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Abstract

We introduce a new class of time-varying parameter vector autoregressions (TVP-VARs) 

where the identifi ed structural innovations are allowed to infl uence the dynamics of the 

coeffi cients in these models. An estimation algorithm and a parametrization conducive 

to model comparison are also provided. We apply our framework to the US economy. 

Scenario analysis suggests that, once accounting for the infl uence of structural shocks 

on the autoregressive coeffi cients, the effects of monetary policy on economic activity 

are larger and more persistent than in an otherwise standard TVP-VAR. Our results 

also indicate that cost-push shocks play a prominent role in understanding historical 

changes in infl ation-gap persistence.

Keywords: TVP-VAR, state-space, endogeneity, bayesian, monetary policy.

JEL classifi cation: C11, C32, E31, E52.



Resumen

Este artículo introduce una nueva clase de modelos de vectores autorregresivos con 

parámetros cambiantes en el tiempo (TVP-VAR). En los modelos propuestos, se permite 

que las innovaciones estructurales puedan infl uir en la dinámica de sus coefi cientes. 

También se proporciona un algoritmo de estimación y una parametrización conducente a 

la comparación de modelos. Este nuevo marco econométrico es aplicado a la economía 

estadounidense. Un análisis de escenarios sugiere que, una vez que se tiene en cuenta 

la infl uencia de las innovaciones estructurales en los coefi cientes autorregresivos, 

los efectos de la política monetaria sobre la actividad económica son mayores y más 

persistentes que en un TVP-VAR estándar. Resultados adicionales sugieren que las 

innovaciones que impulsan los costos desempeñan un papel destacado en los cambios 

históricos en la persistencia de la brecha de infl ación.

Palabras clave: TVP-VAR, estado-espacio, endogeneidad, bayesiano, política monetaria.

Códigos JEL: C11, C32, E31, E52.
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1 Introduction

1For example, Cogley et al. (2015) show that DSGE models with learning can be recast as a reduced-form TVP-

VAR.
2In keeping with the common jargon for VARs, we will adopt the terminologies ‘structural innovations’ and ‘struc-

tural shocks’ interchangeably throughout this paper.

context of VAR modeling. Therefore, our strategy provides a TVP-VAR framework that not only

accounts for parameter changes, but is also informative on what drives such changes.

Time-varying parameter vector autoregressions (TVP-VARs) are a well-established tool for

empirical analysis of changes in the relationship between economic variables. In part, the appeal

of these models stems from the fact that they can capture a wide range of economic dynamics while

preserving a tractable structure inherited from fixed-coefficient VARs. Moreover, TVP-VARs can

be regarded as a reduced-form representation of nonlinear environments adopted for policy design,

such as dynamic stochastic general equilibrium (DSGE) models that exhibit parameter variation.1

Initial efforts to work with TVP-VARs date back to Doan et al. (1984), Sims (1993), Canova

(1993) and Stock and Watson (1996). Nevertheless, these models have arguably become more

popular after papers such as Cogley and Sargent (2005) and Primiceri (2005) applied them to

investigate changes in the transmission mechanism of monetary policy. Since then, numerous

other studies followed using TVP-VARs to tackle different issues. For instance, Mumtaz and

Surico (2009) used a TVP-VAR to assess macro-finance instabilities in the relationship between

the term structure of interest rates and the economy. Gali and Gambetti (2015) and Paul (2019)

relied on the same econometric framework to focus on issues related to changes in the sensitivity

of asset prices to monetary policy, while Baumeister and Peersman (2013) explored variations in

the price elasticity of oil demand. TVP-VARs have also been associated with modeling changes in

inflation dynamics, as in Clark and Terry (2010) and Bianchi and Civelli (2015).

A common feature in all these studies is that the innovations producing parameter variations are

not identified. Consequently, the traditional TVP-VAR framework, albeit useful to model structural

changes, lacks a formal strategy to shed light on why such changes may occur in the first place. Our

main contribution is to propose a new class of TVP-VARs where parameter changes are explicitly

associated with the structural innovations identified within these models.2 Such innovations, as

is well known, are the objects that commonly have an economic and causal interpretation in the
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Perhaps the paper that is most closely related to ours is Cogley and Sargent (2001). To the best

of our knowledge, these authors proposed the first (and only, to this date) TVP-VAR that accom-

modates dependence between measurement errors and coefficient innovations. While the work in

Cogley and Sargent (2001) certainly lays an important foundation to ours, the class of models de-

veloped in this paper is the first to speak directly to the role of structural shocks behind parameter

variation in TVP-VARs. More specifically, Cogley and Sargent (2001) consider cross-covariances

between the VAR reduced form errors and the drifting coefficients. Instead, we directly parameter-

ize such coefficients in terms of the identified shocks. In doing so, we simplify both measurement

and validation of how structural shocks affect coefficient variations.3 Also, our approach intro-

duces nuances, such as accounting for both contemporaneous and lagged effects of the identified

shocks on the VAR coefficients. Sections 2 and 3 elaborate further on all these points.

Importantly, the framework we propose nests the case of TVP-VARs where the drifting co-

efficients and structural shocks are – as commonly assumed – orthogonal to each other. This

is achieved by specifying the law of motion for the time-varying coefficients as a function of

two distinct (and independent) elements: (i) a set of identified structural innovations; and (ii) a

coefficient-specific error term. Keeping the latter is useful, as it allows us to apply formal statisti-

cal procedures to gauge the evidence (or lack thereof) in favor of our approach.4 In particular, we

adopt a Bayesian technique for verification of exclusion restrictions, namely, the Savage-Dickey

Density Ratio method (see Verdinelli and Wasserman (1995)). Thus, a second contribution of this

paper is the provision of a model parametrization that is conducive to testing the validity of the

3For example, with reduced form errors – which are convolutions of multiple structural shocks – it is less straight-

forward to tease out information about how a specific economic shock of interest contributes to the overall dynamics

of the coefficients in the model. In addition, there are numerous cross-covariances between coefficient innovations and

reduced-form errors in TVP-VARs. Numerosity further complicates testing and summarizing the relationship between

structural shocks and the VAR coefficients if focusing on correlations in terms of the reduced form errors.
4Keeping a coefficient-specific error term is useful for other reasons as well. For example, it prevents changes in the

coefficients from being solely driven by the structural shocks, which in turn could lead to excess comovement amongst

the state variables (i.e. the coefficients). Also, such errors can help approximating shocks that are not accounted for in

the VAR.

TVP-VARs proposed here.

A third contribution of this paper is the development of a Markov Chain Monte Carlo (MCMC)

algorithm to estimate the class of TVP-VARs proposed in this study. Our MCMC sampler is effi-

cient and builds upon previous work on precision sampling methods in Chan and Jeliazkov (2009).

Estimation techniques are generalized to accommodate several ways the structural innovations can



BANCO DE ESPAÑA 9 DOCUMENTO DE TRABAJO N.º 2108

enter the drifting coefficient equations. More precisely, deciding whether structural innovations

affect the VAR coefficients contemporaneously or with lags requires only adjusting the number of

non-zero bands in a sparse matrix.

To differentiate our framework from the extant literature on TVP-VARs, hereafter, we refer

to the class of models proposed in this paper as ‘endogenous’ TVP-VARs. Note that the term

endogenous is applied here simply to reflect the explicit relationship between the structural inno-

vations and the time-varying coefficients, which is absent in traditional TVP-VARs. In this sense,

the latter can be perceived as being ‘exogenous’ TVP-VARs, i.e. where coefficient changes occur

independently from the structural innovations.

We illustrate the usefulness of our framework with two substantial empirical applications. In

the first one, we adopt a small scale TVP-VAR along the lines of Cogley et al. (2010) to study

changes in the persistence of the transitory (or gap) component of inflation. Inflation-gap persis-

tence is measured using the same statistical metric proposed by these authors. That is, a measure

akin to an R2 coefficient of determination and which is a function of the time-varying coefficients

in the VAR. Given the direct link between these coefficients and the structural innovations in our

models, we are able to evaluate the extent to which VAR shocks – identified with sign restrictions

(see, e.g., Uhlig (2005)) – matter for changes in the persistence of the inflation-gap.5 Overall, our

results indicate that cost-push shocks played a salient role as a driver for inflation-gap movements

over the past five decades.

In the second application, we conduct scenario analysis based on exogenous and endogenous

5Sign restrictions are a useful strategy to generate macroeconomic impulse responses that are consistent with eco-

nomic theory. That said, selecting an identification strategy is, of course, arbitrary. If desired, alternative identification

schemes such as short- and long-run restrictions, Cholesky, identification through heteroskedasticity or narrative-based

approaches could be integrated into our framework. We leave such extensions for future work.

TVP-VARs. In particular, we investigate the effects of alternative monetary policy decisions on

economic activity during two periods: (i) the transition towards the (effective) zero lower bound

of the policy rate in the early stages of the 2008 financial crisis; and (ii) the normalization process

of interest rates that began in 2015. The idea behind these scenarios is to illustrate how differences

between endogenous and exogenous TVP-VARs manifest themselves in the context of normative

analysis that are policy relevant. Specifically, we compare the simulated impulse responses for

inflation and unemployment that emerge from these two models in response to monetary policy
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shocks. A key result from this exercise is that the additional channel for the propagation of policy

shocks in the endogenous setting – i.e. the direct impact of shocks on the time-varying coefficients

– generates a larger and more protracted effect of monetary policy on economic activity in both

scenarios. Such a result receives strong support from the data in a model comparison exercise.

Finally, our paper is also related to a strand of the literature that focuses on endogenizing struc-

tural changes in macroeconometric models. For example, Kim et al. (2008) and Kang (2014) pro-

pose methods to endogenize structural changes in the context of univariate Markov-switching mod-

els. For VARs, attempts to endogenize structural changes have traditionally relied on piecewise-

type models (e.g. regime-switching) where changes in the autoregressive parameters are dictated

by some observable time series. Notable examples for these are threshold VARs in, e.g., Tsay

(1998) and Galvão (2006), and smooth transition VARs in, e.g., Anderson and Vahid (1998) and

Auerbach and Gorodnichenko (2012). More recently, Carriero et al. (2018) and Mumtaz and

Theodoridis (2019) – also using observable time series – adopted Bayesian techniques to endo-

genize volatility changes in VARs.

The rest of the paper is organized as follows. Section 2 presents a general framework for

endogenous TVP-VAR models. Section 3 discusses the estimation of the proposed framework.

Section 4 investigates several sources of macroeconomic instability in the US economy through

the lens of our models. Section 5 concludes.

2 Modeling Endogenous Parameter Instabilities

In this section we introduce a new class of TVP-VARs that allows for the intercept and au-

toregressive coefficients to be driven by identified structural shocks.6 We show that the proposed

framework not only nests the traditional approach to model parameter variations in VARs but also

accommodates different alternatives to endogenize dynamics for the drifting coefficients. In par-

ticular, we put forward three alternatives for specifying endogenous TVP-VARs. The first one

considers the case when structural shocks embedded in the VAR affect the coefficients contem-

poraneously. The second alternative focuses on the case when coefficients are influenced by past

6How shock identification is achieved is addressed in Section 4.
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realizations of the structural shocks. Lastly, we consider a more general scenario when both con-

temporaneous and lagged structural innovations are allowed to influence parameter instabilities in

the model.

2.1 Traditional TVP-VAR Models

Let yt = (y1,t ,y2,t , ...,yN,t)
′ be a N× 1 vector of economic variables whose dynamic relation-

ships are governed by the vector of time-varying coefficients φ t . A baseline representation for a

TVP-VAR with p lags can thus be written as:

yt = Xtφ t +Aet , (1)

φ t = φ t−1 +Vt , (2)

where φt = (φ1,t , · · · ,φN,t)
′, such that each element φi,t for i = 1, ...,N is an N p+ 1× 1 vector

following – as is standard in TVP-VARs – random walk dynamics driven by the vector Vt .
7 The

latter collects innovations that can be mutually correlated or independent. Lagged regressors and

constant terms are collected in Xt = IN ⊗ (1,y′t−1, ...,y
′
t−p), where IN is an N-dimensional identity

matrix and the symbol ⊗ denotes the Kronecker product. The contemporaneous relationships

amongst reduced-form errors are captured by the impact matrix A, while et represents the vector

of – unit variance and mutually uncorrelated – structural shocks, i.e. reduced-form innovations are

given by ut = Aet .
8

This paper is concerned with the connection between et and Vt . In this regard, both processes

are typically assumed to be jointly Gaussian and evolving independently at all leads and lags.

Conceptually, the assumption of independence between et and Vt implies that changes in the trans-

mission mechanism of economic shocks, encapsulated in φt , remain entirely driven by sources of

information that are not identified within the VAR system. Therefore, albeit useful to infer changes

in φt , the framework in (1)-(2) remains silent about why such changes may take place over time.

7While assuming random walk dynamics is the usual and parsimonious strategy to model drifting coefficients in

TVP-VARs, some authors, as in Canova (1993), allow for a more general framework where the coefficients follow

stationary autoregressive processes. Nevertheless, random walk coefficients provide enough flexibility to approximate

the dynamics from quite distinct data-generating processes (see, e.g., Canova et al. (2015)).
8We discuss the computation of A in Section 4.1.
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Unlike previous applications of TVP-VARs, we relax the independence assumption for et and Vt

and propose methods to model and test the relationship between these two terms.

Before discussing our general framework, one comment, however, is in order. Thus far, we

have deliberately abstracted from time variation in second-moment parameters. That is not to say

that such a modeling feature is unimportant. In fact, heteroskedasticity plays an important role in

TVP-VAR analysis as in Primiceri (2005), Sims and Zha (2006) and Canova and Gambetti (2009),

to name a few. Hence, as a robustness check, in Section 4.5 we also consider endogenous TVP-

VARs that allow for time-varying volatilities.9 To keep notation clear, however, in what follows

we discuss our methodology in the context of homoskedastic endogenous TVP-VARs.

2.2 A More General Framework

Our modeling strategy consists of letting φt in (1) and (2) to be partially explained by identified

economic shocks. That is, the vector of innovations Vt is decomposed into two orthogonal sources

9The challenging task of jointly endogenizing first and second moments for TVP-VARs is, however, beyond the

scope of this paper.

of information:

Vt = g(et)+ vt , (3)

where g(et) denotes some function of the identified structural shocks and vt is a vector collect-

ing mutually uncorrelated coefficient-specific errors. The latter can be interpreted as unidentified

shocks that may be associated with variables that are not accounted for in the VAR. Notably, while

et contains N elements, vt is a (N2 p+N)× 1 vector, which makes identification of coefficient-

specific errors intrinsically hard. Nonetheless, even if some sources of parameter instability cannot

be identified, it remains important to measure what portion of changes in φt can be attributed to

identifiable drivers.

There are two relevant issues that are raised under the formalization in (3). The first one regards

the functional form of g(•). In principle, structural shocks could affect parameter stability in a

linear or nonlinear fashion. Since TVP-VARs can approximate more complex nonlinear structures

while preserving a simpler framework, it seems a bit incongruous to reverse such simplicity now by

introducing nonlinearities into the state equations. Therefore, in this paper we develop endogenous
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TVP-VARs where economic shocks affect the VAR coefficients linearly and leave nonlinearities

for subsequent work.

