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Abstract

In this paper we study the performance of several machine learning (ML) models for 

credit default prediction. We do so by using a unique and anonymized database from a 

major Spanish bank. We compare the statistical performance of a simple and traditionally 

used model like the Logistic Regression (Logit), with more advanced ones like Lasso 

penalized logistic regression, Classification And Regression Tree (CART), Random 

Forest, XGBoost and Deep Neural Networks. Following the process deployed for the 

supervisory validation of Internal Rating-Based (IRB) systems, we examine the benefits 

of using ML in terms of predictive power, both in classification and calibration. Running 

a simulation exercise for different sample sizes and number of features we are able to 

isolate the information advantage associated to the access to big amounts of data, and 

measure the ML model advantage. Despite the fact that ML models outperforms Logit 

both in classification and in calibration, more complex ML algorithms do not necessarily 

predict better. We then translate this statistical performance into economic impact. We 

do so by estimating the savings in regulatory capital when using ML models instead of 

a simpler model like Lasso to compute the risk-weighted assets. Our benchmark results 

show that implementing XGBoost could yield savings from 12.4% to 17% in terms of 

regulatory capital requirements under the IRB approach. This leads us to conclude that 

the potential benefits in economic terms for the institutions would be significant and this 

justify further research to better understand all the risks embedded in ML models.

Keywords: machine learning, credit risk, prediction, probability of default, IRB system.

JEL classification: C45, C38, G21.



Resumen

En este artículo estudiamos el rendimiento de diferentes modelos de aprendizaje 

automático  —machine learning (ML)— en la predicción de incumplimiento crediticio. Para 

ello hemos utilizado una base de datos única y anónima de uno de los bancos españoles 

más importantes. Hemos comparado el rendimiento estadístico de los modelos 

tradicionalmente más usados, como la regresión logística (Logit), con modelos más 

avanzados, como la regresión logística penalizada (Lasso), árboles de clasificación 

y regresión, bosques aleatorios, XGBoost y redes neuronales profundas. Siguiendo 

el proceso de validación supervisora de sistemas basados en calificaciones internas 

—Internal ratings-based approach (IRB)— hemos examinado los beneficios en poder 

predictivo de usar técnicas de ML, tanto para clasificar como para calibrar. Hemos 

realizado simulaciones con diferentes tamaños de muestras y número de variables 

explicativas para aislar las ventajas que pueden tener los modelos de ML asociadas 

al acceso de grandes cantidades de datos, de las ventajas propias de los modelos de 

ML. Encontramos que los modelos de ML tienen un mejor rendimiento que Logit tanto 

en clasificación como en calibración, aunque los modelos más complejos de ML no 

son necesariamente los que predicen mejor. Posteriormente traducimos esta mejoría 

en rendimiento estadístico a impacto económico. Para ello estimamos el ahorro en 

capital regulatorio cuando usamos modelos de ML en lugar de métodos tradicionales 

para calcular los activos ponderados en función del riesgo. Nuestros resultados indican 

que usar XGBoost en lugar de Lasso puede resultar en ahorros de un 12,4 % a un 

17 %, en términos de capital regulatorio, cuando utilizamos el proceso IRB. Esto nos 

lleva a concluir que los beneficios potenciales de usar ML, en términos económicos, 

serían significativos para las instituciones, lo que justifica una mayor investigación para 

comprender mejor todos los riesgos incorporados en los modelos de ML.

Palabras clave: aprendizaje automático, riesgo de crédito, predicción, probabilidad de 

impago, modelos IRB.

Códigos JEL: C45, C38, G21.
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1. Introduction - Motivation 
Recent surveys show that credit institutions are increasingly adopting Machine Learning 

(ML) tools in several areas of credit risk management, like regulatory capital calculation, 

optimizing provisions, credit-scoring or monitoring outstanding loans (IIF 2019, BoE 2019, 

Fernández 2019). While this kind of models usually yield better predictive performance 

(Albanessi et al 2019, Petropoulos et al 2019)1, from a supervisory standpoint they also 

bring new challenges. Aspects like interpretability, stability of the predictions and 

governance of the models are amongst the most usually mentioned factors and concerns 

arising from the supervisors when evaluation ML models in financial services (EBA 2017, 

EBA 2020, BdF 2020). All of them point towards the existence of an implicit cost in terms 

of risk that might hinder the use of ML tools in the financial industry, as it becomes more 

difficult (costly) for the supervisor to evaluate these innovative models in order to ensure 

that all the regulatory requirements are fulfilled. In Alonso and Carbó (2020), we identified a 

trade-off between predictive performance and the risk of ML models, suggesting a 

framework to adjust their statistical performance by the models’ embedded risk from a 

supervisory perspective. The absence of transparency and lack of a standardized 

methodology to evaluate these models is indeed mentioned by market participants when 

asked about the major impediments that may limit further implementation or scalability of 

ML technology in the financial industry (IIF 2019, BoE 2019, NP 2020). However, in order 

to define an adequate regulatory approach it is important to understand not only the risks 

associated with the use of this technology, but also the tools available to mitigate these 

risks. Given the novelty and complexity of some of these statistical methods this is not an 

easy task. Therefore, prior to enter into the risk analysis it could be relevant to ask what will 

be the real economic gains that credit institutions might get when using different ML 

models. While there exists an extensive and growing literature on the predictive gains of ML 

on credit default prediction, any comparison of results from different academic studies 

carries the caveat of relying on different sample sizes, types of underlying assets and several 

other differences, like observed frequency of defaults, which would prevent us from having 

a robust result to be used for this purpose.  

In this paper we aim to overcome this limitation by running a simulation exercise on a unique 

and anonymized database provided by a major Spanish bank. To this extent we compare 

the performance of a logistic regression (Logit), a well-known econometric model in the 

banking industry (BIS 2001), with the performance of the following ML models: Lasso 

                                                           
1 For further references, see next section on literature review. 
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penalized logistic regression, Classification And Regression Tree (CART), Random Forest, 

XGBoost and Deep Neural Networks. As a result, we will compute, firstly, the benefits in 

terms of statistical performance of using ML models from a micro-prudential perspective. 

