118 DANIEL ALONSO, ALEJANDRO BUESA, CARLOS MORENO, SUSANA PÁRRAGA and FRANCESCA VIANI: Fiscal policy measures adopted since the second wave of the health crisis: the euro area, the United States and the United Kingdom. (There is a Spanish version of this edition with the same number). - 2119 ROBERTO BLANCO, SERGIO MAYORDOMO, ÁLVARO MENÉNDEZ and MARISTELA MULINO: Impact of the COVID-19 crisis on Spanish firms' financial vulnerability. (There is a Spanish version of this edition with the same number). - 2120 MATÍAS PACCE, ISABEL SÁNCHEZ and MARTA SUÁREZ-VARELA: Recent developments in Spanish retail electricity prices: the role played by the cost of CO₂ emission allowances and higher gas prices. (There is a Spanish version of this edition with the same number). - 2121 MARIO ALLOZA, JAVIER ANDRÉS, PABLO BURRIEL, IVÁN KATARYNIUK, JAVIER J. PÉREZ and JUAN LUIS VEGA: The reform of the European Union's fiscal governance framework in a new macroeconomic environment. (There is a Spanish version of this edition with the same number). - 2122 MARIO ALLOZA, VÍCTOR GONZÁLEZ-DÍEZ, ENRIQUE MORAL-BENITO and PATROCINIO TELLO-CASAS: Access to services in rural Spain. (There is a Spanish version of this edition with the same number). - 2123 CARLOS GONZÁLEZ PEDRAZ and ADRIAN VAN RIXTEL: The role of derivatives in market strains during the COVID-19 crisis. (There is a Spanish version of this edition with the same number). - 2124 IVÁN KATARYNIUK, JAVIER PÉREZ and FRANCESCA VIANI: (De-)Globalisation of trade and
regionalisation: a survey of the facts and arguments. - 2125 BANCO DE ESPAÑA STRATEGIC PLAN 2024: RISK IDENTIFICATION FOR THE FINANCIAL AND MACROECONOMIC STABILITY: How do central banks identify risks? A survey of indicators. - 2126 CLARA I. GONZÁLEZ and SOLEDAD NÚÑEZ: Markets, financial institutions and central banks in the face of climate change: challenges and opportunities. - 2127 ISABEL GARRIDO: The International Monetary Fund's view of social equity throughout its 75 years of existence. (There is a Spanish version of this edition with the same number). - 2128 JORGE ESCOLAR and JOSÉ RAMÓN YRIBARREN: European Central Bank and Banco de España measures against the effects of COVID-19 on the monetary policy collateral framework, and their impact on Spanish counterparties. (There is a Spanish version of this edition with the same number). - 2129 BRINDUSA ANGHEL, AITOR LACUESTA and FEDERICO TAGLIATI: 2021 Survey of Small Enterprises' Financial Literacy: Main Results. (There is a Spanish version of this edition with the same number). - 2130 PABLO HERNÁNDEZ DE COS: Testimony before the Congress of Deputies Budget Committee on 25 October 2021 and before the Senate Budget Committee on 30 November 2021 in relation to the Draft State Budget for 2022. (There is a Spanish version of this edition with the same number). - 2131 LAURA AURIA, MARKUS BINGMER, CARLOS MATEO CAICEDO GRACIANO, CLÉMENCE CHARAVEL, SERGIO GAVILÁ, ALESSANDRA IANNAMORELLI, AVIRAM LEVY, ALFREDO MALDONADO, FLORIAN RESCH, ANNA MARIA ROSSI and STEPHAN SAUER: Overview of central banks' in-house credit assessment systems in the euro area. - 2132 JORGE E. GALÁN: CREWS: a CAMELS-based early warning system of systemic risk in the banking sector. - 2133 ALEJANDRO FERNÁNDEZ CEREZO and JOSÉ MANUEL MONTERO: A sectoral analysis of the future challenges facing the spanish economy. (There is a Spanish version of this edition with the same number). - 2201 MANUEL A. PÉREZ ÁLVAREZ: New allocation of special drawing rights. (There is a Spanish version of this edition with the same number). - 2202 PILUCA ALVARGONZÁLEZ, MARINA GÓMEZ, CARMEN MARTÍNEZ-CARRASCAL, MYROSLAV PIDKUYKO and ERNESTO VILLANUEVA: Analysis of labor flows and consumption in Spain during COVID-19. - 2203 MATÍAS LAMAS and SARA ROMANIEGA: Designing a price index for the Spanish commercial real estate market. (There is a Spanish version of this edition with the same number). - 2204 ÁNGEL IVÁN MORENO BERNAL and TERESA CAMINERO GARCÍA: Analysis of ESG disclosures in Pillar 3 reports. A text mining approach. - 2205 OLYMPIA BOVER, LAURA CRESPO and SANDRA GARCÍA-URIBE: Household indebtedness according to the Spanish survey of household finances and the central credit register: a comparative analysis. (There is a Spanish version of this edition with the same number). - 2206 EDUARDO GUTIÉRREZ, ENRIQUE MORAL-BENITO and ROBERTO RAMOS: Dinámicas de población durante el COVID-19. (There is a Spanish version of this edition with the same number). - 2207 JULIO GÁLVEZ: Measuring the equity risk premium with dividend discount models. - 2208 PILAR CUADRADO, MARIO IZQUIERDO, JOSÉ MANUEL MONTERO, ENRIQUE MORAL-BENITO and JAVIER QUINTANA: El crecimiento potencial de la economía española tras la pandemia. - 2209 PANA ALVES, SERGIO MAYORDOMO y MANUEL RUIZ-GARCÍA: La financiación empresarial en los mercados de renta fija: la contribución de la política monetaria a mitigar la barrera del tamaño. (There is a Spanish version of this edition with the same number). - 2210 PABLO BURRIEL, IVÁN KATARYNIUK and JAVIER J. PÉREZ: Computing the EU's SURE interest savings using an extended debt sustainability assessment tool. - 2211 LAURA ÁLVAREZ, ALBERTO FUERTES, LUIS MOLINA and EMILIO MUÑOZ DE LA PEÑA: La captación de fondos en los mercados internacionales de capitales en 2021. (There is a Spanish version of this edition with the same number). - 2212 CARLOS SANZ: El peso del sector público en la economía: resumen de la literatura y aplicación al caso español. - 2213 LEONOR DORMIDO, ISABEL GARRIDO, PILAR L'HOTELLERIE-FALLOIS and JAVIER SANTILLÁN: El cambio climático y la sostenibilidad del crecimiento: iniciativas internacionales y políticas europeas. (There is a Spanish version of this edition with the same number). - 2214 CARMEN SÁNCHEZ and JARA QUINTANERO: Las empresas fintech: Panorama, retos e iniciativas. - 2215 MARÍA ALONSO, EDUARDO GUTIÉRREZ, ENRIQUE MORAL-BENITO, DIANA POSADA, PATROCINIO TELLO-CASAS and CARLOS TRUCHARTE: La accesibilidad presencial a los servicios bancarios en España: comparación internacional y entre servicios. (There is a Spanish version of this edition with the same number). - 2216 BEATRIZ GONZÁLEZ, ENRIQUE MORAL-BENITO and ISABEL SOLER: Schumpeter Meets Goldilocks: the Scarring Effects of Firm Destruction.