The second issue corresponds to the timing in the relationship between Vt and g(et), or equiva-

lently, between et and φt . If structural shocks are associated with, say, policy makers’ and agents’

decisions, the pace at which such decisions might exert an influence on economic relations can

vary. This raises the question whether et should affect φt contemporaneously or with lags. In what

follows, we explore several options regarding this timing issue.10

Contemporaneous Innovations

The first case we consider is the case when structural shocks at time t can influence changes in

10For example, in the context of theoretical (or micro-founded) models, lags in the transmission of shocks to the

economy can be reconciled with the existence of frictions, such as nominal rigidities (e.g., Smets and Wouters (2007))

and capital adjustment costs (e.g., Cooper and Haltiwanger (2006)).

the relationship between the variables in yt within the same time period. Formally, we have:

φt = φt−1 +HC,λ et + vt , vt ∼N (0, Ωv) , (4)

where Ωv = diag(σ2
v,1, ...,σ

2
v,N2 p+N) and HC,λ = λ ′C⊗ ι denotes the Kronecker product between

the N×1 vector λC = (λC,1, ...,λC,N)
′ and a (N2 p+N)×1 vector of ones, ι .

The vector λC – and its variants introduced below – represents a key piece of information for

the remainder of this paper. It governs the sensitivity of φt to contemporaneous structural shocks.

Also, as we will discuss in Section 3.2, statistical validation of our framework is organized around

such a vector.

Next, note that the Kronecker structure in HC,λ = λ ′C ⊗ ι is introduced to allow for a one-

to-one mapping between λC and et , i.e. each term in λC is associated with a specific structural

shock in et and vice-versa. Hence, instead of reporting results for N(N2 p+N) free parameters

in λC – which would be the case had we assigned N different sensitivity parameters to each time-

varying coefficient in φt – we focus on the overall effect of et on φt captured by N sensitivity

parameters. Such an overidentification strategy mitigates parameter proliferation and greatly helps

to summarize the relevance of structural shocks for changes in φt .

Also, since there are considerably fewer structural shocks than VAR coefficients, the expres-

sion in (4) describes a factor structure where commonalities across φt are absorbed by et . Strong
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evidence in favor of comovements in φt for TVP-VARs are documented, for example, in Cogley

and Sargent (2005) via principal components analysis.

Lagged Innovations

The second case we introduce is when structural shocks can alter the relationship between

the variables in yt with a one-period lag. This could be the case, for instance, if the underlying

economic processes embedded in yt are substantially persistent such that the effect of shocks on φt

might require some time to materialize. Accordingly, the state equation in (2) can be recast as:

φ t = φ t−1 +HL,λ et−1 + vt , vt ∼N (0, Ωv) . (5)

As in the contemporaneous case, we set Ωv = diag(σ2
v,1, ...,σ

2
v,N2 p+N) and HL,λ = λ ′L⊗ ι , where

the vector λL contains the N parameters that govern the sensitivity of φ t to the lagged structural

shocks.

Contemporaneous and Lagged Innovations

The third case is the most general one since it encompasses the previous two possibilities. That

is, we assume that time-varying coefficients might be potentially influenced by both contempora-

neous and lagged structural shocks. Therefore, the dynamics for the VAR coefficients are be given

by:

φ t = φ t−1 +HC,λ et +HL,λ et−1 + vt , vt ∼N (0, Ωv) . (6)

Note that this general specification nests all the four possible cases for modeling parameter varia-

tion described above: (i) exogenous; (ii) contemporaneous; (iii) lagged; and (iv) contemporaneous

and lagged. In particular, depending on whether the corresponding matrices HC,λ and HL,λ are set

to zero, the vector of innovations in (2) can be expressed in four different ways:

Vt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I) vt , if HC,λ = 0, HL,λ = 0,

(II) HC,λ et + vt , if HC,λ �= 0, HL,λ = 0,

(III) HL,λ et−1 + vt , if HC,λ = 0, HL,λ �= 0,

(IV) HC,λ et +HL,λ et−1 + vt , if HC,λ �= 0, HL,λ �= 0.

(7)
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Given its generality, the model defined by equations (1) and (6) constitutes our benchmark specifi-

cation in the empirical applications in Section 4.11

3 Estimation

In this section we outline the estimation techniques adopted to estimate the models discussed in

Section 2. In particular, we propose an algorithm to estimate endogenous TVP-VARs that is based

on simple Gibbs sampling steps.12 The drifting coefficients (φt) are estimated using precision-

based (or precision sampling) methods as in Chan and Jeliazkov (2009), instead of Kalman filter-

based techniques.13 Precision-based algorithms can be loosely viewed as a ‘vectorized’ version

of the Kalman filter in that precision sampling operates directly on a representation of (1) and (6)

where all variables are stacked over t = 1, · · · ,T. As a result, precision-based algorithms provide

a setup that is arguably simpler than Kalman filter-based alternatives when conducting Bayesian

estimation of state-space models. In particular, precision sampling methods do not require the

recursive algebraic steps to derive filtering and smoothing equations, which are necessary when

using the Kalman filter for Bayesian estimation of state-space models.14.

Next, let y = (y1, · · · , yT )
′ and the vector of innovations e and v being similarly defined,

equations (1) and (6) can thus be expressed using the following stack representation:

y = X̃φ̃+LAe, (8)

φ̃= φ̃0 +Lλe+v, (9)⎡⎢⎣ e

v

⎤⎥⎦∼N

⎛⎜⎝
⎡⎢⎣ 0

0

⎤⎥⎦ ,

⎡⎢⎣ INT 0

0 Σv

⎤⎥⎦
⎞⎟⎠ , (10)

11Nevertheless, for comparison, we also show selected results associated with more restrictive specifications.
12Evaluation of the mixing properties of our algorithm is available in the Online Appendix.
13As pointed out in McCausland et al. (2011), precision-based methods typically reduce computational complexity

and expedite state simulation.
14For a detailed comparison between Kalman filter- and precision-based algorithms, see McCausland et al. (2011)



BANCO DE ESPAÑA 16 DOCUMENTO DE TRABAJO N.º 2108

where:

φ̃= Lφ=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0

−I I

0−I . . .
...

...
. . .

0 · · ·−I I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

φT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

φ

, X̃ = XL−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0 · · · 0

0 X2 0

...
. . .

...

0 0 · · · XT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0

I I

I I . . .
...

...
. . .

I I · · · I I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

L−1

,

Lλe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HC,λ 0 · · · 0

HL,λ HC,λ · · · 0

0 HL,λ
. . .

...
. . .

...

0 · · · HL,λ HC,λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Lλ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

...

eT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

e

, LA = IT ⊗A, Σv = IT ⊗Ωv and

Lλ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Contemporaneous + Lagged)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HC,λ 0 · · · 0

HL,λ HC,λ · · · 0

0 HL,λ
. . .

...
. . .

...

0 · · · HL,λ HC,λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(Contemporaneous)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HC,λ 0 · · · 0

0 HC,λ · · · 0

0 0
. . .

...
. . .

...

0 · · · HC,λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(Lagged)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

HL,λ 0 · · · 0

0 HL,λ
. . .

...
. . .

...

0 · · · HL,λ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

the exclusion restrictions in (7) to the appropriate band in Lλ, i.e.

φ̃0 = (φ0, 0, · · · ,0)′. φ0 represents an N2 p+N×1 vector that collects initialization conditions for

the VAR coefficients. We treat such conditions as additional parameters that are estimated under

our MCMC algorithm. Each identity matrix (I) in L and L−1 is N2 p+N×N2 p+N. All other

elements in the matrices above are defined exactly as discussed in Section 2. Finally, note that the

three endogenous TVP-VAR variants discussed in Section 2.2 can be obtained by simply applying
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3.1 Sampling Endogenous States

Now let θ =
{

LA, φ̃0, Lλ, Σv

}
denote the set containing parameters for each of the models

in Table 2. An MCMC sampler for the system in (8)-(10) can be summarized as a two-step algo-

rithm where posterior draws are obtained by sequentially sampling from the following densities:

(i) f (φ̃|y,θ); and (ii) f (θ|y, φ̃). In what follows, we focus on deriving an expression for the full

conditional posterior, f (φ̃|y,θ), since it represents the main contribution of this paper on the es-

timation front. Sampling details for θ and a discussion on the priors can be found in the Online

Appendix.15

To sample φ̃ from f (φ̃|y,θ), one first needs to obtain an expression for the likelihood func-

tion, L
(
φ̃,θ|y

)
= f (y|φ̃,θ), and the prior density, f (φ̃|θ), i.e. the marginal distribution of φ̃

unconditional on y. The prior can be readily obtained from (9):

where the first and second moments – conditional on θ – in (11) are respectively given by:16

15It should be noted, however, that the class of priors adopted here are broadly in line with previous TVP-VARs

studies, e.g., Cogley and Sargent (2005) and Primiceri (2005).
16To make notation less cumbersome – while explicitly mentioning what they are — we omit conditional factors in

the expressions for expectation, variance and covariance operators.

φ̃|θ ∼N
(
μ
φ̃
, Σφ̃ φ̃

)
, (11)

μ
φ̃
= E

(
φ̃0 +Lλe+v

)
= φ̃0, (12)

Σφ̃ φ̃ = Var(Lλe+v) = LλVar(e)L′λ+Var(v) = LλL′λ+Σv. (13)

Next, to derive an expression for the likelihood, we use a standard result for multivariate Normal

distributions, namely the joint density f (y, φ̃|θ) can be factorized into a conditional and a marginal

coordinate, i.e. f (y, φ̃|θ) = f (y|φ̃,θ) f (φ̃|θ). By setting the marginal density to be the prior in

(11), then the properties of the Normal distribution (see, e.g., Theorem 3.8 in Kroese and Chan

(2014), chapter 3.6) ensure that the likelihood function f (y|φ̃,θ) is Gaussian such that:

y|φ̃,θ ∼N
(
μy +Σ′

φ̃yΣ
−1

φ̃ φ̃

(
φ̃−μ

φ̃

)
, Σyy−Σ′

φ̃yΣ
−1

φ̃ φ̃
Σ

φ̃y

)
. (14)

The expression above introduces three new terms, μy, Σyy and Σ
φ̃y. The first two denote first and

second moments, respectively, which – conditional on φ̃ and θ – are obtained from the measure-

ment equation in (8). Specifically, we have:
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μy = E

(
X̃φ̃+LAe

)
= X̃φ̃, (15)

Σyy = Var(LAe) = LAVar(e)LA
′ = LALA

′. (16)

returns an expression for (14) that is consistent with the likelihood function for exogenous TVP-

VARs.17

Finally, applying Bayes’ rule to combine (11) and (14) and using the results in (12)-(13), (15)-

(16) and (17) yields:

17A similar rationale applies for the prior variance-covariance matrix Σφ̃ φ̃ in (13).

The cross-covariance term, Σ
φ̃y, appears in (14) since the vector of structural shocks (e) is a

common driver to both y and φ̃. Therefore, from (8) and (9) and recalling e and v are independent

random vectors, we have:

Σ
φ̃y = Cov(Lλe, LAe) = LλCov(e, e)LA

′ = LλVar(e)LA
′ = LλLA

′. (17)

Of course, in the absence of endogenous time variation, Lλ is a null matrix and so is Σ
φ̃y, which

f (φ̃|y,θ) ∝ f (y|φ̃,θ) f (φ̃|θ),

∝ exp

⎡⎢⎣−
(

y∗ −Bφ̃
)′

Ky
−1
(

y∗ −Bφ̃
)
+
(
φ̃− φ̃0

)′
Σ−1

φ̃ φ̃

(
φ̃− φ̃0

)
2

⎤⎥⎦ ,

∝ exp

⎡⎣−φ̃′
(

B′Ky
−1B+

(
LλL′λ+Σv

)−1
)
φ̃−2

(
y∗′Ky

−1B+ φ̃′0
(
LλL′λ+Σv

)−1
)
φ̃

2

⎤⎦ ,

(18)

where we define:

y∗ = y+Σ′
φ̃yΣ

−1

φ̃ φ̃
μ
φ̃
= y+LAL′λ

(
LλL′λ+Σv

)−1
φ̃0,

B = X̃+Σ′
φ̃yΣ

−1

φ̃ φ̃
= X̃+LAL′λ

(
LλL′λ+Σv

)−1
,

Ky =Σyy−Σ′
φ̃yΣ

−1

φ̃ φ̃
Σ

φ̃y = LALA
′ −LAL′λ

(
LλL′λ+Σv

)−1 LλLA
′.

The expression in (18) reveals a Gaussian kernel such that:

φ̃|y,θ ∼N
(

dφ̃ , Dφ̃

)
, where

⎧⎪⎪⎨⎪⎪⎩
dφ̃ = Dφ̃

(
B′Ky

−1y∗+
(
LλL′λ+Σv

)−1
φ̃0

)
,

Dφ̃ =
(

B′Ky
−1B+

(
LλL′λ+Σv

)−1
)−1

.

(19)
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To produce draws for φ̃|y,θ one needs to construct dφ̃ and Dφ̃ . This can be done using the posterior

simulation algorithm of Chan and Jeliazkov (2009). Draws for φ|y,θ can then be recovered by

simply computing φ= L−1φ̃.

3.2 A Parametrization for Model Comparison

Before moving on to the empirical applications, it is useful to illustrate a strategy to carry out

model comparison between endogenous and exogenous TVP-VARs. Within a Bayesian frame-

work a natural way to conduct such an exercise is by computing the posterior odds, i.e. the ratio

of posterior model probabilities between two competing specifications. In our case this can be

formulated as:

Posterior Odds︷ ︸︸ ︷
f (Endog. TVP-VAR|y)
f (Exog. TVP-VAR|y) =

Bayes Factor︷ ︸︸ ︷
f (y|Endog. TVP-VAR)

f (y|Exog. TVP-VAR)
×

Prior Odds︷ ︸︸ ︷
f (Endog. TVP-VAR)

f (Exog. TVP-VAR)
.

It is common to assume that two models are equally likely a priori, hence the posterior odds above

simplify to computing the Bayes factor.

Now, recall from (7) that endogenous TVP-VARs nest their exogenous counterpart. As a re-

sult, a convenient Bayesian tool to compute the Bayes factor is to apply the Savage-Dickey Density

Ratio method (Verdinelli and Wasserman (1995)). This requires evaluating the following expres-

sion:18

18Loosely speaking, the Savage-Dickey Density Ratio approach can be seen as a Bayesian analog to Wald-type tests

in the sense that both approaches denote suitable statistical methods to compare nested models.

Bayes factor =
f (λ= 0)

f (λ= 0|y) , (20)

where λ is the vector collecting contemporaneous and lagged sensitivity parameters in Equation

(6), λ=
(
λC,1, · · · , λC,N , λL,1, · · · , λL,N

)′
.

From (20), it is clear that computation of the Bayes factor requires evaluating the marginal

prior and posterior for λ at the restriction λ = 0. As demonstrated in the Online Appendix, such

an exercise is simple and involves only evaluating the ratio between two Gaussian densities. In

particular, the posterior in the denominator can be readily estimated via Monte Carlo integration
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To obtain posterior draws for λ, first, we need to express the state equation in (9) in terms of λ.

This is an important step, since expressions for the prior and conditional posterior in terms of Lλ

are not of a known form. Thus, by a simple change of variable Lλe = Leλ, we can rewrite (9) as:

19For simplicity, we set pre-sample values of et to zero.

using Gibbs draws from the conditional posterior f (λ|y, φ̃,θ−λ), where we use θ−λ to denote any

parameter in θ except for λ.

That is, Le denotes the Kronecker product between a T ×2N matrix containing the contemporane-

ous and lagged structural shocks and a column vector of ones, ι , which – as defined in Section 2.2

– has the same row dimension as φt .

Fortunately, given the modular nature of MCMC algorithms, one can use the conditionality of

λ on y, φ̃ and LA in f (λ|y, φ̃,θ−λ), to back out the vector of structural shocks e from (8) and treat

Le as a predetermined regressor in Equation (21).19 This means that derivation of an expression

for f (λ|y, φ̃,θ−λ) – a crucial step to compute (20) – can be based on the simple linear regression

form in (21) for which standard results can be applied (see, e.g., Koop et al. (2007)).