Evaluating the macro-prudential effects from the use of ML models is out of the scope of 

this paper.2 Finally, we propose a novel approach to translate the statistical performance 

into actual economic impact of using this type of models in credit default prediction. 

Assuming the Basel formulas for risk-weighted assets and capital requirements in the 

Internal Ratings-Based (IRB) approach for retail exposures, as it is in our dataset, we 

compute the savings in terms of regulatory capital which could be achieved by using more 

advanced techniques, in particular XGBoost as the most efficient model in this study, 

compared to a benchmark extensively used in the industry nowadays, such as Lasso.   

The fact that we observe potentially significant capital savings due to a better statistical 

performance of advanced ML tools leads us to conclude that further research is needed in 

the area of supervisory risks in model evaluation. There seems to be an optimal decision to 

be taken on model selection, which will not depend only on the predictive performance, but 

also on the implicit costs observed to get the approval from the supervisor due to the risks 

embedded in the implementation of this technology. 

The paper is organized as follows. Section 2 provides a literature review on the use of ML 

models for credit default prediction. Section 3 explains the data and the models used in the 

analysis. Section 4 contains the comparison of the predictive power, in terms of 

classification and calibration, for the six chosen ML models. In section 5 we show the 

economic impact of using XGBoost for calculating the risk-weighted assets and regulatory 

capital requirements. Section 6 concludes. 

2. Literature review 
There is an extensive empirical literature on the use of ML models for default prediction in 

credit risk. We have methodically reviewed it in order to find those papers that compare the 

predictive power of ML models with the predictive power of a logistic regression (Logit) for 

default prediction of loans. These loans could be either mortgages, corporate loans, or retail 

exposures. We can separate the literature in different strands, depending on the main ML 

method used. We consider papers that use tree based methods (either classification and 

regression trees or ensembles like random forest, boosting or XGBoost), neural networks 

                                                           
2 Any policy decision should take into account the potential positive impact of using ML and big-data on financial inclusion 
(see Barruetabeña 2020, Huang et al 2020), as well as the possibility of having negative side effects on social discrimination 
(Bazarbash 2019, Jagtiani and Lemieux, 2019) due to the better classification performance of ML models (Fuster et al, 2020). 
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methods (either deep neural networks or convolutional neural networks), and papers that 

compare several methods. Among the papers that use mainly tree based methods, one of 

the first attempts was Khandiani et al (2010), who tested the performance of classification 

and regression trees for predicting credit card delinquencies using data from a bank´s 

customer base from 2005 to 2009. Butaru et al (2016) also focused on credit card 

delinquencies prediction, using a large dataset collected by a US financial regulator over a 

period of 6 years. They found that random forests can have gains of 6% with respect to 

Logit in terms of recall. Other papers have used ensemble tree based methods to predict 

corporate loans default. Petropoulos et al (2019), collected data on corporate and SME 

loans from Greece from 2005 to 2015, and found that random forests can have gains with 

respect to Logit of 8% in terms of AUC. Sigrist and Hirnschall (2019) used data on SME 

loans from Switzerland, and showed that a model that combines Tobit and gradient tree 

boosted can have up to 17% gains over Logit in terms of AUC. And Moscatelli et al (2019) 

used a dataset of Italian non-financial firms from 2011 to 2017, and found that ensemble 

tree methods could yield gains over Logit of 2.8% in terms of AUC. On the other hand, 

there are papers that have used mainly deep learning or convolutional neural networks to 

predict credit default. Turiel et al (2018) collected loans from Lending Club that covered the 

2007 to 2017 period, including consumer loans, corporate loans, etc. They found that deep 

learning could have gains of 12% in terms of recall over Logit. Sirigniano et al (2018) 

developed a deep learning model to predict default on a sample of 120 million mortgages 

from US between 1995 and 2014, and show that deep learning can have gains from 6% 

to 20% in terms of AUC with respect Logit, depending on the definition of default. Kvamme 

et al (2018) also collected data on mortgages, specifically more than 20,000 Norwegian 

mortgages approved from 2012 to 2016. They show that the use of convolutional neural 

networks can yield gains of 6% in terms of AUC with respect to Logit. Finally, Albanesi and 

Vamossy (2019) used a combination of deep neural network and gradient boosted trees to 

predict consumer default form the Experian credit bureau, from 2004 to 2015, and 

concluded that deep learning performs significantly better than logistic regression, with 

gains up to 5% in terms of precision. While the majority of the papers reviewed focus on 

one or few ML models we found some that compare the predictive power of an ample class 

of ML methods, highlighting Jones (2015) and Guegan and Hassani (2018). All 

aforementioned papers find that ML models outperform Logit in classification power. This 

is true regardless of the technique used and the type of underlying asset of the study. 

However, these results are very heterogeneous. 
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Our contribution to this literature is that we are able to assess robustly the predictive 

performance of a wide range of ML methods under different circumstances (different 

sample sizes, and different amount of explanatory variables, as shown in Section 4) using 

a unique database on consumer loans granted by a big Spanish bank. Unlike the 

aforementioned comparisons in the literature, this allows us to test whether the statistical 

performance comes from an information advantage (associated to the access to big 

amounts of data) and/ or model advantage (associated to ML as high end technology) when 

comparing these innovative tools to traditional quantitative models, as suggested by Huang 

et al (2020). We find that there exists a model advantage on top of information advantage. 

Our results are in line with Huang et al (2020), who use a dataset from the Fintech industry 

in China, but we have used a different approach. They computed the information advantage 

by discretionally dividing the features into two sets: traditional vs innovative explanatory 

variables. This way they observed the performance of ML models under both datasets. 

They found that, within each model, using all the available variables yields better 

performance, concluding that this is an indication of the existence of information advantage. 

In our case, instead of discretionary separating the sample into two, we have measured the 

performance of ML models under both dimensions of the information space MxN, where 

M represents the number of observations (length) and N the number of features (width). In 

particular we perform simulations with a random selection of features and sample sizes. 

This allows us to add statistical robustness to the conclusion that a model advantage exists 

on top of information advantage, capturing a broader concept of information advantage 

(and therefore, a finer model advantage definition) when compared to Huang et al (2020). 

We also contribute to the literature by assessing the economic impact of using ML for credit 

default prediction. Khandani et al (2010) and Albanesi and Vamossy (2019) computed the 

Value Added (VA) as the net savings to lenders of granting credit lines to borrowers based 

on the (better) predictions of ML models. This method, while useful, has its drawbacks. 

First, it is limited to the assessment of ML for credit scoring, while we aim to evaluate models 

in more areas susceptible to implement this technology in the banking industry. Second, it 

might be considered backward looking metric, as it is estimated using a randomly chosen 

subset of the loans or credit lines of the outstanding portfolio, assuming that some of them 

could be granted or cut retrospectively3. We, instead, propose to monetize the impact 

through the comparison of calculated risk-weighted assets and capital requirements under 

                                                           
3 See section 5.1 for an explanation of this method. 
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a baseline scenario, using Lasso4, against a scenario in which the banking institution would 

have chosen to implement a more statistically efficient model, like XGBoost. We show that 

the latter scenario can yield savings from 12.4% to 17% in terms of regulatory capital 

requirements under an IRB approach, depending on the corresponding risk components 

in the Basel formulae associated to our type of exposure or underlying assets. This is, to 

the best of our knowledge, the first attempt to measure the impact of using ML methods in 

terms of regulatory capital savings. This impact could be interpreted as a floor amount, 

since it does not account for the potential benefit of using the model for new business 

originated. In contrast, while conservative, this estimated amount could be immediately 

materialized by the credit institution, complementing the exercise that might be additionally 

carried out through the estimation of the VA. 

 

3. Data collection and ML models 
An anonymized database from Banco Santander has been used to conduct this analysis. 

It contains data from a subset of consumer credits, granted by the aforementioned bank in 

unspecified dates. This data has been completely and previously anonymized by Banco 

Santander through an irreversible dissociation process in origin which prevents the 

possibility of identifying costumers in any way. The dataset contains information from more 

than 75,000 credit operations which have been classified into two groups, depending on 

whether they resulted on default or not. Additionally, each operation has a maximum of 370 

risk factors (features) associated to it, whose labels or description have not been provided. 

Consequently, the nature of these variables is unknown to us, and they cannot be used to 

establish the identity of the customers they refer to. Out of 370 features, 105 are binary 

variables (only two different values), 99 have 3 to 5 different values, 34 have 6 to 10 different 

values, and 132 have more than 10 values5. Around 3.95% of the loans resulted in default, 

but the data has no temporal dimension, so we do not know when the loan was granted, 

and if resulted in default, when it happened.6 

As mentioned in the introduction, we will firstly compare the predictive performance of Logit 

vs several ML models. In particular, we have chosen Lasso penalized logistic regression, 
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Classification and Regression Trees (CART), Random Forest, XGBoost and Deep Neural 

Networks7 because they are amongst the most cited ones in the literature review.8 We have 

conducted our analysis using Python and open source libraries like Sklearn and Keras. The 

hyper-parameters have been chosen according to standard cross-validation techniques, 

as the purpose of our exercise is neither feature engineering nor optimization, but 

comparing between correctly calibrated models. We have divided our data into training 

(80%) and test (20%) set, and we have used a five-fold cross-validation on the training set 

to choose the hyper parameters that maximizes the out-of-sample AUC9. As it is common 

in the literature, input values have been standardized by removing the mean and scaling to 

unit variance10.  

 

4. Predictive performance 
To assess the predictive performance of the 6 ML models we will focus on two measures: 

classification and calibration. Classification means the ability of the model to discriminate 

defaulted loans from those that have been repaid, being able to classify them in different 

risk buckets. We will use the AUC-ROC or Area Under the Curve of the Receiving Operating 

Characteristic (Fawcett, 2005) in order to measure the discriminatory power (BIS, 2005).11 

On the other hand, calibration refers to the quality of the estimation of the probability by 

looking, per bucket, at how good the average estimated probability fits the observed default 

rate. To this purpose we will use the Brier score (BIS, 2005) to measure how precise the 

estimations are, along with calibration plots, in particular reliability curves, in which we will 

divide the predictions into groups, and for each one we will compare precisely the average 

estimated probability of default with the corresponding observed default rate. For both 

measures, we perform a sensitivity analysis in the two dimensions of the information space 

(MxN), simulating the impact in the AUC-ROC and Brier score of the models for different 

sample sizes (M), and for different number of available features (N).   

                                                           
7 Our benchmark Neural Network has 5 layers, with 3 hidden units of 300, 200 and 100 neurons. We have selected this 
architecture after implementing the proper cross-validation and hyper parameter tuning. Our main results are not significantly 
affected by choosing other variations of Neural Networks.   
8 For an introduction into the functioning of each model, please see WB (2019). 
9 Among the hyper parameters, we have chosen the depth of trees for CART and the number of trees and depth of trees 
for Random Forest and XGBoost. For neural networks, we use Talos to choose the optimal number of hidden layers, 
nodes, activation functions and optimizers. 
10 Our results do not change ostensibly if we use input values without standardization, but standardizing them helps to 
reduce computing time, especially in the case of deep neural networks.  
11 There are other metrics that evaluate the performance of a classifier, like F1, Gini index, recall, precision and accuracy. We 
choose AUC because is the most used metric across the papers we reviewed and one of the most popular metrics in the 
literature (Dastile et al, 2020). We will additionally use recall as a robustness check. 
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Classification and Regression Trees (CART), Random Forest, XGBoost and Deep Neural 

Networks7 because they are amongst the most cited ones in the literature review.8 We have 

conducted our analysis using Python and open source libraries like Sklearn and Keras. The 

hyper-parameters have been chosen according to standard cross-validation techniques, 

as the purpose of our exercise is neither feature engineering nor optimization, but 

comparing between correctly calibrated models. We have divided our data into training 

(80%) and test (20%) set, and we have used a five-fold cross-validation on the training set 

to choose the hyper parameters that maximizes the out-of-sample AUC9. As it is common 

in the literature, input values have been standardized by removing the mean and scaling to 

unit variance10.  