4 Macroeconomic Instabilities: Measurement and Sources

We now illustrate the usefulness of the proposed endogenous TVP-VAR framework by means

of two empirical applications for the US economy. In the first application, we focus on identify-

φ̃=φ̃0 +Leλ+v, (21)

where

Leλ=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e′1 0′

e′2 e′2
...

...

eT e′T−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊗ ι

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λC,1

...

λC,N

λL,1

...

λL,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

ing the shocks that might have contributed to changes in the persistence of the inflation gap. In
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the second, we conduct scenario analysis for inflation and unemployment under different mone-

tary policy decisions about the trajectory of interest rates. In all these applications, we employ a

small-scale structural TVP-VAR along the lines of Cogley and Sargent (2001) and Cogley et al.

(2010).20 In keeping with these studies, we set lag-length in the VAR to two and estimate the mod-

els using quarterly data on inflation (the annual percentage change in the seasonally adjusted GDP

implicit price deflator), the unemployment rate (seasonally adjusted civilian unemployment rate,

all workers over age sixteen), and the short-term nominal interest rate for the US (yield on 3-month

Treasury bill rate). Our original sample runs from 1948Q2 to 2018Q2, where the first fifteen years

are used to train the priors for initializing the time-varying coefficients. Therefore, our effective

sample runs from 1963Q2 until 2018Q2. To circumvent issues related to interest rates being oper-

ationally restrained by the zero lower bound (ZLB), for the period between 2009Q1 and 2015Q4

we splice the series for the short-term nominal rate with the shadow rate measure proposed in Wu

and Xia (2016), which allows for negative realizations of the policy rate.21

Following the description of the models in Section 2, we first present results for homoskedastic

endogenous TVP-VARs. In Section 4.5 we provide robustness checks for models that allow for

heteroskedasticity. Also, unless stated otherwise, the results we report below are based on our

most general endogenous TVP-VAR, i.e. the one that allows for the intercept and autoregressive

coefficients to be affected by both contemporaneous and lagged structural shocks. All models

were estimated using 40000 draws of the Gibbs sampling algorithm proposed in Section 3 for

which the first 10000 burn-in draws were discarded. For brevity, further details on estimation as

well as additional results for the other forms of endogenous TVP-VARs are reported in the Online

Appendix.

20Section A2 of the Online Appendix investigates the scalability of the algorithm proposed in this study. In par-

ticular, an exercise based on simulated data shows that computation of endogenous TVP-VARs remains tractable,

speed-wise, when including up to seven variables (i.e., N=7) in the system. This is the same number of variables used

in prototypical medium-scale DSGE models, such as in Smets and Wouters (2007).
21The data for inflation, unemployment and the interest rate were obtained from the Federal Reserve Bank of St.

Louis website. Data for the Wu-Xia shadow federal funds rate were obtained from the Federal Reserve Bank of Atlanta

website.

4.1 Identification

Since we are interested in labeling VAR shocks in a manner that is consistent with economic

theory, we adopt a sign-restriction approach (e.g., Uhlig (2005)) to identify the structural innova-
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tions. As pointed out in Canova (2011), sign restrictions provide a strategy to incorporate non-

parametric (sign-related) restrictions from DSGE models into VARs.

In the applications that follow we identify three shocks, namely a cost-push, a monetary policy

and a demand shock. While these shocks, of course, do not represent an exhaustive list, they

emerge as natural candidates to shed light on phenomena related to inflation and unemployment

dynamics. For example, prototypical characterizations of New Keynesian DSGE models, that are

tailored to study real and nominal effects of monetary policy, rely on a similar set of shocks (see,

e.g., Clarida et al. (1999) and Lubik and Schorfheide (2004)). Moreover, recall that by allowing for

additional, albeit unidentified, coefficient-specific errors we do not rule out potential effects from

other extraneous sources in our TVP-VARs.

In particular, we assume that a positive cost-push (or negative supply) shock lowers real ac-

tivity by increasing unemployment while leading inflation and the policy rate to rise. In contrast,

a positive demand shock decreases the unemployment rate, but is accompanied by an increase in

inflation and the policy rate. Finally, a positive – i.e. contractionary – monetary policy shock im-

plies an increase in the policy rate while lowering inflation and increasing the unemployment rate.

These restrictions are identical to the ones adopted in Fry and Pagan (2011) and are summarized

in Table 1. To obtain an impact matrix (A) that conforms with the sign restrictions just described

above – akin to Baumeister and Peersman (2013) and Mumtaz and Zanetti (2015) – we use Al-

gorithm 2 in Rubio-Ramirez et al. (2010) to generate a rotation matrix that spans the space of all

possible permutation of the signs in Table 1.22 A detailed description of how we compute A within

22It should be noted, however, that allowing for a rotation matrix to achieve sign identification comes with an

important caveat. As pointed out in Baumeister and Hamilton (2015), the inclusion of a rotation matrix into the

estimation procedure implicitly implies a prior for structural objects, such as impulse responses, that is informative

and depends on the number of variables in the model. One exception is the case of VARs with N = 3 (as assumed

in this paper), where such an implicit prior turns out to be an uninformative one. In a similar vein, Bognanni (2018)

discusses ordering dependency issues for the estimation of TVP-VARs and also illustrates implications to structural

objects in the context of sign-identified VARs. Note, however, that when the impact matrix (A) is time invariant (as

assumed in this paper) the author’s novel parametrization for the law of motion of the autoregressive coefficients (see

Equation 54 in the author’s working paper version) is equivalent to the standard random walk case adopted in this

paper. Also, motivated by Bognanni’s critique, we re-estimated our baseline model under different variable orderings,

which produced virtually identical results.

our Gibbs sampling algorithm is presented in Section A1.1 of the Online Appendix.
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4.2 Evidence on Endogenous Time Variation

We begin by evaluating the statistical evidence for endogenizing the time-varying coefficients.

As discussed in Sections 2.2 and 3.2, validation of our methodology can be carried out by investi-

gating whether the vector of loadings (λ) should be introduced in the model. Figure 1 shows the

posterior density estimates for each loading. Notably, all densities exhibit most of their masses

located away from zero. Such a result lends support to the idea that structural shocks can indeed

affect the dynamics of the VAR coefficients.

Next, we rely on a more formal statistical procedure to test whether λ = 0. In particular, we

use the expression in (20) to compute the Bayes factor between endogenous and exogenous TVP-

VARs. Table 2 reports the list of models used in such an exercise. Table 3 reports values for twice

the natural logarithm of the Bayes factor (2log(BF)) for cases when, loosely speaking, the model

‘under the null hypothesis’ is an exogenous TVP-VAR and the model ‘under the alternative’ is one

of the three endogenous TVP-VARs in Table 2.23 All in all, Bayes factor analysis reinforces our

findings from Figure 1, i.e. regardless whether coefficients are driven by contemporaneous, lagged

or both types of structural innovations, evidence supporting endogenous TVP-VARs is substantial.

Notably, all values for 2log(BF) are greater than ten which, following Kass and Raftery (1995),

can be interpreted as strong evidence in favor of endogenizing the dynamics of the coefficients. In

terms of posterior odds, such results indicate that – for the empirical applications in this paper –

endogenous TVP-VARs are more likely than their exogenous counterpart by a factor greater than

150.24

It is important to note that statistical evidence in favor of our framework does not require

identifying all shocks in the system and including them jointly in the law of motion of the VAR

coefficients, i.e. the methodology supports partial identification. To illustrate this, we compute the

Bayes factors between endogenous and exogenous TVP-VARs when coefficients in the former are

a function of a single structural shock. To be clear, in this exercise we estimate endogenous TVP-

VARs where just one shock is identified.25 The values for 2log(BF) are reported in Table 4. Our

23Kass and Raftery (1995) suggest the use of 2log(BF) since such a metric is on the same scale as other familiar

test statistics like the deviance information criteria and the likelihood ratio test.
24Such result is based under the assumption that both endogenous and exogenous TVP-VARs are equally likely a

priori. For more details on how to interpret the Bayes factor, see Section 3.2 in Kass and Raftery (1995).
25In other words, we impose sign restrictions only to the column in the impact matrix (A) associated with a particular

shock of interest, while leaving the remaining columns in A unrestricted (sign-wise).
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results favor endogenous over exogenous time variation for each of the three shocks considered in

this paper. Nonetheless, models that condition coefficient variations on a single lagged structural

shock (plus a coefficient-specific error) do not receive support from the data. This result indicates

that – at least for the applications in this paper – if one is interested in identifying just one shock and

exploring how it may affect interdependencies in a VAR, then accounting for its contemporaneous

seems more appropriate. Put differently, partial identification of shocks is supported within the

context of our empirical applications. Although, this support seems to be contingent on the timing

of shocks. Of course, for different applications this result may change.

relate to those in Cogley et al. (2010). In addition, since our sample runs until 2018Q2 – whereas

theirs ends in 2006Q4 – we also explore what insights, if any, our methodology may offer for the

more recent history of the inflation gap.

4.3 Application 1: Inflation-Gap Persistence

With modern central banking being largely concerned with committing to an inflation target,

sustained credibility of a monetary authority hinges (among other things) on: (i) its ability to

infer whether deviations of headline inflation from some underlying target are long-lasting; and

(ii) identifying the potential drivers associated with such deviations. In light of these, Cogley

et al. (2010) proposed a two-step exercise to study historical changes in the persistence of the US

inflation-gap that combined measurement from an exogenous TVP-VAR and structural assessment

based on a New-Keynesian DSGE model. Following their analysis, our first empirical application

seeks to study both the dynamics and underlying drivers of inflation-gap persistence through the

lens of our framework – i.e. the endogenous TVP-VAR model – and investigate how our findings

4.3.1 Measuring Persistence

To assemble descriptive statistical evidence about potential changes in inflation-gap persis-

tence, Cogley et al. (2010) propose a metric that defines persistence in terms of the predictive

content past shocks carry to future variations in a time series of interest. The idea being that if a

process is persistent, then the predictive content of past shocks should take long to die out. The

authors show that such concept can be formulated analogously to a time-varying R2
h,t statistic for
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h−step ahead forecasts. Specifically, one can measure variations in the persistence of a time series

by verifying, at any given point in time, the speed at which R2
h,t converges to zero as the forecast

horizon h extends. For the sake of brevity, technical details on how to construct R2
h,t are relegated

to the Online Appendix. For now, it suffices to remember that R2
h,t is a metric bounded between

zero and one and that what characterizes changes in inflation-gap persistence is the pace at which

R2
h,t converges to zero as h increases. Therefore, a highly (weakly) persistent process at time t is

one whose R2
h,t statistic slowly (quickly) converges to zero as h lengthens.

Figure 2 plots the evolution of R2
h,t from 1962Q1 until 2018Q2 for h= 1, 4 and 8. Our estimates

(posterior medians) indicate that the inflation gap was considerably more persistent during the

1970s and early 1980s than during the remainder of the sample. For example, in some instances

during the 1970s, the R2
h,t remains close to one even at h = 8. In contrast, after the early 1980s

the decline in inflation-gap persistence becomes apparent with R2
h,t dropping more rapidly as h

increases for virtually all points in time. All in all, these results are broadly in line with what

Cogley et al. (2010) documented.

Moreover, the latter part of our sample – that is not covered in their study – provides an ad-

ditional result. Since 2015, inflation-gap persistence seems to be gradually picking up again. In

fact, results reported in the Online Appendix for other endogenous TVP-VAR variants document

an even steeper upward trend in R2
h,t beginning a bit after 2012. Interestingly, the emergence of

such a ‘trend’ approximately coincides with the Federal Reserve (Fed hereafter) making the of-

ficial announcement of pursuing a 2% inflation target. It is also consistent with commonly used

measures of US inflation, such as ‘core inflation’, being persistently below 2% since the end of the

2008 financial crisis.

4.3.2 Sources of Changes in Inflation-Gap Persistence

We now illustrate how our framework can be used to gain insights into the possible causes

underlying historical changes in inflation-gap persistence. To this end, it is important to recog-

nize that variations in R2
h,t in Figure 2 are directly related to movements in the VAR coefficients.

As previously mentioned, such movements are a function of four different sources, namely three

structural shocks (cost-push, monetary policy and demand) and unidentified coefficient-specific
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errors.26 Therefore, to further interpret the results on inflation-gap persistence, we propose a sta-

tistical measure along the lines of Kose et al. (2003) that captures the contribution of each structural

shock to the overall variation in the drifting coefficients. More precisely, note from (6) that changes

in each of the elements in φt can be re-expressed in first-difference form (Δφ j,t = φ j,t−φ j,t−1) as:

With these in mind, a measure to summarize total variation in the VAR coefficients can be obtained

by averaging the variance of Δφ j,t over j = 1, ...,M. Formally, from (22), we set:

28Since we assume that the innovations on the right-hand-side of (22) are independently and identically distributed,

Var(Δφ j,t) can be interpreted as an unconditional moment. When allowing for breaks in the volatility, as we do in

Section 4.5, Var(Δφ j,t) then becomes the conditional variance for Δφ j,t .

26Notably, for heteroskedastic TVP-VARs, changes in R2
h,t can also be induced by changes in second-moment

parameters. In Section 4.5 we show that our main results are virtually unchanged when allowing for multiple volatility

breaks.
27As previously defined, N denotes the number of structural shocks and p stands for lag-length.

Δφ j,t =
N

∑
i=1

(
λC,iei,t +λL,iei,t−1

)
+ v j,t , for j = 1, ...,M, (22)

where M denotes the total number of drifting coefficients, i.e. M = N2 p+N.27

We are interested in providing a simple and informative way to interpret how structural shocks

contribute to coefficient variations and, consequently, to changes in inflation-gap persistence. To

this end, first recall that we assume structural shocks have unit-variance and that all innovations in

(22) are mutually and serially uncorrelated. Also, as discussed in Section 2.2, to mitigate parameter

proliferation we assumed that the term ∑N
i=1

(
λC,iei,t +λL,iei,t−1

)
is equivalent across all M states.

Total Coefficient Variation=
1

M

M

∑
j=1

Var
(
Δφ j,t

)
,

=
N

∑
i=1

(
λ 2

C,i +λ 2
L,i
)
+

1

M

M

∑
j=1

σ2
v, j. (23)

The metric above decomposes changes in the VAR coefficients into two distinguishable compo-

nents.28 The first summation in (23) denotes the portion of parameter variation that is attributed to

the structural shocks. The second summation represents the residual, or idiosyncratic, contribution

due to coefficient-specific errors. As a result, the share of total coefficient variation associated with

a particular structural innovation and coefficient-specific errors can be respectively defined as:

Share (Shock i)=
λ 2

C,i +λ 2
L,i

N
∑

i=1

(
λ 2

C,i +λ 2
L,i

)
+ 1

M

M
∑
j=1

σ2
v, j

, (24)
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for i= Cost-Push, Demand, Monetary Policy, and

Share (Residual)=

1
M

M
∑
j=1

σ2
v, j

N
∑

i=1

(
λ 2

C,i +λ 2
L,i

)
+ 1

M

M
∑
j=1

σ2
v, j

. (25)

Table 5 reports the contribution from both identified and unidentified innovations to the overall

degree of variation in the VAR coefficients according to (24) and (25). Such contributions sum

up to one, which facilitates the interpretation of our results. All in all, we find that cost-push

and monetary policy shocks seem to be the main driving forces behind coefficient changes in our

model and, consequently, behind the changes in inflation-gap persistence reported in Figure 2. In

particular, cost-push shocks account for more than 50% of overall parameter variation, followed by

monetary policy shocks that contribute with around 30%. The remaining 20% is distributed almost

equally between demand shocks and the coefficient innovations that the model does not identify.29

As in Section 4.3.1, our results are again conceptually in line with Cogley et al. (2010) who also

find that variations in the persistence of the US inflation gap over the past five decades are most

likely related to cost-push and monetary policy shocks.30

Next, we examine the timing in the relationship between shocks and macroeconomic instabil-

ities. By appropriately excluding λ 2
C,i or λ 2

L,i in the numerator of (24), Table 5 separates contem-

poraneous from lagged contributions to total coefficient variation for each structural innovation.