 

4. Predictive performance 
To assess the predictive performance of the 6 ML models we will focus on two measures: 

classification and calibration. Classification means the ability of the model to discriminate 

defaulted loans from those that have been repaid, being able to classify them in different 

risk buckets. We will use the AUC-ROC or Area Under the Curve of the Receiving Operating 

Characteristic (Fawcett, 2005) in order to measure the discriminatory power (BIS, 2005).11 

On the other hand, calibration refers to the quality of the estimation of the probability by 

looking, per bucket, at how good the average estimated probability fits the observed default 

rate. To this purpose we will use the Brier score (BIS, 2005) to measure how precise the 

estimations are, along with calibration plots, in particular reliability curves, in which we will 

divide the predictions into groups, and for each one we will compare precisely the average 

estimated probability of default with the corresponding observed default rate. For both 

measures, we perform a sensitivity analysis in the two dimensions of the information space 

(MxN), simulating the impact in the AUC-ROC and Brier score of the models for different 

sample sizes (M), and for different number of available features (N).   
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10 Our results do not change ostensibly if we use input values without standardization, but standardizing them helps to 
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The reason why we have decided to use these two measures to pursue the evaluation of 

the performance of the ML models is that they are explicitly mentioned in the supervisory 

process for the validation of IRB systems, which we find to be the most complete framework 

to understand the potential and limitations of these predictive models when applied in 

particular to regulatory capital calculation, and generally to credit risk management (Alonso 

and Carbó, 2020). In this sense, for a supervisor there are two separated phases when 

evaluating the adequacy of an IRB system. First, a supervisor should carry out an 

assessment of the design of the rating system. In the calculation of regulatory capital, 

institutions have to estimate several risk factors, like the Probability of Default (PD), Loss-

Given-Default (LGD), or even credit conversion factors or maturity adjustments. As a general 

rule, institutions have to provide their own estimates of PD and rely on standard values for 

other risk components. In this paper we will assume this is the case.12 In this sense, the 

estimation of the PD is a two-folded task. First, institutions are required to identify the risk 

in different buckets, discriminating those exposures which are riskier from the rest. 

Secondly, the risk must be quantified. To this purpose, the buckets must be well calibrated, 

resembling the observed default rate. Once the risk factors are estimated, they will be 

plugged into an economic model as inputs in order to compute the (un)expected losses, 

which in the case of minimum capital requirements, comes from the Basel framework. 

In sum, to understand the benefits of ML models applied to estimating PDs, it is not enough 

to evaluate the models in terms of discriminatory power, but we must get a grasp as well 

on the calibration performance. Once this work is done, supervisors will get deeper into the 

rating process, which usually includes an investigation on the data sources, privacy of the 

information and quality of the data sets, technological infrastructure required to put the 

model into production, and its governance, all subject to the use that each institution gives 

internally to these models. 

 

4.1. Classification 

In this section we use the AUC-ROC to study the discriminatory or classification power of 

the selected models. As shown in Figure 1, this curve plots the true positive rate (TPR) vs 

the false positive rate (FPR) at different classification thresholds.  

                                                           
12 As further explained in Section 5.1. 
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Given-Default (LGD), or even credit conversion factors or maturity adjustments. As a general 

rule, institutions have to provide their own estimates of PD and rely on standard values for 

other risk components. In this paper we will assume this is the case.12 In this sense, the 

estimation of the PD is a two-folded task. First, institutions are required to identify the risk 

in different buckets, discriminating those exposures which are riskier from the rest. 

Secondly, the risk must be quantified. To this purpose, the buckets must be well calibrated, 

resembling the observed default rate. Once the risk factors are estimated, they will be 

plugged into an economic model as inputs in order to compute the (un)expected losses, 

which in the case of minimum capital requirements, comes from the Basel framework. 

In sum, to understand the benefits of ML models applied to estimating PDs, it is not enough 

to evaluate the models in terms of discriminatory power, but we must get a grasp as well 

on the calibration performance. Once this work is done, supervisors will get deeper into the 

rating process, which usually includes an investigation on the data sources, privacy of the 
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Figure 1. Comparison of AUC-ROC per model 

 

Where TP (true positives) are the loans that, having defaulted, are correctly predicted as 

such, FN (false negatives) are the loans that, having defaulted, are incorrectly predicted as 

non-default, FP (false positives) are the loans that did not default but were predicted as 

default, and TN (true negatives) are the loans that did not default and were correctly 

predicted as non-default. For each threshold, if a loan has a probability of default higher 

than such threshold, then we classify it as defaulted. Therefore, the lower the threshold, the 

higher the TPR and the lower the FPR (upper right of the AUC curve). On the other hand, 

the higher threshold, the lower the TPR and the higher the FPR (bottom left of the AUC 

curve). In Figure 1 we plot the estimated out-of-sample AUC-ROC curves for the six 

models. The curves show a nonlinear trade-off between TPR and FPR. The discriminatory 

power is given by the area under the curve. For reference, we plot a dotted 45 degrees line. 

This line yields an area of 0.5, and it represents a decision rule that categorizes randomly a 

binary response. The further up from the red dotted area, the more classification power the 

model would have. In our estimation Logit achieves a 0.78, Lasso 0.79, CART 0.81, Deep 

Neural Net 0.81, Random Forest 0.83, and XGBoost 0.84. The results are in line with our 

previous findings on the literature review, which suggest that ML models have better 

predictive performance than Logit, but deep neural networks do not necessarily outperform 

tree based methods. These results do not depend on the particular train-test partition we 

used to train and calibrate our models. In the Appendix we include an exercise in which we 
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previous findings on the literature review, which suggest that ML models have better 

predictive performance than Logit, but deep neural networks do not necessarily outperform 

tree based methods. These results do not depend on the particular train-test partition we 

used to train and calibrate our models. In the Appendix we include an exercise in which we 

show the average AUC for each ML model from 100 simulations with different train-test 

partitions, and the differences among models remain the same13.  

From a credit institution point of view, the cost of a FP (not granting a loan to a performing 

counterparty) will presumably have a smaller impact on the benefits than the importance 

of getting a TP correctly (not granting a loan to a non-performing counterparty). Therefore, 

model selection rules for credit scoring would usually take into account that the actual cost 

of having a FN outweighs the opportunity cost of a FP. From an economic point of view 

both are not equally important, however, standard computational loss functional (like 

cross-entropy) usually treat both symmetrically. Bearing this in mind, on the traditional ML 

literature usually it is used the confusion matrix as a 2x2 contingency table to evaluate the 

performance of the algorithms, visualizing the TP, FP, TN, FN for both the actual and 

predicted classes. In our case, we propose a separate exercise in which we compare the 

TPR or recall of each of the ML models due to the fact that, for credit rationing, FN are way 

more important economically (Abdou and Pointon, 2011). Therefore, it is suggested to 

prioritize the analysis on the vertical axis of the ROC-AUC chart. In order to compare the 

TPR, we need to specify which threshold we consider to decide when a loan will default or 

not. We choose from 10% to 30% thresholds, since a loan with an estimated default 

probability of ca. 10% is associated with speculative grade and 30% corresponds to 

average default rates observed in ratings at least CCC+ by Standard & Poors and Moody’s 

(Cardoso et al 2013). Both levels therefore might well be representative of early warnings 

or limits when deciding to grant a loan in any credit scoring system. The results are in 

Table 1. 
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Table 2: False Positive Rate for different classifier thresholds 

 

Method 

FPR, 

Classifier 

threshold = 10% 

FPR, 

Classifier 

threshold = 20% 

FPR, 

Classifier 

threshold = 30% 

Logit 7% 1% 0.3% 

Lasso 7% 1% 0.3% 

Tree 8% 2% 0.3% 

Random Forest 11% 2% 0.3% 

XGBoost 10% 3% 0.3% 

Deep learning 9% 2% 0.3% 

 

With a classifier threshold of 10%, the ranking of ML models in terms of TPR is the same 

as in our benchmark exercise, when we compared ML models in terms of the AUC metric. 

XGBoost and Random Forest have the highest TPR, around 55%, followed by Deep 

Learning, Tree, Lasso and Logit. If we consider a classifier threshold of 20% or 30% instead, 

then XGBoost continues to be the ML model with highest TPR, but Random Forest falls 

behind Deep Learning and Tree. In any case, for each possible classifier thresholds, ML 

models outperform again traditional methods like Logit. From Table 1 we can see that 

resulting TPRs are relatively small (never above 60%) even for low classifier thresholds. This 

happens because in our dataset there are approximately 3.95% of defaulted loans. While it 

is not a heavily imbalanced dataset, we test the robustness of our results by performing 

two additional exercises in which we balance our dataset, first by giving more weight in the 

loss function to observations which defaulted, and second, by performing oversampling 

techniques. The results are in the Appendix. The main conclusion is that these rebalancing 

techniques do no change the main results from our benchmark exercise, and the ranking 
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XGBoost and Random Forest have the highest TPR, around 55%, followed by Deep 

Learning, Tree, Lasso and Logit. If we consider a classifier threshold of 20% or 30% instead, 

then XGBoost continues to be the ML model with highest TPR, but Random Forest falls 

behind Deep Learning and Tree. In any case, for each possible classifier thresholds, ML 

models outperform again traditional methods like Logit. From Table 1 we can see that 

resulting TPRs are relatively small (never above 60%) even for low classifier thresholds. This 

happens because in our dataset there are approximately 3.95% of defaulted loans. While it 

is not a heavily imbalanced dataset, we test the robustness of our results by performing 

two additional exercises in which we balance our dataset, first by giving more weight in the 

loss function to observations which defaulted, and second, by performing oversampling 

techniques. The results are in the Appendix. The main conclusion is that these rebalancing 

techniques do no change the main results from our benchmark exercise, and the ranking 

among algorithms remain the same. Taken this into consideration, we continue to work 

with our original dataset. 

For completeness sake, we can also evaluate the performance of ML models in terms of 

False Positive Rate or FPR. The results are in Table 2. Interestingly, Lasso and Logit are, 

for all three thresholds, the methods with the lowest FPR, although differences in FPR are 

much smaller than differences in TPR. This indicates that Lasso and Logit tend to have 

fewer predictions with PD above the initial threshold of 10%, but still, differences in TPR by 

more advanced ML models offset the small differences in FPR. 

We then analyse if the model´s classification power depends on the number of observations 

and features available. Our aim is to statistically isolate any information advantage due to a 

better access to big amounts of data from a hypothetical model advantage. We consider 

information advantage might come from the access to a larger MxN dataset, where M is 

the number of observations (length) and N the number of features (width). This definition is 

slightly different to Huang et al (2020), who only considered information advantage the one 

derived from the use of more features. To this purpose, first we compare the classification 

performance of each model for different sample sizes. We perform 400 simulations, and for 

each of them a random number of loans, from 1,000 to 65,00014, is selected. In Figure 2 

we show the area under the curve of each model for different sample sizes, so that we can 

find the model with the best classification performance depending on the sample size. 

Random Forest and XGBoost outperform the rest of the models when 5,000 observations 

or more are included. It is often believed that algorithmically complex ML methods surpass 

traditional linear models because they can handle a larger amount of data (the so-called, 

information advantage). But this exercise shows that, given the same amount of data, 

Random Forest and XGBoost always exceed the discriminatory power of Logit or Lasso 

thanks to the non-linearity nature of their algorithms, even when a relatively small amount 

of data (5,000 observations) is used. In this sense, ML techniques offer a model advantage, 

adding value on top of what traditionally might be understood as big-data. All six models 

experience an increase in their classification performance when more observations are 

included, but the slope of this gain is smaller for Logit (blue line) and Lasso (yellow line) from 

10,000 observations onwards. This means that traditional quantitative models do not 

benefit as much when more data is available. On the other hand, Logit and Lasso can 

outperform the rest of models when the sample is 5,000 loans or less. Figure 2 also shows 

                                                           
14 Randomly we select a number from 1,000, 5,000, 10,000, 15,000 up to 65,000 (12 groups in total, around 33 simulations 
per group). 
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that Deep Neural Networks only outperform Logit and Lasso when more than 20,000 

observations are available. In the Appendix, Figure 15 shows these simulations for the six 

models along with their 95% confidence intervals. 