Some features are noteworthy. For example, the contemporaneous contribution from cost-push

and demand shocks is larger than their lagged counterpart. In contrast, for monetary policy shocks,

the lagged contribution is larger than the contemporaneous one. Even if all these differences are

not substantial, they seem to suggest that non-policy shocks generated by the aggregate behaviour

of agents can alter macroeconomic relationships more promptly than shocks generated by policy

makers. Such a result reinforces the traditional view that the effects of monetary policy on the

economy are felt with lags, as posited in the seminal work by Friedman (1961) and more recently

revisited in Havranek and Rusnak (2013).

29The results in Table 5 denote posterior medians, and percentiles, of the sampling distribution for the statistics in

(24) and (25). To be clear, at each MCMC iteration we compute and retain the values for (24) and (25), which in turn

gives us a distribution for these two metrics.
30Again, we emphasize that while our findings on what drives changes in inflation-gap persistence are obtained

from an endogenous TVP-VAR model, in Cogley et al. (2010) they stem from a DSGE model.
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4.4 Application 2: Monetary Policy Counterfactuals

In this section we carry out scenario analysis to investigate quantitative and qualitative differ-

ences between endogenous and exogenous TVP-VARs. We focus on two relatively recent episodes

of high relevance for policy makers: (i) the path of the policy rate towards the ZLB after the onset

of the 2008 financial crisis; and (ii) the period of monetary policy normalization that started in

2015. In particular, our first scenario assesses how inflation and unemployment would have re-

sponded had the Fed pursued a less accommodative (or ‘less dovish’) sequence of interest rate cuts

during the early stages of the crisis. The second scenario evaluates inflation and unemployment re-

sponses to the normalization process of monetary policy had such a process been conducted under

a more aggressive (or ‘more hawkish’) stance.

4.4.1 A Simulated Impulse Response Approach to Construct Scenarios

Our scenario analysis is based on generating simulated impulse responses (SIRs) for the vari-

ables in yt – inflation and unemployment, more specifically – following a given sequence of simu-

lated policy surprises. Such responses are constructed for both exogenous and endogenous TVP-

VARs. To this end, first note that Equation (1) – for a lag length of two – can be recast as:

31Coefficient-specific innovations (vt ) are also set to zero over the impulse response horizon.

yt = μt +Φ1,tyt−1 +Φ2,tyt−2 +Aet , (26)

where μt and Φp,t (for p= 1, 2) denote an N×1 vector and a N×N matrix that collects the drifting

intercepts and slope coefficients in φt , respectively.

Therefore, SIRs can be obtained by applying the following recursions:

Ξt+h =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Ast+h for h = 0,

Φ1,t+hΞt+h−1 + st+h for h = 1,

∑2
p=1 Φp,t+hΞt+h−p + st+h for h = 2, · · · ,H,

(27)

where st+h denotes an N×1 vector containing simulated structural shocks at t+h, for h= 0, 1, ...,H.

A few comments are in order. First, to isolate the effects of monetary policy surprises, we set

all other shocks (i.e. demand and cost-push) in st+h to zero for h = 0, 1, ...,H, i.e.:31
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st+h =

⎡⎢⎢⎢⎢⎣
0

0

emp, j
t+h

⎤⎥⎥⎥⎥⎦ for j ∈ {base, counter} and h = 0, 1, ...,H, (28)

where emp, base
t+h and emp, counter

t+h denote simulated monetary policy shocks for the baseline and coun-

terfactual scenarios, respectively.32 Therefore, the third column of the 3× 3 matrix Ξt+h collects

the responses of the variables in yt to simulated policy surprises at h = 0, 1, ...,H.

Second, the recursions in (27) essentially follow a textbook-like approach to compute orthogo-

nalized impulse responses as in, e.g., Lütkepohl (2005). In other words, the dynamic responses for

the variables in yt are a function of the reduced-form autoregressive coefficients (Φp,t), the impact

matrix (A) – which in our case incorporates the sign restrictions – and a structural shock of interest

that is contemporaneously uncorrelated to the remaining shocks in the system.33 One distinction,

however, is that we allow st+h to enter (27) additively for h≥ 1. This follows from the fact that we

are interested in how the system in (26) responds to a sequence of policy surprises rather than to

just a one-off perturbation at h = 0.

Third, recall that in the case of endogenous TVP-VARs, Φp,t+h is a function of structural shocks

of interest. Consequently, when applying the recursions in (27) to these models, the autoregressive

coefficients will change accordingly over the impulse response horizon every time a policy shock

takes a non-zero value in st+h. This contrasts with the exogenous case, where the autoregressive

coefficients will remain constant over the entire response horizon, since structural shocks do not

enter the law of motion of the VAR coefficients in such models.

We now turn to discussing how policy surprises are simulated in our scenarios. For the baseline

case, emp, base
t+h in (28) is defined as a share, αt+h, of the observed change in the policy rate from

time t + h− 1 to time t + h. That is, emp, base
t+h = αt+hΔrbase

t+h , where rbase
t+h denotes the actual policy

rate figure at t+h. Notably, αt+h is introduced to accommodate the idea that a change in the policy

rate embeds a surprise (or unanticipated) component. To allow for uncertainty associated with such

a component, we treat αt+h as a (continuous) random variable drawn from a uniform distribution

32Details on how we simulate emp, base
t+h and emp, counter

t+h are provided below.
33Another common approach to define impulse responses for nonlinear models is to apply generalized impulse re-

sponses, which entails computing the difference between two conditional means. We compute these type of responses

in Section A5 of the Online Appendix to illustrate the transmission of all shocks in our system more broadly.
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in the counterfactual case, we set emp, counter
t+h = αt+hΔrcounter

t+h , except now rcounter
t+h denotes some

hypothetical value for the policy rate at t +h that is calibrated to reflect a more “dovish” or “hawk-

ish” policy stance depending on the scenario of interest. Thus, the mechanics to generate SIRs can

be summarized as follows: for a given estimate of Φp,t (at time t and p = 1, 2) and A, we run

the recursions in (27) 1000 times such that for each run a different sequence of policy shocks is

simulated – as discussed above – and collected into st+h (as in (28)). At the end of this procedure,

a distribution of SIRs is generated as a result of the randomness associated with αt+h.34

Lastly, and admittedly, albeit relying on impulse responses, our strategy to construct scenarios

is somewhat different from extant work based on (exogenous) TVP-VARs, such as Baumeister and

Benati (2013). Indeed, a common strategy to compute scenarios is to apply techniques such as

the ones discussed in Waggoner and Zha (1999), Hamilton and Herrera (2004) or Bańbura et al.

(2015). In the context of endogenous TVP-VARs, however, implementing the methods discussed

in these studies entails considerable computational complexity which, in our view, warrants fu-

ture research.35Nonetheless, notwithstanding measurement caveats, the policy shocks we simulate

are, by construction, proportionally related to the actual and hypothetical paths of the policy rate.

Therefore, the results from our SIR analysis are, at a minimum, informative in a qualitative sense.

4.4.2 Reaching the Zero Lower Bound

There is an ongoing debate about the macroeconomic consequences of the ZLB. On the one

hand, some works provide evidence that the ZLB had strong and detrimental effects on the US

defined over the interval from 0 to 0.5. – i.e. αt+h ∼U(0,0.5). Moreover, for additional flexibility,

a different αt+h is drawn at each point of the impulse response horizon, h = 0, 1, ...,H. Similarly,

34We use the posterior medians of Φ1,t , Φ2,t and A for the recursions in (27). For the endogenous TVP-VAR case,

we also use the posterior median for the elements in the vector of loadings (λ) that pre-multiplies the policy shock in

the law of motion for the VAR coefficients.
35More formally, approaches to construct counterfactuals as in Waggoner and Zha (1999) and Hamilton and Herrera

(2004), rely on solving a system of equations where a sequence of shocks, s, is a function of the VAR parameters, φ
and A, and the assumed path of some variable of interest, z, i.e. s = F (φ ,A,z). For constant parameter VARs and

exogenous TVP-VARs, there is a mapping from φ , A and z to s, i.e. {φ ,A,z}→ s, that renders the problem of solving

for s more tractable. In contrast, for endogenous TVP-VARs, such a mapping is a more complex one. Note that when

autoregressive coefficients are themselves a function of the (contemporaneous and lagged) structural shocks, we have

a mapping between VAR parameters and shocks where the latter appear both in the domain and codomain of this

relationship, i.e. {φ(s),A,z} → s. Consequently, solving for s would entail solving a (potentially) highly nonlinear

system of equations given by s = F (φ(s),A,z). Similarly, applying the recursive approach in Bańbura et al. (2015)

would entail not only extending their methodology and parametrization to exogenous TVP-VARs but also adjusting

their technique to the endogenous TVP-VAR case.
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economy. From a theoretical perspective, Gust et al. (2017) argue that the ZLB has represented a

significant constraint for policy makers, which exacerbated the Great Recession and inhibited the

subsequent recovery. In particular, the authors find that the ZLB accounted for about 30% of the

substantial economic contraction exhibited in 2009 and a potentially even larger fraction of the

slow recovery. Likewise, on the empirical side, Hess et al. (2012) provide evidence that the ZLB

importantly constrained the ability of conventional monetary policy to limit the depth and duration

of the Great Recession. The authors do so by relying on several models, including a TVP-VAR

with exogenous time variation.

On the other hand, Debortoli et al. (2019), also by employing a TVP-VAR model, find no sig-

nificant changes in the response of a number of US macroeconomic variables to some structural

shocks during ZLB period. They attribute this result to the hypothesis of ‘perfect substitutability’

between conventional and unconventional monetary policy during such a period. Similarly, Swan-

son (2018) argues that the ZLB has not been and still does not represent a significant constraint for

the Fed. In fact, Baumeister and Benati (2013) show that unconventional monetary policy has had

a significant effect on both output growth and inflation for the U.S. and U.K. economies.

Notably, the debate in the studies outlined above takes a more positive standpoint on the

macroeconomic consequences of the ZLB. In this paper, we take a slightly different, rather nor-

mative, perspective about the ZLB and ask the following question: What would have happened

with unemployment and inflation rates had the policy rate not reached the ZLB? To shed light

on this question, we compare the estimated impact of a sequence of monetary policy shocks on

unemployment and inflation under two scenarios.

The first scenario employs a sequence of shocks derived from what was actually observed dur-

ing the financial crisis, namely the Fed lowered the policy rate until it reached its (effective) ZLB

in 2008Q4. In particular, there were six rate cuts from 2007Q2 until 2008Q3. In contrast, the

counterfactual scenario postulates a ‘less dovish’ stance. Instead of six, we assume the Fed imple-

mented four rate cuts since 2007Q2, hence leaving the policy rate at its 2008Q2 level, 2.09%.36

36Accordingly, policy surprises – constructed as discussed in Section 4.4.1 – in (the third row of) st+h will take

non-zero values for h = 0, 1, 2, 3, 4 and 5 and for h = 0, 1, 2 and 3 in the baseline and counterfactual cases,

respectively.

Figure 3 illustrates the path of the policy rate under these two cases.
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Chart B of Figure 3 plots the simulated response of the unemployment rate obtained with the

exogenous TVP-VAR model under the ‘dovish’ and ‘less dovish’ scenarios for monetary policy.

The reported bands correspond to the uncertainty associated with the unanticipated component of

policy rate changes (αt+h), as discussed in Section 4.4.1. Both responses coincide until the five-

quarter-ahead horizon, since the sequences of shocks in both scenarios are the same up to this

point by construction. Henceforth, the actual and counterfactual interest rate paths start to diverge,

thus leading to different dynamic responses for unemployment. More specifically, our estimates

indicate that, ceteris paribus, by keeping rate cuts until the ZLB, the Fed contributed to reduce the

unemployment rate by more than a percentage point than if it had halted rate cuts in 2008Q1.

Chart C of Figure 3 reports equivalent scenarios for unemployment, except now (simulated)

responses are constructed using the endogenous TVP-VAR model. Under both scenarios – and

following the same sequence of policy shocks as in Chart B – the unemployment rate exhibits

larger and more persistent contractions than the ones obtained with the exogenous TVP-VAR. In

particular, at the lowest point of the impulse response in the ZLB case, the impact of the policy

shock on unemployment from the endogenous TVP-VAR is nearly a full percentage point stronger

than what we observe for the exogenous TVP-VAR. Such results can be attributed to the self-

exciting mechanism in the endogenous setting – supported by the data – that allows the structure

of the macroeconometric model to be directly affected by policy shocks. In other words, not only

monetary policy shocks can affect unemployment via the standard mechanisms in impulse response

analysis, but they can also alter the relationship between economic variables – summarized by the

VAR coefficients – along the response horizons.

Next, for inflation, our results in Charts D and E suggest that the differences between exoge-

nous and endogenous TVP-VARs are less stark than those observed for unemployment scenarios.

Such results are consistent with the analysis in Section 4.3, where a less persistent inflation gap –

possibly reflecting better ‘anchorage’ of inflation expectations – might dampen substantial transi-

tory fluctuations in inflation following monetary policy surprises.

4.4.3 Engaging in Monetary Policy Normalization

Six years after the end of the Great Recession, the Fed decided to engage in a path to raise

interest rates, commonly referred to as the normalization of monetary policy. The ‘Policy Normal-
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ization Principles and Plans’, presented in September 2014 by the FOMC established three goals:

(i) begin increases in the short-term interest rate, constituting the end of the ZLB; (ii) reduce the

size of the Fed’s balance sheet so that monetary policy can work as it did before the Great Re-

cession; and (iii) transform the Fed’s asset holdings to a composition similar to those of pre-Great

Recession times. In December 2015, the FOMC took the first step in implementing this plan.

Only a few years have passed since the beginning of the monetary policy normalization process,

and yet another debate is starting to grow. This one regards whether the actions taken by the Fed

in this normalization process have been adequate or not. On the one hand, Powell (2018) and

Williams (2018) argued in recent speeches that the timing and magnitudes for rate hikes were

appropriate. This is sustained by an unemployment rate below the FOMC’s estimates of its long-

run natural rate, and a much less responsive inflation to changes in resource utilization. On the

other hand, Feldstein (2017) advocated in another speech that the Fed could reduce the risk of a

financial correction by raising interest rates more quickly than it currently projects. Specifically,

reaching a nominal rate of 4% by the end of 2019 or 2020, hence aiming for a real rate of 2% given

an inflation target of 2%.

There is still scarce literature that focuses on the macroeconomic effects of monetary policy

normalization in the US economy. To the best of our knowledge, this is the first study that empiri-

cally addresses the implications of alternative normalization paths by quantifying their associated

effects on real activity and inflation. To this end, the scenario analysis in this section is based on

the following question: what would be the implications to unemployment and inflation if the Fed

had increased the policy rate at a stronger pace during the normalization process? Our approach

to construct such scenarios is similar to the one discussed in Section 4.4.2. More precisely – con-

structing the unanticipated component embedded in interest rate changes as in Section 4.4.2 – we

evaluate the effects of monetary policy shocks on unemployment and inflation since 2015Q4 under

two alternative scenarios. The first one represents the actual normalization path taken by the Fed,

which consisted of a 200 basis-point increase carried out over three years. In particular, starting in

2015Q4, the Fed raised rates by 25 basis-point increases with the last hike occurring in 2018Q4.37

37In 2019Q3 the Fed resumed rate cuts. Moreover, around the time we finished writing this paper the world economy

was hit by a major economic shock associated with the coronavirus pandemic (COVID-19). As a result, the effective

federal funds rate is currently back to its effective ZLB of 0.05%. For future work it could be interesting to apply our

methodology to investigate macroeconomic instabilities associated with such a global shock.
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It is important to note that there were no rate hikes in 2016Q1, 2016Q2, 2016Q3 and 2017Q3.

In the second scenario, we assume that the Fed incurred a stronger normalization path increasing

the policy rate by 200 basis points in two years instead of three. In this case, the Fed would have

raised the policy rate by 25 basis-point increases at every quarter starting in 2015Q4 with the last

hike happening in 2017Q3. Therefore, the counterfactual constitutes a ‘more hawkish’ scenario

for policy normalization.

Charts B and C of Figure 4 plot the simulated responses for unemployment obtained with the

exogenous and endogenous TVP-VAR models, respectively. In both cases, unemployment rises

sooner under the faster normalization scenario. Nevertheless, when assuming endogenous time

variation, the increases in the unemployment rate are greater and take longer to die out than what

is obtained from the exogenous TVP-VAR. Again, the amplification and persistence effects in the

endogenous setting can be attributed to the additional mechanism in such a model that allows

for changes in the relationship between macroeconomic variables as monetary policy surprises

materialize.

Charts D and E of Figure 4 show the response of inflation to monetary policy shocks under

exogenous and endogenous time variation, respectively. As in the scenarios for Section 4.4.2,

the differences between endogenous and exogenous TVP-VARs are less pronounced than those

obtained for unemployment. Nevertheless, it is worth noting that the inflation overshooting that

occurs around horizon 10 in the exogenous case is more substantial than that observed for the

endogenous TVP-VAR. This suggests that the latter model better mitigates price-puzzle related

issues that may occur over the scenario profile.38

4.5 Robustness Checks

We examined the robustness of our proposed framework along several dimensions, namely

allowing for heteroskedasticity, conducting prior sensitivity analysis and applying a different iden-

tification strategy. Overall, our main findings carry over to all these checks. In the interest of space,

below we provide a brief description of these checks. More details can be found in Section A4 of

the Online Appendix. In particular, we: (i) allow for two different methods to account for changes

38Note that sign restrictions are imposed only on the contemporaneous responses, i.e. at h = 0. Therefore, the

price-puzzle could still be present at further horizons, i.e. when h > 0.
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in the volatility of reduced-form errors, i.e., fixing the break dates (according to Fed chairmanship

periods) and stochastic volatility;39 (ii) conduct a model comparison exercise under alternative set-

tings on the priors for the loading vector (λ) and second-moment parameters;40 and (iii) adopt an

identification approach based on short- and long-run restrictions to illustrate the implications an

alternative identification strategy may have on the proposed class of models.41

5 Conclusion

TVP-VARs have been widely used to infer instabilities amongst economic variables. In the

context of such models, parametric instabilities are commonly specified as drifting coefficients.

Interestingly, formal econometric procedures to infer why such coefficients may drift is something

that has remained largely unaddressed to date. In this paper, we developed a new class of TVP-

VARs that shows that coefficient changes can, in great part, be explained by the structural shocks

identified within such models, hence yielding a self-exciting, or endogenous, dynamic system.

39Section A3 in the Online Appendix details how to augment our MCMC algorithm when allowing for stochastic

volatility.
40We also conduct model comparison while relaxing the diagonal assumption for the covariance matrix associated

with the coefficient-specific errors (Ωv).
41That is, instead of set identification of the parameters in the impact matrix (as in the case of sign restrictions), we

investigate whether point identification of such parameters confirms the results obtained with sign restrictions.

We applied the proposed endogenous TVP-VAR framework to study macroeconomic instabil-

ities in the US economy. In our modeling strategy, allowing for endogenous changes in the VAR

coefficients provided structural inference that is comparable to traditional (or exogenous) TVP-

VARs, while offering valuable information regarding the underlying sources of time variation. In

particular, we showed that cost-push shocks have been a prominent driver behind transitory fluctu-

ations in the US inflation rate. Moreover, scenario analysis indicated that the effects of monetary

policy shocks on unemployment tend to be more persistent and amplified when allowing for the

possibility that policy actions can impact coefficients in a reduced form setting. This result is very

much in line with the spirit of the Lucas critique (Lucas (1976)).

Finally, future research could leverage the class of models proposed in this paper to investi-

gate the role of economic shocks as drivers of parameter changes in a more micro-founded sense

(e.g. changes in elasticities, discount rates, policy and pricing parameters). Such a type of analysis
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could explore, for instance, the functional relationship between a DSGE model with time-varying

parameters and its (approximate) reduced form representation as a TVP-VAR. Another useful ex-

tension could be to develop TVP-VARs where endogenous time variation affects first and second

moment parameters jointly.
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Tables and Figures
Table 1: Summary of sign restrictions

Cost-push shock Monetary policy shock Demand shock

Inflation + - +

Unemployment + + -

Interest Rate + + +

Note: + (-) means a positive (negative) response of the variable in the row to a positive realization of the shock in the

column.

Table 2: List of models

Identifier Model Features

Model I
Exogenous TVP-VAR

Parameter changes are driven by unidentified coefficient-specific innovations

Model II
Endogenous Contemporaneous TVP-VAR

Parameter changes are driven by contemporaneous identified shocks and unidentified coefficient-specific innovations

Model III
Endogenous Lagged TVP-VAR

Parameter changes are driven by lagged identified shocks and unidentified coefficient-specific innovations

Model IV
Endogenous Contemporaneous and Lagged TVP-VAR

Parameter changes are driven by contemporaneous + lagged identified shocks and unidentified coefficient-specific innovations.

Table 3: Model comparison results between endogenous and exogenous TVP-VARs based on all

identified shocks jointly affecting the VAR coefficients in the endogenous case, i.e. results based

on full identification of shocks

Model II Model III Model IV

λ 19.81 19.83 48.84

Note: Model comparison results are based on computing 2log(Bayes f actor) between TVP-VARs with and without

endogenous time variation. Values greater than ten should be interpreted as very strong evidence in favor of endogenous

TVP-VARs. See Kass and Raftery (1995) for details on using the Bayes factor as a metric for model comparison. Bayes

factor estimates are based on Equation (20). For Model IV λ = (λC,1, λC,2, λC,3, λL,1, λL,2, λL,3)
′. For all the others,

λ= (λ j,1, λ j,2, λ j,3)
′ for j =C, L. Exogenous TVP-VARs assume λ= 0.

Table 4: Model comparison results between endogenous and exogenous TVP-VARs based on a

single identified shock affecting the VAR coefficients in the endogenous case, i.e. results based on

partial identification of shocks

Model II Model III Model IV

λ1 (cost-push shock) 433.42 -17.74 37.77

λ2 (demand shock) 150.91 -18.00 31.26

λ3 (monetary policy shock) 19.62 -18.26 38.13

Note: Entries are based on computing 2log(Bayes f actor) between TVP-VARs with and without endogenous time vari-

ation. Values greater than ten should be interpreted as very strong evidence in favor of endogenous TVP-VARs. See

Kass and Raftery (1995) for details on using the Bayes factor as a metric for model comparison. Bayes factor estimates

are based on Equation (20). For Model IV λi = (λC,i λL,i)
′, for i = 1,2,3. For all the others λi = λ j,i for j = C, L and

i = 1,2,3. Exogenous TVP-VARs assume λi = 0 for i = 1,2,3.
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Table 5: Contributions of structural shocks to parameter instability

Total contribution (%)

Source of parameter instability Median 16th perc. 84th perc.

Cost-push shock 53.16% 47.13% 58.37%

Demand shock 11.22% 8.07% 15.19%

Monetary Policy shock 28.42% 24.07% 33.20%

Residual 7.21% 7.05% 9.35%

Contemporaneous and lagged contributions

Source of parameter instability Median 16th perc. 84th perc.

Contemporaneous cost-push shock 27.11% 23.06% 31.17%

Lagged cost-push shock 26.08% 22.31% 29.45%

Contemporaneous demand shock 9.11% 6.27% 12.21%

Lagged demand shock 2.30% 1.13% 4.02%

Contemporaneous monetary policy shock 12.09% 9.13% 15.40%

Lagged monetary policy shock 16.11% 14.02% 19.41%

Note: Results are obtained using Equations (24) and (25). The bottom part of the table reports the contributions in the

upper part of the table when separated into contemporaneous and lagged shocks.
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Figure 1: Posterior density estimates for the loadings associated with each structural shock driving

the VAR coefficients under Model IV described in Table 2
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Figure 2: Inflation-gap persistence based on R2
h,t statistics
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Note: The figure plots the time-varying measure of inflation-gap persistence, R2
h,t , for the one-, four- and eight-quarter-

ahead forecasting horizons. R2
h,t is constructed using Equation 12 in Cogley et al. (2010). Solid black lines denote

posterior medians. Shaded areas represent the 16th and 84th percentiles of the corresponding posterior densities.



BANCO DE ESPAÑA 47 DOCUMENTO DE TRABAJO N.º 2108

Figure 3: Counterfactual scenario for monetary policy in 2007: the trajectory towards the ZLB

(a) Alternative Paths of Monetary Policy Stance
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(c) Simulated Response of Unemp.: Endogenous
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(d) Simulated Response of Inflation: Exogenous
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(e) Simulated Response of Inflation: Endogenous

0 5 10 15 20 25

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Scenario 1: FFR hitting the ZLB
Scenario 2: FFR not hitting the ZLB

Note: Chart (a) plots the actual path of the federal funds rate (FFR) (blue line) and the alternative (non-ZLB) path of the

policy rate (red line). Charts (b) and (c) plot the simulated response of the unemployment rate for both scenarios generated

from an exogenous and endogenous TVP-VAR, respectively. Charts (d) and (e) plot the simulated response of inflation

for both scenarios generated from an exogenous and endogenous TVP-VAR, respectively. Thin dotted lines represent the

16th and 84th percentile for the distribution of simulated responses in each scenario, as discussed in Section 4.4.1.
44
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Figure 4: Counterfactual scenario for monetary policy in 2015: interest rate normalization

(a) Alternative Paths of Monetary Policy Stance
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Note: Chart (a) plots the actual path of the policy rate normalization (blue line) and the faster normalization path of the

policy rate (red line). Charts (b) and (c) plot the simulated response of the unemployment rate for both scenarios generated

from an exogenous and endogenous TVP-VAR, respectively. Charts (d) and (e) plot the simulated response of inflation

for both scenarios generated from an exogenous and endogenous TVP-VAR, respectively. Thin dotted lines represent the

16th and 84th percentile for the distribution of simulated responses in each scenario, as discussed in Section 4.4.1.
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A1 Estimation Details

This appendix provides details on the MCMC algorithm used for estimation of endogenous

TVP-VARs. It also elaborates on the computation of the Bayes factor and reports: (i)

results for the mixing of the posterior sampler; and (ii) diagnostics for the stability of the

VAR coefficients.

For convenience, we repeat below the stacked representation in Section 3.2 of the paper

i.e.:

space where large values for λ could be prior – rather than data – induced.

Gibbs Sampling Steps

Let s = {φ, λ, φ0, A, Ωv} denote the set of states and parameters for the system in

(A1)-(A3), where notation s−j represents all elements in s except for j. An MCMC algo-

y = X̃φ̃+ LAe, (A1)

φ̃ = φ̃0 + Lλe+ v, (A2)[
e

v

]
∼ N

([
0

0

]
,

[
INT 0

0 Σv

])
, (A3)

where the reader is referred to Sections 3.1 and 3.2 of the paper for the exact structures of

each vector and matrix above.

A1.1 Posterior Sampling

Priors

We assume standard independent priors for the four blocks of model parameters, namely

λ, φ0, Ωu = A′A and Ωv = diag
(
σ2
v,1, · · · , σ2

v,M

)
, where, recall, M denotes the number of

drifting coefficients. More specifically, we have:

λ ∼ N (0, Σλ) ,

φ0 ∼ N (μφ0 , Σφ0) ,

Ωu ∼ IW (νu, Vu) ,

σ2
v,i ∼ IG (νv,i, Sv,i) for i = 1, ...,M.

We set Σλ = diag(10−3, ..., 10−3), Σφ0 = diag(10−5, ..., 10−5) and μφ0 – akin to Primiceri

(2005) – denotes the OLS estimate from a fixed coefficient VAR estimated on the training

sample (1947Q1-1961Q4). Moreover, we assume νu = 30, Vu = 200IN ; and νv,i = 60 and

Sv,i = 0.01 for i = 1, ...,M . Overall, this class of priors is standard in TVP-VAR analysis.

In particular, the prior density for λ is tightly parameterized around zero to mitigate the

possibility of endogenous time variation being artificially manufactured by very loose priors.

The latter could force our posterior sampler to visit uninteresting regions of the parameter
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rithm for the endogenous TVP-VARs introduced in Section 2 entails sequentially sampling

from five conditional posterior distributions as summarized in the box below:

Summary of the Gibbs Sampling Algorithm

Step-1 Draw the vector of V AR coefficients (stacked over t = 1, ..., T ), φ,

from f(φ|y, s−φ),
Step-2 Draw the loadings, λ, from f(λ|y, s−λ),
Step-3 Draw the coefficients′ initial conditions, φ0, from f(φ0|y, s−φ0),

Step-4 Drawing the impact matrix A :

Step-4.1 Draw the covariance matrix of the reduced-form innovations,

Ωu, from f(Ωu|y, s−Ωu),

Step-4.2 Compute Chol(Ωu) = Ã, such that Ωu = ÃÃ′,

Step-4.3 Generate a rotation matrix P using Algorithm 2 in

Rubio-Ramirez et al. (2010),

Step-4.4 Construct A = ÃP and check if the columns in A satisfy the

required sign restrictions. If they do, keep A and proceed to

the next step. Otherwise, return to Step-4.3 and keep

iterating until obtaining a matrix P that delivers a

sign-conforming impact matrix A,

Step-5 Draw the covariance matrix, Ωv, of coefficient-specific

errors by sampling each σ2
v,i, in Ωv = diag

(
σ2
v,1, · · · , σ2

v,M

)
from f(σ2

v,i|y, s−σ2
v,i
) for i = 1, ...,M.

Step 1 above was discussed in Section 3.2. In what follows, we provide details for the

other steps.

• Sampling λ

Recall from Section 3.2 that we can express the state equation in (A2) as:

φ̃ =φ̃0 + Leλ+ v, (A4)

where:

Le =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

e′1 0′

e′2 e′2
...

...

eT e′T−1

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

Since – when sampling λ – φ̃ and A are given, we can back out e from (A1) by simply

computing e = LA
−1(y − X̃φ̃). As a result, by virtue of the modular nature of MCMC
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algorithms, Le can be treated as a matrix of predetermined regressors. Given that, v ∼
N (0, Σv), then by standard regression results, we have:

λ|y, s−λ ∼ N
(
dλ, Dλ

)
, where

⎧⎨⎩dλ = DλL
′
eΣ

−1
v (φ̃− φ̃0),

Dλ =
(
L′eΣ

−1
v Le +Σ−1λ

)−1
.