Secondly, we compare the classification performance of each model for different number 

of available features, in order to isolate the second dimension of a potential information 

advantage15. We perform again 400 simulations in which we select all available observations 

(75,000 loans), but in each simulation we choose a random number of features, from 125 

to 37516. Figure 3 shows the AUC-ROC of each of the models for different number of 
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compare the average estimated probability of default with the rate of defaulted loans 

observed over total loans in that group.  

The Brier score is a key measure to quantify the accuracy of a probability forecast (BIS, 

2005). The formula to compute this metric is:  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑁𝑁  ∑(𝑓𝑓𝑡𝑡 − 𝑜𝑜𝑡𝑡)

2
𝑁𝑁

𝑡𝑡=1
 

Where N is the number of observations, f is the predicted probability of default, and o is the 

class of the observation (1 if default, 0 otherwise). We perform the same two exercises as 

with classification: we compute the Brier score for different sample sizes (from 1,000 to 

75,000) and for different number of features (from 125 to 375). Figure 4 shows for each 

model the resulting box plots from 400 simulations with different sample sizes. It can be 

seen that for most of the simulations and models, the Brier score is within a range of 3% 

and 4.4%. Differences among models are very small. Brier score values are small and similar 

among models due to the fact that there are only 3.95% defaulted loans in the whole 

sample. For illustrative purposes, if we were to consider the whole sample, and we used a 

model that assigns probability of default equal to zero for all the loans, the Brier score of 

that simple model would be 3.95%. Still, we can see in Figure 4 that the models with the 

lowest average Brier score are Random Forest and XGBoost. The six models have a Brier 

score of 3.7% for Logit, 3.6% for Lasso, 3.5% for the CART and Deep Neural Network, and 

3.4% for XGBoost and Random Forest when the whole sample is used. 

 

Figure 4. Sensitivity of Brier score to sample size 
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Brier score is within a range of 3.3% and 4%. We observe that Brier Scores are more 

homogeneous across simulations when changing the number of features than when 

changing the number of observations. This might be because now each simulation has all 

observations available, so the amount of defaulted credits is the same across simulations, 

while in Figure 4 the percentage of defaulted credits might differ from one simulation to 

another. In any case, XGBoost and Random Forest also achieve the lowest Brier scores 
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Since differences in Brier Score are so small among models, we propose the additional 

calibration exercise. We run 200 simulations for each model, only changing the train-test 

partitions, with all observations and all features available for each simulation. We have 

grouped the predictions of each model into 13 buckets1718, depending on the estimated 

probability of default. Figure 6a shows reliability curves for each of the models. There, the 

                                                           
17 The choice of the number of buckets does not change the ranking between algorithms. In fact, in Figure 7a we do a 
classification with fewer buckets to focus on smaller probabilities, and the ranking between algorithms remains the same. 
18 The buckets distribution is as follows: Bucket 1 has loans with PD between 0% and 5%, bucket 2 PD between 5% and 
10%, bucket 3 PD between 10% and 15%, bucket 4 PD between 15% and 20%, bucket 5 PD between 20% and 25% and 
bucket 6 PD between 25% and 30%. Buckets seven and above contains intervals of 10% of PD each, up to PD 100%. 
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x axis represents the estimated probability of default of each bucket, and the y axis has the 

proportion of defaulted loans over total loans for each bucket. The 45 degrees line 

represents a perfect calibration. For example, a perfect calibration would imply that a bucket 

with 20% of estimated probability of default should contain a 20% of defaulted loans. All 

models seem to perform very similarly for the first two buckets. However, for predicted 

probabilities above 10%, the performance of the models differs. For predicted probabilities 

between 10% and 20%, Logit (blue line) and Lasso (yellow line) underestimate the 

probability of default with respect to the observed default. For estimated probabilities above 

20%, all models overestimate the probability of default with respect to the observed default 

rate. But Logit and Lasso are the models that overestimate the most. On the other hand, 

XGBoost and Random Forest are the models that are closer to the 45 degrees line. Since 

these results are based on multiple simulations, we must take into account the variance of 

the observations. Figure 16 in the Appendix shows the same results of Figure 6a but in 6 

subplots (one for each model) in which we display the 95% confidence intervals. This way 

we can understand better the accuracy of the calibration. It can be seen that for Logit and 

Lasso, the 45 degrees line lays out of the calibration points’ confidence interval from the 

third bucket (around 12% of probability of default) onwards. The rest of ML models perform 

better, especially Deep Neural Network, Random Forest and XGBoost, for which the 45 

degrees line always lays on the confidence interval for all buckets.  

 

Figure 6a. Reliability curve                                      Figure 6b. Distribution of loans  

 

Looking at Figure 6a it might seem that the difference in calibration power between 

XGboost and Lasso or Logit is higher than what their Brier scores suggest. This is explained 
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XGboost and Lasso or Logit is higher than what their Brier scores suggest. This is explained 

by the fact that most observations have a probability of default below 10%. In Figure 6b 

we show the amount of credits in each bucket for Lasso and XGBoost. It can be seen that 

80% of the credits have probabilities of default below 10%. Therefore, we must 

acknowledge that XGBoost, a priori, outperforms Lasso and Logit especially for 

probabilities above 10%, but there are fewer amount of credits in those buckets.  

 

As most of the predictions have a probability of default below 30%, we propose another 

calibration plot in which we group the predictions into more granular buckets, focusing only 

in probabilities below this threshold19. This way we can assess the performance of the 

models for lower and more common probabilities in the field of credit default prediction. 