(A5)

• Sampling φ0

Let L0 = ι0 ⊗ IM , where (again) M denotes the number of drifting coefficients and

ι0 = (1, 0, · · · , 0)′ is a T × 1 vector. Thus, (A4) can be recast as:

φ̃ =L0φ0 + Leλ+ v. (A6)

Next, just like in the discussion for sampling λ, standard regression results yield:

φ0|y, s−φ0 ∼ N
(
dφ0 , Dφ0

)
, where

⎧⎨⎩dφ0 = Dφ0(L
′
0Σ

−1
v (φ̃− Lẽλ) +Σ−1φ0

μφ0),

Dφ0 =
(
L′0Σ

−1
η L0 +Σ−1φ0

)−1
.

(A7)

• Sampling A

We begin by reproducing the measurement equation in (A1):

y = X̃φ̃+ LAe, (A8)

such that the vector of reduced-form errors is given by LAe = u ∼ N (0, diag(Ωu, · · · ,Ωu)).
1

Our approach for estimating A follows the same principles as in Uhlig (2005) and Rubio-

Ramirez et al. (2010), who also address Bayesian estimation of sign-restricted VARs. Specif-

ically, these authors show that given a posterior draw for Ωu, one can rotate its Cholesky

decomposition, Ã to recover an impact matrix that complies with pre-specified sign restric-

tions. This strategy relies on introducing an auxiliary algorithm into the posterior sampling

strategy in order to generate a rotation matrix, P , which combined with Ã yields sign-

conforming values for the impact matrix A = ÃP .

Obtaining a draw for Ωu, is straightforward. Since φ̃ is given when sampling Ωu, we

can apply the modular nature of MCMC algorithms to treat the drifting coefficients as

predetermined terms in (A8). Standard regression results thus yield:

Ωu|y, s−Ωu ∼ IW
(
νu, Vu

)
, where

⎧⎪⎨⎪⎩
νu = T + νu,

Vu =
T∑
t=1

utu
′
t +Vu,

(A9)

1Recall from Section 3 that LA = diag (A, · · · , A). Thus u ∼ N (0, diag(Ωu, · · · ,Ωu)) can be equiva-
lently represented as u ∼ N (0, diag(AA′, · · · , AA′)).
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where ut for t = 1, ..., T is a N × 1 vector-element in u = (u′1, · · · , u′T )′.
Given a posterior draw for Ωu, we compute its Cholesky factorization which returns Ã:

Ã =

⎡⎢⎣ α1,1 0 0

α2,1 α2,2 0

α3,1 α3,2 α3,3

⎤⎥⎦ . (A10)

To generate P we apply Algorithm 2 in Rubio-Ramirez et al. (2010), which can be

summarized as follows:2

We draw an N ×N matrix J ∼ N (0, I) and compute its QR decomposition. The latter

yields J = PD, where P is the desired rotation matrix and D is a diagonal matrix whose

non-zero elements are normalized to be positive. Next, we compute A = ÃP and verify if

the columns in A satisfy the restrictions in Table 1 of the paper. If they do not, we redraw

J and compute its QR decomposition. We repeat this procedure until generating a rotation

matrix P that conforms with the predetermined sign restrictions.

2Note that since P is a rotation matrix, and consequently PP ′ = I, appending such a matrix to our
Gibbs sampling procedure does not alter first and second moments for the vector of the reduced-form errors
u.

• Sampling Ωv

Since Ωv is diagonal, standard methods ensure that we can sample each individual vari-

ance parameter in Ωv from an inverse-Gamma density. Formally, we have:

σ2
v,i|y, s−σ2v,i

∼ IG (νv,i, Sv,i

)
, where

⎧⎪⎨⎪⎩
νv,i =

T
2
+ νv,i,

Sv,i =

T∑
t=1

v2t,i

2
+ Sv,i for i = 1, ...,M.

(A11)

A1.2 Computing the Bayes Factor

Recall from Section 3.2 that computation of the Bayes factor entailed evaluating the prior

– f(λ) – and the posterior – f(λ|y) – at the restriction λ = 0. The prior can be evaluated

exactly, while an estimator for the posterior can be obtained using the following Monte Carlo

average:

f̂(λ = 0|y) = 1

R

R∑
r=1

f(λ = 0|y,φ(r),φ
(r)
0 ,Σ(r)

u ,Σ(r)
v ),

where (φ(1),φ
(1)
0 ,Σ

(1)
u ,Σ

(1)
v ), ..., (φ(R),φ

(R)
0 ,Σ

(R)
u ,Σ

(R)
v ) are (post-burn-in) MCMC draws. Note

that the density inside the summation above can be evaluated exactly using the results in

(A5).
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A1.3 Stability Diagnostics

For multi-move samplers – such as ours – imposing inequality restrictions to ensure all time-

varying autoregressive coefficients comply with a stable system can complicate estimation

considerably. This is because it has to be assumed that the MCMC algorithm can only

proceed to the next sampling step if and only if all the autoregressive coefficients at all

points in time simultaneously comply with stability conditions. In practice, this typically

leads sampling algorithms to get ‘stuck’ ad infinitum before moving to the next draw.

For the applications in this paper, strict adherence to stability conditions implies simul-

taneously evaluating 1314 eigenvalues (i.e. N ×p×T eigenvalues) at each MCMC step for φ

and confirming that not a single eigenvalue is greater than one in absolute value. Intuitively,

by virtue of law of large numbers, the probability that at least one eigenvalue would violate

such condition is virtually one. Moreover, in a context where autoregressive coefficients are

allowed to be influenced by structural innovations, achieving stability at all points in time

can be quite challenging. For instance, during periods of high macroeconomic or financial

instability, some structural shocks may exhibit extremely large magnitudes, hence behaving

as outliers and potentially temporarily distorting the stability of the VAR system.3 That

said, below we show that such stability related concerns are not prevalent for our empirical

applications.

Certainly, one alternative to address stability issues could be to adopt a single-move

MCMC sampler. In this case, instead of checking for the stability of N × p× T eigenvalues

at once, the problem would be reduced to checking N×p eigenvalues T times (i.e. evaluate 18

eigenvalues 73 times). However, single-move MCMC samplers are not problem-free either. In

particular, such a type of algorithms typically fare quite poorly in terms of mixing properties.4

Due to the reasons just described, results reported in this paper did not involve reject-

sampling procedures to ensure stability of all time-varying coefficients. Nonetheless, we still

view it as important to check whether explosive draws are indeed a considerable issue in

the context of our empirical applications. To do so, Figure A1 plots the distribution of all

1314 eigenvalues for the three types of endogenous TVP-VARs discussed in the paper. To

be precise, each of the 1314 eigenvalues in Figure A1 corresponds to the mean obtained from

30000 post burn-in draws. Overall, results in Figure A1 reinforce that, while the MCMC

algorithm might occasionally produce non-stable draws, such draws are not frequent in our

estimation exercise.

3In other words, to the extent that large shocks induce big variations in policy and agents’ decisions – as
is typically the case during recessions – it is not implausible to conceive that economic dynamics can exhibit
‘explosive-like’ behavior at times. It could then be argued that letting structural shocks temporarily push
coefficients to the unit-root region of the parameter space – if such a situation is indeed favored by the data
– can provide a useful and more realistic indication of economic dynamics during particular episodes.

4The reader is referred to Koop and Potter (2011) for a detailed discussion on single versus multi-move
samplers in the context of (exogenous) TVP-VARs.
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Figure A1: Distribution of eigenvalues associated with the autoregressive coefficients for
endogenous TVP-VARs
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Note: The figure plots the kernel densities associated with the posterior means of all the eigenvalues for the

three versions of endogenous TVP-VAR models, that is, with coefficients depending on contemporaneous,

lagged, and contemporaneous and lagged structural innovations.
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A2 Computational Performance

A2.1 Inefficiency Factors

We report inefficiency factors of the posterior draws for all states and parameters using a

common metric (see, e.g., Chib (2001)) given by:

1 + 2
J∑

j=1

ρj,

where ρj is the sample autocorrelation at lag j through lag J . In our empirical application

we set J to be large enough until autocorrelation tapers off. In an ideal setting where MCMC

draws are virtually independent draws, inefficiency factors should be one. As a rule of thumb,

inefficiency factors around twenty are typically interpreted as an indication of fast mixing.5

Figure A2 reports boxplots to summarize inefficiency factor results. The middle line denotes

the median inefficiency factor. Lower and upper lines respectively represent the 25 and 75

percentiles, while whiskers extend to the maximum and minimum inefficiency factors. All

in all, results in Figure A2 demonstrate that our posterior sampler exhibits good mixing

properties.

Figure A2: Inefficiency factors
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Note: The figure shows the boxplots associated with the inefficiency factors corresponding to the posterior
draws of parameters θ and states, time-varying coefficients, φ of the model. Charts A, B and C show the

results associated to TVP-VAR with coefficients driven by contemporaneous, lagged, and contemporaneous

and lagged structural innovations, respectively.

A2.2 Scalability

As is well known, MCMC-based estimation of TVP-VARs becomes considerably challenging

as model dimension increases. Therefore, in this section we examine how scalable our pro-

5Another way to interpret the inefficiency factor adopted here is to think that an inefficiency factor of
100 means that approximately 10000 posterior draws are required to convey the same information as 100
independent draws.
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posed estimation algorithm is. To this end, we estimate the three endogenous TVP-VAR

variants discussed in the main text – i.e. Models II, III and IV in Table 2 of the paper –

using simulated data and setting N = 3, N = 5 and N = 7 while fixing sample size T = 160

quarters, i.e. 40 years.6

Computation started to become prohibitive whilst running Model IV – i.e. the more

complex one – with N = 7. In particular, it took approximately 78 hours to run 15000

MCMC iterations. For all other cases, estimation was relatively tractable with estimation

ranging from 30 minutes to 14 hours. Notably, the operation in our algorithm that en-

tails considerable computational complexity is calculating the high-dimensional TM × TM

posterior covariance matrix Dφ̃ in Equation (19) of the manuscript.7

More precisely, as pointed out in Van Loan and Golub (1983) (see page 156), operations

such as matrix inversion and Cholesky factorization – which are required to construct Dφ̃

(see Chan and Jeliazkov (2009)) – have computational complexity equivalent to O((TM)3)

in the case of dense matrices, such as Dφ̃ for endogenous TVP-VARs. In other words, as N

increases – and, consequently, M – the number of algebraic operations that are necessary to

generate Dφ̃ increases at an exponential rate (with power 3). In addition, Dφ̃ is yet more

dense for Model IV since Lλ – which enters the construction of Dφ̃ – has more non-zero

elements than in the other two types of endogenous TVP-VARs we consider (see page 13

of the revised manuscript). This reduced sparsity explains the additional computing cost

to generate Dφ̃ for Model IV.easonable upper bound when running our algorithm without

resorting to alternatives such as parallel computing, which we discuss next.

As an alternative to circumvent the aforementioned obstacles related to scalability, we

developed a routine that allows potential users of our approach to parallelize estimation

using Matlab’s parfor function. Importantly, since MCMC is a procedure that entails path

dependence across draws, our parallel-computing strategy preserves such a feature. Specif-

ically, when executing the parfor loop, each “worker” in the parallel pool cycles through

all the full-conditional posteriors in the sampling algorithm.8 Hence, the benefit of this

approach stems from having multiple “workers” running simultaneously, where each one is

6Notably, N = 7 is the same number of variables used in prototypical medium-scale DSGE models, such
as Smets and Wouters (2007) and Slobodyan and Wouters (2012).

7Recall that M denotes the number of drifting coefficients in the model, which increases exponentially as
a function of N, i.e. M = N2p+N , where p denotes lag length.

8To be clear, we are not parallelizing particular blocks of the MCMC algorithm, which could be problem-
atic.

running on a reduced number of Gibbs iterations.

It is worth noting that parallelizing estimation is not cost-free either. In particular,

each “worker” in the parallel pool is running a complete estimation procedure – i.e. cycling

through all Gibss steps – relying on less CPU cores. As a result, the benefits of parallelizing

become more salient when model dimension increases considerably. In such cases, producing

a large number of MCMC draws based on a single “worker” (i.e. not parallelizing), even

though exploring all CPU cores, becomes prohibitive time-wise due to the high level of
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computational complexity. In contrast, generating a large number of draws by aggregating

them from each “worker” in the pool running a reduced number of MCMC iterations – albeit

each relying on less CPU cores – expedites estimation. Table A1 below illustrates the above

mentioned trade-offs. In particular, while computing time is more or less comparable for

the parallel and non-parallel procedures when N = 3 and N = 5, for N = 7 parallelization

reduces the computation time by more than 60%.

Lastly, parallelization – along the lines proposed here – becomes more efficient the bet-

ter the mixing properties of an MCMC algorithm are. In other words, good convergence

properties suggest one can increase the number of “workers” in the parallel pool whilst re-

ducing further the number of MCMC iterations assigned to each one (hence, speeding up

computation). For the exercise in this section, we generated 15000 draws by assigning 3000

MCMC iterations to each of the five “workers” in the parallel pool. This seems reasonable

based on the good mixing properties of our algorithm reported in Section A2.1 of the Online

Appendix (see Figure A2).

Table A1: Computing time (in hours) for running 15000 MCMC iterations based on simu-
lated data for a sample size of T=160

Identifier Non-parallelized estimation

N=3 N=5 N=7

Model II 0.53 3.16 14.61

Model III 0.54 3.21 14.86

Model IV 1.17 10.78 78.10

Parallelized estimation

N=3 N=5 N=7

Model II 0.61 3.37 5.41

Model III 0.62 3.76 5.50

Model IV 1.31 26.36 36.08

Note: N denotes the number of dependent variables in the TVP-VAR. Models II, III and IV denote the

endogenous TVP-VAR versions where structural shocks affect the drifting coefficients contemporaneously, with

a lag, and both contemporaneously and with a lag, respectively. See Table 2 in the paper for details. Parallelized

estimation was conducted using Matlab’s parfor function with five “workers” in the parallel pool, each running

3000 MCMC iterations. Parallel and non-parallel routines were implemented on a desktop with an Intel Xeon

E5-2690 v2 @3.00 GHz processor.
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A3 Incorporating Stochastic Volatility

In this section, we provide a detailed description of the MCMC steps required to estimate our

proposed framework when augmented to accommodate stochastic volatility. As discussed in

Section 4.5 of the paper, allowing for stochastic volatility is part of a broader list of robustness

checks.

We begin by showing the augmented state-space representation of our baseline (endoge-

nous) TVP-VAR framework due to the introduction of new latent variables into the model,

ht,i, for i = 1, 2, 3 that capture changes in the volatility of the reduced-form residuals. In

particular, assuming a random-walk law of motion for ht = [ht,1 ht,2 ht,3]
′ – as in Primiceri

(2005), Stock and Watson (2007), Stock and Watson (2016), among others – we have:

yt = Xtφt + ÃΛtPet, (A12)

φt = φt−1 +HC,λet +HL,λet−1 + vt, (A13)

ht = ht−1 + ϑt, (A14)⎡⎢⎣ et

vt

ϑt

⎤⎥⎦ ∼ N
⎛⎜⎝
⎡⎢⎣ 0

0

0

⎤⎥⎦
⎡⎢⎣ IN 0 0

0 Ωv 0

0 0 Ωϑ

⎤⎥⎦
⎞⎟⎠ . (A15)

Note from Equation (A12) that to combine stochastic volatility with sign restrictions,

we follow Baumeister and Peersman (2013) and Mumtaz and Zanetti (2015) and define the

impact matrix as:

At = ÃΛtP, (A16)

where

Ã =

⎡⎢⎣ 1 0 0

α2,1 1 0

α3,1 α3,2 1

⎤⎥⎦ , Λt =

⎡⎢⎢⎢⎣
exp

(
h1,t

2

)
0 0

0 exp
(

h2,t

2

)
0

0 0 exp
(

h3,t

2

)
⎤⎥⎥⎥⎦ (A17)

and P is a rotation matrix that ensures sign restrictions are satisfied.9 In other words,

computation of At entails sampling the log-volatilities (ht), the lower triangular elements in

Ã and generating P . Estimation of ht is conducted using the auxiliary mixture sampling

approach of Omori et al. (2007) combined with precision sampling methods, as in Chan and

Jeliazkov (2009). The lower triangular elements in Ã are estimated using the equation-by-

equation approach as in, e.g., Cogley and Sargent (2005) and Carriero et al. (2018). P is

obtained using, again, Algorithm 2 in Rubio-Ramirez et al. (2010).

9Baumeister and Peersman (2013) and Mumtaz and Zanetti (2015) also allow for Ã to be time-varying.
For parsimony, we preserve the assumption that Ã is time-invariant as in Cogley and Sargent (2005).



BANCO DE ESPAÑA 60 DOCUMENTO DE TRABAJO N.º 2108

MCMC Steps

Steps 1, 2, 3 and 5 summarized in Box 1 in Section A1.1 remain unchanged when allowing

for stochastic volatility. Step 4, however, needs to be modified since the conditional variances

of the reduced-form errors are now state variables. In what follows, we describe in detail the

derivation of the full conditional posteriors for h = (h1, ..., hT ) and for (the parameters in)

Ã. We also show two additional steps: (i) sampling Ωϑ, i.e. the covariance matrix for the

innovations driving ht; (ii) and sampling h0, i.e. the initialization condition for the (log-)

volatility states.

• Sampling h = (h1, ..., hT )
′

To sample the vector of log-volatilities h, we combine the auxiliary mixture sampler

approach of Omori et al. (2007) with the precision sampling techniques described in Chan

and Jeliazkov (2009). To this end, note first that we can reexpress equations (A12) and

(A14) as:

Ã−1(yt −Xtφt) = Λtẽt, (A18)

where ẽt = Pet. Since P is a matrix of the orthogonal group (and, therefore, PP ′ = I), both

et and ẽt follow the exact same distribution, i.e. ẽt ∼ N (0, IN).

Next, squaring and subsequently taking natural logarithms of each element in both sides

of (A18) leads to the following linear state space representation for ht:

ỹ∗t = ht + ẽt,χ, (A19)

ht = ht−1 + ϑt. (A20)

The system above – albeit linear – is no longer Gaussian. More precisely, each entry in ẽt,χ

follows a log chi-square distribution with one degree of freedom. We return to this point

below, but first recall from our discussion in Section 3 of the paper that precision sampling

techniques operate on a representation of systems of equations where each variable is stacked

over t = 1, ..., T . Therefore, Equations (A19) and (A20) are re-casted as:

ỹ∗ = h+ ẽt,χ, (A21)

Lhh = h0 + ϑ, (A22)

where:

ỹ∗ = (ỹ∗1, · · · , ỹ∗T )′ , Lhh =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0

−I I

0−I . . .
...

...
. . .

0 · · ·−I I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Lh

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

...

hT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

h

and h0 = (h0, 0, · · · , 0)′ .
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The vectors collecting the innovations ẽt,χ and ϑ are similarly defined.

To bring the state space representation in (A21) and (A22) back to Gaussian form, we

follow Omori et al. (2007) who proposed approximating the log chi-square distribution for ẽt,χ

as a mixture of ten Normal densities.10 Formally, let ẽ∗ denote such mixture approximation,

i.e.:

ẽt,χ ≈ ẽ∗ ∼ p1N (α1, Σ1) + · · ·+ p10N (α10, Σ10) ,

where αs, Σs and the component-density probabilities ps for s = 1, · · · , 10 are all predeter-

mined, and their values are given in Table 1 of Omori et al. (2007). Consequently, conditional

on a given component-density N (αs, Σs), (A21)-(A22) can be expressed in linear Gaussian

form as:

ỹ∗ = h+αs + ẽ∗s, (A23)

Lhh = h0 + ϑ, (A24)

[
ẽ∗s
ϑ

]
∼ N

([
0

0

] [
Σs 0

0 Σϑ

])
. (A25)

The parametrization above requires sampling the vector of component-density indicators,

s = (s1, · · · , sT ), from its full conditional posterior f(s|ỹ∗, z) and subsequently sample h

from f(h|ỹ∗, z−h, s).11 Each element in s = (s1, · · · , sT ) can be drawn independently from a

multinomial distribution parameterized by the full conditional posterior probability:

Pr (st = i|ỹ∗t , zt) =
ψ (ht + αi, σ2

i ) pi∑10
j=1 ψ

(
ht + αj, σ2

j

)
pj

for i = 1, · · · , 10,

transform method for each t = 1, · · · , T as follows:12

(a) Generate ωt ∼ Uniform(0, 1),

(b) Find the smallest i ∈ {1, 2, · · · , 10} that satisfies
∑i

j=1 Pr (st = j|ỹ∗t , zt) ≥ ωt,

(c) Return st|ỹ∗t , zt = i.

10Their approach extends the seven-component auxiliary mixture sampling from Kim et al. (1998).
11Such ordering is consistent with the discussion in Del Negro and Primiceri (2015).
12See algorithm 3.2 in Kroese et al. (2013) for a more detailed discussion of the inverse transform method

for discrete random variables.

where ψ (ht + αs, σ2
s) denotes a Gaussian density evaluated at mean ht+αs and variance σ2

s .

Again, αs and σ2
s values are given in Table 1 in Omori et al. (2007) and ht denotes posterior

draws obtained from (A26) as presented below.

Given Pr
(
st = i|ỹ∗τ,t, zt

)
posterior draws for st can then be generated via the inverse
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Given s, standard regression results (see Koop et al. (2007)) can applied to the system

in (A23)-(A25) to derive the conditional posterior distribution for h:

h|ỹ∗, z, s ∼ N (
dh, Dh

)
, where

⎧⎨⎩dh = Dh

(
Σ−1s ỹ∗α + L′hΣ

−1
ϑ h0

)
,

Dh =
(
Σ−1s + L′hΣ

−1
ϑ Lh

)−1
,

(A26)

where ỹ∗α = ỹ∗ − h − αs. Draws from the density above are obtained using the precision

sampler of Chan and Jeliazkov (2009).

• Sampling Ã

To sample Ã we follow the same strategy as in Cogley and Sargent (2005), who explore the

lower triangular structure of Ã to represent the relationship between reduced-form errors (ut)

and orthogonalized shocks (et), based on ut = ÃΛtPet, as a system of unrelated regressions,

i.e.:

ÃΛtPet =

⎡⎢⎣ ut,1

ut2

ut,3

⎤⎥⎦ =

⎡⎢⎣ ũt,1

α2,1ũt,1 + ũt,2

α3,1ũt,1 + α3,2ũt,2 + ũt,3

⎤⎥⎦ , s.t. ũt,i ∼ N (0, exp(ht,i)) for i = 1, 2, 3.

Conditional on the data, parameters and states, ũt,1 and ut2 are known and can thus be used

as a regressor and regressand, respectively, in the regression ut2 = α2,1ũt,1 + ũt,2. Once an

estimate for α2,1 is obtained, the same rationale applies to ut,3 = α3,1ũt,1 + α3,2ũt,2 + ũt,3.

Therefore, starting from the second equation, we can express each equation in the VAR

system as:

yt,i = xt,iφj +
i∑

j=2

αi,j−1ũt,j−1 + ũt,i for i = 2, 3. (A27)

Stacking both sides of the expression above over t = 1, ..., T yields:

yi = Xiφi +Xũi
αi + ũi, s.t. ũi ∼ N (0, Σui

) for i = 2, 3, (A28)

where Σui
= diag (exp(h1,i), · · · , exp(hT,i)). Combining (A28) with a Gaussian prior αi ∼

N (α̂i, Σαi
) yields:13

αi|y, z−αi
∼ N (

dαi
, Dαi

)
, where

⎧⎨⎩dαi
= Dz0

(
X′

ui
Σ−1ui

Xui
(yi −Xiφ̃) +Σαi

α̂i

)
,

Dαi
=
(
X′

ui
Σ−1ui

Xui
+Σ−1αi

)−1
for i = 2, 3.

(A29)

13We calibrate prior hyperparameters as α̂i = 0i−1×1 and Σαi
= 10Ii−1 for i = 2, 3.
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• Sampling Ωh

We assume Ωh = diag
(
σ2
h1
, · · · , σ2

hN

)
with each element following an Inverse Gamma

prior σ2
hi
∼ IG (νhi

, Shi
).14 Hence, each σ2

hi
is sampled from the following density:

σ2
hi
|y, z−σ2

hi
∼ IG (νhi

, Shi

)
, where

⎧⎪⎨⎪⎩
νhi

= T
2
+ νhi

,

Shi
=

T∑
t=1

(ϑt,i)
2

2
+ Shi

for i = 1, · · · N,

(A30)

where ϑt,i denotes each element in the vector of innovations ϑt driving the log-volatilities in

(A14).

• Sampling h0

Let Lh0 = IN ⊗ ι0 where ι0 = (1, 0, · · · , 0)′. Then by a simple change of variable,

h0 = Lh0h0, Equation (A24) can be expressed as:

Lhh = Lh0h0 + ϑ. (A31)

Combining (A31) with the Gaussian prior h0 ∼ N
(
ĥ0,Σh0

)
yields:15

h0|y, z−h0 ∼ N
(
dh0 , Dh0

)
, where

⎧⎨⎩dh0 = Dh0

(
L′h0

Σ−1ϑ Lh0h+Σh0 ĥ0

)
,

Dh0 =
(
L′h0

Σ−1ϑ Lh0 +Σ−1h0

)−1
.

(A32)

14We calibrate prior hyperparameters as νhi
= 105 and Shi

= 2.9× 103 for i = 1, 2, 3.
15We calibrate prior hyperparameters as ĥ0 = (−3.2 − 3.2 − 3.2)

′
and Σh0

= 10−3I3.
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A4 Robustness Checks

In this section, we report results for three types of robustness checks: (i) allowing for het-

eroskedasticity; (ii) prior sensitivity analysis; and (iii) exploring a different identification

strategy. In short, key results documented in the main text carry over to all these checks.

Also, unless stated otherwise, all results in this section are obtained estimating Model IV

(see Table 1 in the paper), i.e. the most flexible endogenous TVP-VAR variant.

A4.1 Allowing for Heteroscedasticity

We take two approaches to incorporate (conditional) heteroskedasticity, namely fixing the

break dates and allowing for stochastic volatility. In the subsequent analysis and focus on

three results discussed in the main text: (i) statistical evidence for endogenous TVP-VARs;

(ii) gauging the contribution of each structural shock as a driver of parameter instability; and

(iii) changes in the inflation-gap persistence. Regarding the latter, as discussed in Section

4.3, we follow Cogley et al. (2010) and compute variations in inflation-gap persistence using

the time-varying R2
h,t coefficient of determination proposed in their paper. Formally, we

have:

line with Sims and Zha (2006), who – applying a VAR with regime-switching mean and

variance – provided evidence that ‘volatility regimes’ in the US between 1959 and 2003 can

be more or less characterized in terms of Fed chairmanships.16 Notably, the last break date

16For details, see the discussion in Section 5 of their paper.

R2
h,t ≈ 1−

s′π
[∑h−1

i=0 Bi
tFtB

i′
t

]
sπ

s′π
[∑∞

i=0 B
i
tFtBi′

t

]
sπ

, (A33)

where Bt collects the autoregressive coefficients at time t from a TVP-VAR casted in com-

panion form and Ft denotes the conditional variance-covariance matrix of the system (also

in companion form). sπ is a vector that collects the coefficients in the VAR equation for the

inflation rate.

Next, recall that R2
h,t is a metric bounded between zero and one and that what charac-

terizes changes in inflation-gap persistence is the pace at which R2
h,t converges to zero as the

h-step-ahead horizon increases. Therefore, a highly (weakly) persistent process at time t is

one whose R2
h,t statistic slowly (quickly) converges to zero as h lengthens.

• Fixed Breaks

Break dates are set to 1979Q1, 1987Q2 and 2007Q2, which leads to four ‘volatility

regimes’ that broadly coincide with particular Fed chairmanship periods. That is, 1967Q1-

1979Q1 and 1979Q2-1987Q1 can be regarded as the pre-Volcker (or Burns) and Volcker

regimes respectively; 1987Q2-2007Q2 captures the Greenspan chairmanship; and finally

2007Q2-2018Q2 denotes the Bernanke-Yellen period. Such an approach is somewhat in
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is introduced to accommodate the possibility of a volatility change in the beginning of the

Great Recession, in addition to capturing the early stages of Ben Bernanke’s chairmanship.

Specifically, we relax the assumption of homoskedasticity while allowing for: (i) breaks

in the covariance matrix for the reduced-form errors; and (ii) breaks in the conditional

variance of the drifting coefficients. For the latter, we also introduce breaks in the loading

coefficients associated with each (unit-variance) structural shock and in the variance of the

coefficient-specific errors. It is worth noting that estimation of our models when allowing for

fixed (second-moment) breaks follows the same steps summarized (in the box) presented in

Section A1.1. The only adjustment required is that steps 2, 4 and 5 need to be conducted

for each of the four subsamples that result from the three volatility breaks discussed above.

Results for our first robustness check are reported below in Figures A3 and A4 as well as

in Table A2.
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Figure A3: Posterior density estimates for the loadings associated with each structural shock
driving the VAR coefficients under Model IV as described in Table 2 in the paper (fixed
breaks)
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Note: Charts in the top and bottom rows plot the posterior densities of the loadings associated with the

contemporaneous and lagged structural shocks, respectively, that affect parameters of Model IV, described

in Table 1 in the paper. Shock 1, Shock 2 and Shock 3 correspond to cost-push, demand and monetary

policy shocks, respectively. In addition to volatility breaks in the reduced-form error and coefficient-specific

error covariance matrices, the underlying model also allows for three fixed breaks (i.e. four regimes) in the

loadings. Green, red, blue and black lines correspond to regimes 1, 2, 3 and 4, respectively. The 2log(BF)

between endogenous and exogenous TVP-VARs is 151.63, suggesting that evidence for endogenous time

variation in the VAR coefficients is even stronger when allowing for second-moment breaks. See Kass and

Raftery (1995) for details on using the Bayes factor as a metric for model comparison.
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Figure A4: Inflation-gap persistence based on R2
h,t statistics (fixed breaks)
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Note: The figure plots the time-varying measure of inflation-gap persistence, R2
h,t, for the one-, four- and

eight-quarter-ahead forecasting horizons. R2
h,t is constructed using Equation (A33). Estimates above de-

note posterior medians. Charts A, B and C show the results associated with endogenous TVP-VARs with

coefficients driven by contemporaneous, lagged, and contemporaneous and lagged structural innovations,

respectively.
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Table A2: Contributions of structural shocks to parameter instability (fixed breaks)

Total contribution (%)

Source of parameter instability Median 16th perc. 84th perc.