The results are shown in Figure 7a. It can be seen that Lasso and Logit tend to 

underestimate the probability of default for predictions up to around 3%, then overestimate 

the probability of default for probabilities from 5% to 7%, underestimate again for 

probabilities between 10% and 20% (as suggested as well by Figure 6a), and overestimate 

for probabilities above 20%. The rest of ML models are closer to the 45 degrees line. In the 

appendix we show in Figures 17-18 the results of Figure 7a but in six subplots (one for 

each model) and with 95% confidence intervals. It confirms that ML models like Deep Neural 

Network, Random Forest and XGBoost calibrate better. For referential purposes, in Figure 

7b we show the amount of credits in each bucket for Lasso and XGBoost with this new 

categorization of buckets. 

 

Taking everything into account, we can conclude that XGBoost and Random Forest clearly 

outperform the other models, especially in classification, but also in calibration, although 

this is definitely a more difficult task for all of them. Finally, CART and Deep Neural Network 

have similar performances, always above Lasso and Logit. The main conclusion of this 

section is that ML models outperforms Logit both in classification and in calibration, existing 

a model advantage that can be statistically isolated from an information advantage. 

Nevertheless, most complex models like Deep Neural Networks, do not necessarily predict 

better neither in terms of classification nor calibration. 

 

                                                           
19 The new bucket distribution is as follows: Bucket 1 has loans with PD between 0% and 1%, bucket 2 contains PD between 
1% and 2%, bucket 3 contains PD between 2% and 4%, bucket 4 contains PD between 4% and 6%, bucket 5 contains PD 
between 6% and 8%, bucket 6 contains PD between 8% and 10%%, bucket 7  contains PD between 1% and 12%, bucket 
8 contains PD between 12% and 15%, bucket 9 contains 15% and 20%, bucket 10 contains PD between 20% and 30%, 
and bucket 11 has up to PD 100%. 
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5. Economic impact of using machine learning 
In section 4 we found that ML models have better predictive power both in terms of 

classification and calibration than Logit or Lasso, regardless of the sample size and number 

of available features. In this section we wonder how to translate this statistical result into a 

real business metric. In particular, we aim to answer: which is the potential economic impact 

for a credit institution of using one of these ML models instead of traditional quantitative 

methods in credit default prediction in real business conditions? 

One approach to measure the economic impact of better predictions is finding which loans 

could have been granted in case of counting with a better predictive model. This means 

either working out-of-sample, or using a subset of the portfolio and thinking retrospectively. 

This last approach is followed in Khandani et al (2010) and Albanessi and Vamossy (2019), 

who estimate the Value Added (VA) of using ML models by comparing the profits with and 

without forecast. In their model, the savings would be a function of the TP rate, indicating 

the correct decision not to grant a loan, which would be offset by the opportunity costs due 

to the lost return on those rejected loans because our model incorrectly expected them to 

default (FP). In this sense, it could be computed the VA in relative terms, comparing the 

savings when using a predictive model to the case of using a perfect-foresight strategy. 

We understand that this approach, while valuable, has some limitations, as its computation 

relies on the assumption of working retrospectively on the outstanding portfolio, which 

means that no institution could anyhow materialize the process in the real world, as the VA 

might be considered backward looking metric. Therefore, we propose a novel approach to 

estimate the economic impact of applying ML in credit default prediction, which consists of 

calculating the potential savings in regulatory capital derived from using ML instead of a 
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These loans represent a credit risk exposure to the institution, with its corresponding cost 

in terms of regulatory capital. Assuming that the institution follows an IRB approach20, we 

can calculate the difference in terms of regulatory capital between using a commonly used 

model nowadays like Lasso compared to using XGBoost, the model we found to be the 

most efficient in terms of predictive performance in our dataset. This measure would act as 

a floor or lower bound in the overall economic impact of using ML, assuming that at least 

any institution could benefit from reducing the capital requirements on their outstanding 

credit exposure, on top of which they could add the VA as estimated for instance by 

Khandani et al (2010), if any institution decides to implement a better predictive model on 

its new business strategy. 
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The pre-crisis (2008) regulatory framework provided credit institutions with a large degree 

of discretion in determining their capital requirements. This resulted in excessive variability 

in banks' capital requirements, which ultimately undermined the credibility of the risk-

weighted capital framework at the peak of the global financial crisis. As stated in Bastos e 

Santos et al (2020), the Basel III post-crisis reforms developed by the Basel Committee 

sought to reduce this variability. To check this prerogative, the authors assess the degree 

of difference in modelled capital requirements across banks and over time. They observe 

that those credit institutions whose capital is closer to the minimum Tier1 ratios might be 

using more precise quantitative models to estimate their risk-weighted assets (RWA).21 

In this sense, in Baena et al. (2005) it is explained how theoretically statistical models with 

better predictive power could yield a better outcome in terms of regulatory requirements. 

They showed that the Basel’s risk weighted function for credit risk in the IRB approach is 

concave in the PD. This implies that the capital requirement for a group of assets increases 

as its PD increases, but each time less and less. If this holds true, a more granular 
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classification of credit ratings should imply a lower overall capital requirement, and 

consequently the use of a statistical model with more predictive power could yield some 

savings. Also, over estimation or under estimation on loans with low PDs (which are 

common in prime portfolios) could affect disproportionally more the RWA than differences 

in loans with high PD. We are going to test these ideas by performing a step-by-step 

computation of the capital requirements for our dataset, using both Lasso and XGBoost for 

estimating the PD.22 

Before starting the exercise, we summarize the key formulas needed to compute the capital 

requirements. The Basel framework specifies different formulas depending on the nature of 

the underlying assets which represent the credit exposure23. Since our data consists of 

consumer loans, we will use the formula of capital requirement K for retail exposures, which 

is calculated as follows (Equation 1): 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐾𝐾 = [𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝑁𝑁 [ 𝐺𝐺(𝑃𝑃𝑃𝑃)
√(1 − 𝑅𝑅)

 + √ 𝑅𝑅
1 − 𝑅𝑅   ∙ 𝐺𝐺(0.999)] − 𝑃𝑃𝑃𝑃 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿] 

Equation 1 

 