Regime 1: 1967:Q1-1979:Q1

Cost-push shock 44.12% 35.38% 52.21%

Demand shock 16.22% 9.12% 25.31%

Monetary policy shock 30.41% 22.12% 39.05%

Residual 9.25% 8.17% 11.15%

Regime 2: 1979:Q2-1987:Q1

Cost-push shock 58.10% 47.40% 67.31%

Demand shock 19.26% 11.31% 28.10%

Monetary policy shock 11.43% 6.27% 19.18%

Residual 11.21% 10.31% 14.29%

Regime 3: 1987:Q2-2007:Q1

Cost-push shock 55.13% 46.22% 63.31%

Demand shock 4.27% 2.19% 9.01%

Monetary policy shock 33.41% 26.36% 42.04%

Residual 7.19% 5.21% 7.12%

Regime 4: 2007:Q2-2018:Q2

Cost-push shock 61.26% 49.14% 70.02%

Demand shock 5.04% 1.43% 14.22%

Monetary policy shock 27.32% 16.15% 40.12%

Residual 6.38% 4.26% 6.10%

Note: The table reports the contributions of the structural shocks to the overall changes in the drifting VAR

coefficients. Results are based on Equations (24) and (25) of the paper. In addition to volatility breaks in the

reduced-form error and coefficient-specific error covariance matrices, the underlying model also allows for three

fixed breaks (i.e. four regimes) in the loadings.
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• Stochastic Volatility

We now report robustness-check results when modeling the conditional variance of the

reduced-form errors as a stochastic volatility process. Such results are shown in Figures A5

and A6 as well as in Table A3. Stochastic volatility variants of our proposed framework are

estimated applying the modifications to our baseline algorithm, as discussed in Section A3.

Figure A5: Posterior density estimates for the loadings associated with each structural shock
driving the VAR coefficients under Model IV described in Table 2 in the paper (stochastic
volatility)
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Note: Charts in the top and bottom rows plot the posterior densities of the loadings associated with the

contemporaneous and lagged structural shocks, respectively, that affect parameters of Model IV, described in

Table 1 in the paper. Shock 1, Shock 2 and Shock 3 correspond to cost-push, demand and monetary policy

shocks, respectively. The 2log(BF) between endogenous and exogenous TVP-VARs is 63.01, suggesting

that evidence for endogenous time variation in the VAR coefficients remains very strong when allowing for

stochastic volatility. See Kass and Raftery (1995) for details on using the Bayes factor as a metric for model

comparison.
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Figure A6: Inflation-gap persistence based on R2
h,t statistics (stochastic volatility)

Note: The figure plots the time-varying measure of inflation-gap persistence, R2
h,t, for the one-, four- and

eight-quarter-ahead forecasting horizons. R2
h,t is constructed using Equation (A33). The estimates are

constructed as the medians of the corresponding posterior densities. Charts A, B and C show the results

associated with endogenous TVP-VARs with stochastic volatility and with coefficients driven by contempo-

raneous, lagged, and contemporaneous and lagged structural innovations, respectively.
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Table A3: Contributions of structural shocks to parameter instability (stochastic volatility)

Total contribution(%)

Source of parameter instability Median 16th perc. 84th perc.

Cost-push shock 47.17% 41.15% 53.21%

Demand shock 14.39% 10.21% 19.34%

Monetary policy shock 26.03% 22.32% 30.40%

Residual 12.41% 10.07% 15.21%

Note: The table reports the contributions of the structural shocks to the overall changes in the drifting VAR

coefficients. Results are based on Equations (24) and (25) of the paper.

Lastly, we report the evolution of the volatility associated with the innovations in each

VAR equation. All in all, results in Figure A7 reinforce the idea that the dynamics for

the volatility of key macroeconomic variables can be roughly characterized by two regimes.

That is, a pre- and post-mid 1980s volatility regime, each corresponding to a high and low

volatility period, respectively. Such a result, however, should not be interpret as a claim

that stochastic volatility is an unimportant feature. Rather, it indicates that for small-scale

TVP-VARs similar to ours, parsimonious approaches to model volatility, such as fixing the

break dates or regime-switching (as in, e.g., Sims and Zha (2006)) are also useful alternatives.



BANCO DE ESPAÑA 72 DOCUMENTO DE TRABAJO N.º 2108

Figure A7: Time-varying volatilities
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Note: Solid black lines denote posterior medians for σi,t = exp(hi,t/2) for i = 1, 2, 3 and t = 1, ..., T in the

inflation, unemployment and interest rate equations. Shaded areas represent the corresponding 16th and

84th (posterior) percentiles.

A4.2 Prior Sensitivity Analysis

We now consider three types of prior sensitivity checks. First, we conduct additional model

comparison exercises between our baseline endogenous TVP-VAR and its exogenous coun-

terpart by allowing for several degrees of prior informativeness associated with the vector

of loadings λ. Specifically, we experiment with λ ∼ N (0, 0.1I) , λ ∼ N (0, I) and λ ∼
N (0, 100I). As discussed in Section 3.2 of the paper, λ is a key parameter for model com-

parison, since statistical validation of our framework – via the Savage-Dickey density ratio

method – is based on such a parameter.

Second, we examine whether statistical evidence and our results on the contribution of

identified shocks to parameter instability would hold under more uninformative priors for

second-moment parameters in our baseline model. To this end – and in keeping with Gelman
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et al. (2013) (see pages 583-584) – we set to lower values: (i) the shape hyperparameter of the

Inverse-Gamma prior for each element in Ωv; and (ii) the degrees of freedom hyperparameter

for the Inverse-Wishart prior associated with covariance matrix of reduced-form errors (Ωu).

More precisely, we set νv,i = 30 (instead of 60) for i = 1, ...,M ; and Vu = 15 (instead of 30).

Finally, we also verify whether evidence in favor of our approach holds when relaxing

the assumption that the covariance matrix for the coefficient-specific errors (i.e., Ωv) is

diagonal. Consequently, instead of assuming an Inverse-Gamma prior for each diagonal

element in Ωv, we elicit an Inverse-Wishart. In particular, we follow Primiceri (2005) and

set Ωv ∼ IW
(
40, 0.012 × 40× V̂OLS

)
, where V̂OLS is the variance of ordinary least squares

estimator for the coefficients of a time-invariant VAR that is fitted to a training sample

(1948Q2 to 1962Q2).

Overall, the results reported in the main text are robust to all prior sensitivity checks

discussed above. In particular, model comparison results between endogenous and exogenous

TVP-VARs are very much in line with the “Barlett’s Paradox” (see Bartlett (1957)). In other

words, when comparing nested models, evidence in favor of the more complex one (in our

case, endogenous TVP-VARs) weakens the flatter the prior for λ becomes. This is manifested

by the decline in the Bayes factor as the prior for λ gradually becomes more uninformative

from Checks 1 through 3 in Table A4. Nevertheless, we stress that we still gather strong

evidence in favor of endogenous TVP-VARs even for considerably flat priors for λ.17 Also,

the results in Table A5, based on more uninformative priors for second moments, further

confirm our findings in the original manuscript on the importance of identified shocks to

coefficient variations.

17By “strong evidence” we refer to the recommendations for interpreting Bayes factors as in, e.g., Kass
and Raftery (1995), page 777.
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Table A4: Model comparison between endogenous and exogenous TVP-VARs under different
prior assumptions

Check 1 Check 2 Check 3

35.03 21.07 7.40

Check 4 Check 5 Check 6

63.67 62.13 60.61

Note: Values above denote 2 log(Bayes factor) between TVP-VARs with and without endogenous time vari-

ation. Comparison is based on the most flexible endogenous TVP-VAR variant (i.e. Model IV described in

Table 2 of the paper) and its exogenous counterpart. Estimates greater than six and greater than ten should

be interpreted as strong and very strong evidence in favor of endogenous TVP-VARs, respectively. See Kass

and Raftery (1995) for details on using the Bayes factor as a metric for model comparison. Checks 1 through 3

denote different degrees of prior tightness for the loadings (λ) in the drifting coefficients equations, with Checks

1, 2 and 3 allowing λ to range from tightly, moderately and loosely parameterized around zero, respectively.

Checks 4 and 5 set prior hyperparameters for Ωu and Ωv, respectively, in order to make second-moment priors

more uninformative. Check 6 relaxes the diagonal assumption for Ωv and assumes the latter is a full covariance

matrix.

Table A5: Contributions of structural shocks to parameter instability under more uninfor-
mative priors for second moments

Total contribution (%)

Source of parameter instability Median 16th perc. 84th perc.

Cost-push shock 55.22% 50.13% 61.04%

Demand shock 9.06% 5.87% 13.07%

Monetary policy shock 27.79% 22.53% 32.83%

Residual 6.99% 6.10% 8.10%

Note: The values above are computed using Equations (24) and (25) of the paper.

to have unrestricted long-run effects on all variables in the model. Moreover, monetary

policy shocks are assumed to have no contemporaneous impact on real activity, while the

A4.3 An Alternative Identification Strategy

In this section, we examine whether a different identification scheme provides similar conclu-

sions to the ones obtained with sign restrictions. Therefore, in what follows, instead of relying

on set-identified shocks (such as in the case of sign restrictions), we adopt a more traditional

approach based on point identification of shocks via short- and long-run restrictions.

To be clear, we follow Rubio-Ramirez et al. (2010) who – in keeping with the notion of

long-run neutrality of monetary and demand shocks – identify monetary policy and demand

shocks as having no long-run effects on real activity. In contrast, supply shocks are allowed
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short-run effects of both demand and supply shocks on all variables are left unrestricted.18

These restrictions are summarized below in Table A6.

Table A6: Summary of short- and long-run restrictions

Supply shock Demand shock Monetary policy shock

Inflation (t = 0) * * *

Unemployment (t = 0) * * 0

Interest Rate (t = 0) * * *

Inflation (t =∞) * * *

Unemployment (t =∞) * 0 0

Interest Rate (t =∞) * * *

Note: * and 0 respectively denote an unrestricted and muted response of the variable in the row to a positive

realization of the shock in the column. The top three rows summarize the short-run restrictions (t = 0), i.e.

how a variable respond to a shock upon impact. The bottom three rows summarize the long-run restrictions

(t = ∞), i.e. the effect of a shock on a variable in the long horizon. For more details, see Section 6.1 in

Rubio-Ramirez et al. (2010).

We also note that the short- and long-run identification approach we adopt provides

shocks which are conceptually related to the ones we identify with sign restrictions. More

precisely, both identification strategies are, ultimately, predicated on a supply and demand

dichotomy. This is useful, as it makes results obtained from these two methods readily com-

parable. For example, we can assess whether the importance of supply shocks – manifested

as cost-push shocks in the case of sign restrictions – is a specific result to sign-identified

shocks or it may suggest a more general finding.

Overall, our main results for sign-identified shocks carry over to the case of shocks iden-

tified with short-run and long-run restrictions. For example, Figure A8 shows that the

posterior densities for each loading (associated with each structural shock driving the VAR

coefficients) exhibit most of their masses located away from zero. In particular, the value

for twice the natural logarithm of the Bayes factor (2log(BF)) used for model comparison

between our baseline endogenous TVP-VAR and its exogenous counterpart is 62.70. Taken

together, these results reinforce that statistical evidence in favor of our framework is robust

to the choice of identification.19

In addition, we also provide results on the contribution of identified shocks to parameter

instability. Our results are comparable to the ones obtained in the case of sign-identified

shocks. In particular, Table A7 shows that, when identifying supply shocks more broadly

(i.e. not just as a cost-push shock), such shocks remain the main driver underlying parameter

18The identification approach described above is very much in line with the seminal work by Blanchard
and Quah (1989), except that Rubio-Ramirez et al. (2010) also allow for identification of a monetary policy
shock. For more details, see pages 683-686 in their paper.

19See Kass and Raftery (1995) for details on using the Bayes factor as a metric for model comparison.
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variations in our model. In fact, the contribution of supply shocks as drivers of macroeco-

nomic instability becomes even more pronounced, i.e. 73% instead of 53%, as observed for

supply (cost-push) shocks identified with signs restrictions.

Figure A8: Posterior density estimates for the loadings associated with each structural shock
driving the VAR coefficients under Model IV described in Table 2 of the paper (identification
via short-run and long-run restrictions)
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Note: The 2log(BF) between endogenous and exogenous TVP-VARs is 62.70, suggesting very strong evidence

in favor of endogenous time variation in the VAR coefficients when shocks are identified using short-run and

long-run restrictions as illustrated in Rubio-Ramirez et al. (2010). See Kass and Raftery (1995) for details

on using the Bayes factor as a metric for model comparison.

Table A7: Contributions of structural shocks to parameter instability (identification via
short-run and long-run restrictions)

Total contribution (%)

Source of parameter instability Median 16th perc. 84th perc.

Supply shock 73.36% 67.23% 78.00%

Demand shock 2.47% 1.02% 3.91%

Monetary policy shock 16.24% 11.82% 21.34%

Residual 7.90% 6.86% 9.44%

Note: This table reports the contributions of the structural shocks to the overall changes in the drifting VAR

coefficients when shocks are identified using short-run and long-run restrictions as illustrated in Rubio-Ramirez

et al. (2010). Contributions are computed using Equations (24) and (25) of the paper.
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A5 Generalized Impulse Responses

TVP-VARs have been widely been used to study changes in the transmission of aggregate

shocks. Therefore, in this section we report time-varying impulse responses for all shocks

considered in our empirical applications. To do so, we apply a common approach to de-

fine impulse responses for nonlinear models, namely generalized impulse response functions

(GIRFs). In particular, to construct the GIRFs, we apply the algorithm discussed in Koop

et al. (1996), which we summarize below.

GIRFs are defined as the difference between the conditional expectations of the variables

in the model with and without the influence of a shock of size δ, that is,

GIRFt+h = E[yt+h|et = δ, ψt]− E[yt+h|et = 0, ψt],

where h denotes the horizon of the response and ψt denotes the set of information available

up to time t. To compute the GIRFt+h we follow the next steps:

Step 1. Randomly draw from the Gibbs sample output one state of the economy, φ
(j)
t ,

and a set of the model parameters, A(j), λ
(j)
C , λ

(j)
L , and ,Ω

(j)
v .20

Step 2. Generate a sequence of the structural shocks, ξ
(j)
t =

{
e
(j)
t−1, e

(j)
t , e

(j)
t+1, ..., e

(j)
t+h

}
,

from a N(0, 1).

Step 3. Given λ
(j)
C , λ

(j)
L , and ,Ω

(j)
v , use the law of motion defined in Equation (6), of the

main text, to generate a sequence of the time-varying coefficients, Φ
(j)
t =

{
φ
(j)
t , φ

(j)
t+1, ..., φ

(j)
t+h

}
.

20Note that any selected draw of the impact multiplier matrix, A(j), already satisfies the sign restrictions
used to identify the structural shocks.

Step 4. Given ξ
(j)
t and A(j), generate a sequence of the reduced form innovations U

(j)
t =

{u(j)
t , u

(j)
t+1, ..., u

(j)
t+h}.

Step 5. Given Φ
(j)
t and U

(j)
t , compute the evolution of the variables yt for the next h

periods conditional on a shock of size δ, E[yt+h|et = δ, ψt], and conditional on a shock of

size 0, E[yt+h|et = 0, ψt]. The difference between these two quantities defines our impulse

response.

Step 6. Repeat steps 1 to 5 for j = 1, ..., J . Then, compute the mean of those J iterations,

which constitutes one draw of the GIRFt+h. We set J = 100.

For each time period, we generate 500 draws, from which the median and corresponding

quantiles can be used as estimates and credible sets, respectively.

Results for all GIRFs based on the procedure described above are shown in Figure (A9).
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Figure A9: Generalized impulse response functions for the Endogenous TVP-VAR model

(a) Responses of variables across time and hori-
zons

(b) Four quarters ahead responses of variables
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Note: In each chart, solid blue lines show the posterior median of the generalized impulse response distribu-

tions, while dashed red lines indicate the percentiles 16th and 84th of the corresponding posterior dentisty.
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