Where LGD stands for Loss Given Default24, G is the inverse cumulative distribution function 

for a standard normal random variable, PD is the average probability of default of the 

portfolio of assets, N stands for the cumulative distribution for a standard normal random 

variable, and R is the correlation. The formula for the correlation R is given by:  

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅 = 0.03 ∙
(1 − 𝑒𝑒−35∙𝑃𝑃𝑃𝑃)

(1 − 𝑒𝑒−35) + 0.16 ∙ (1 − (1 − 𝑒𝑒−35∙𝑃𝑃𝑃𝑃)
(1 − 𝑒𝑒−35) ) 

Equation 2 
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any case, different LGD values would not affect our comparison between XGBoost and Lasso, since changes in LGD would 
affect their capital requirement equally (see Equation 1). 
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Equation 1 

 

Where LGD stands for Loss Given Default24, G is the inverse cumulative distribution function 

for a standard normal random variable, PD is the average probability of default of the 

portfolio of assets, N stands for the cumulative distribution for a standard normal random 

variable, and R is the correlation. The formula for the correlation R is given by:  
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Equation 2 

 

                                                           
22 We will compute the K function using PD point-in-time, although the regulation CRD 2013/36 and CRR 575/2013 requires 
that the ratings represent a long term assessment of the risk of the underlying loans. 
23 These assets could be corporate, sovereign, bank or retail exposures. 
24 We assume that the bank’s estimate for LGD is 0.45 as baseline scenario. This is a standard value for any senior claims on 
sovereigns, banks, securities firms and other financial institutions that are not secured by recognized collateral (CRE32.6). In 
any case, different LGD values would not affect our comparison between XGBoost and Lasso, since changes in LGD would 
affect their capital requirement equally (see Equation 1). 

The Basel framework suggests different correlation formulas and values depending on the 

nature of the assets they refer to. We will use equation (2) for the computation of the 

correlation in our benchmark exercise, but we will consider additionally other possibilities 

for illustrative purposes like R=0.04 (for revolving retail exposures) up to R=0.15 (retail 

residential mortgage exposures), as mentioned further in this section, in order to account 

for the uncertain nature25 of the retail type exposure in our dataset. Finally, the amount of 

risk weighted asset (RWA) can be computed as follows: 

 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐾𝐾 ∙ 12.5 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸 

Equation 3 

Where EAD is exposure at default measured in euros. We cannot compute this measure, 

as we don’t know which feature corresponds to the outstanding credit balances or 

Exposures At Default (EAD) 26. Therefore, we will focus on computing the savings of capital 

requirement K in relative percentage terms, using the number of loans per bucket as a 

proxy to weigh the size of the exposure. 

In Figure 8 we show the risk weighted assets (RWA) resulted from a series of PDs (from 

0% to 20%) for three possible formulations of the RWA formula, Equation 1: With the term 

R as a function of PD as in Equation 2, with the term R fixed at 0.04, and with the term R 

fixed at 0.15. This way it can be seen the concavity of RWA with respect to the PD for 

different formulations. Notwithstanding this, in our benchmark scenario we consider the 

term R as a function of the PD (“R corr” in Figure 8). In this scenario, RWA does not display 

concavity for PD between 5% and 12%, but it is concave and increasing in the rest of the 

domain of PD. For the other two formulations of RWA (with R fixed at 0.04 and 0.15), RWA 

is concave in the whole domain of PD. The degree of concavity of RWA in PD will have an 

important effect on the differences between Lasso’s RWA and XGBoost’s RWA. As we will 

see later, over estimating the PD or accumulating many loans in a specific PD interval can 

have very different repercussions depending on the relationship of the RWA with PD in that 

interval. 

 

                                                           
25 We ignore certain characteristics of the underlying credit, like either if there is any guarantee or collateral or the potential 
revolving structure of the loans. 
26 As stated before, we do not know the labels of any of our features. 
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25 We ignore certain characteristics of the underlying credit, like either if there is any guarantee or collateral or the potential 
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Figure 8. Shape of RWA function subject to parameter R.

 

 

Step 1 – Discriminate between risk buckets.  

Out of nearly 75,000 loans we use around 60,000 to train the models and we make 

predictions over the remaining 15,000 loans27. We first rank those 15,000 loans by their 

perceived credit risk. To this purpose we estimate the PD using both Lasso and XGBoost, 

and we order the predictions proportionally in 50 buckets, from lower to higher values of 

PD28. The results are displayed in Figure 9, on the left hand side for Lasso and on the right 

for XGBoost. For both methods we show the average PD (orange line) and the observed 

default rate (blue line) for all 50 buckets. It can be seen that the estimated probability 

complies with the desired property of increasing monotonically in order to demonstrate 

discriminatory power. However, the divergence with the default rate per bucket suggests 

that a calibration process needs to be performed. This divergence is more significant for 

Lasso which first tends to overestimate for loans around 1% (from bucket 5 to 20). The 

distribution of PDs for Lasso around 1% is completely flat, so it accumulates a great mass 

of loans in a relatively small interval of PD. Then Lasso underestimates the default rate when 

PD is around 3% and 4% (which corresponds to buckets 25 to 30 of Lasso), overestimates 

for PD from 5% to 7% (buckets from 32 to 42 of Lasso), underestimates again for PD from 

10% to 20% (buckets from 42 to 48 of Lasso) and finally overestimates when PD is higher 

than 20% (buckets 49 and 50 of Lasso). These results are in line with our findings in the 

calibration analysis of section 4.2, while XGBoost seems to adjust better the PD to the 

default rate in each bucket, its fit is not perfect and therefore needs further calibration as 

well.  

                                                           
27 Different train-test partitions do not affect the results of this section. 
28 There are around 300 loans per bucket. 
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Figure 9. Ranking PDs per model. 

 

Step 2 – Calibration process. 

In order to get approval from a supervisor, the classification resulting from the model must 

resemble the observed default rate. We propose in Figure 10 an initial set of 10 rating 

grades based on the PD estimated, in order to fine-tune the calibration. 

Figure 10. Initial distribution in rating buckets. 

 

For these rating notches to be approved by the supervisor, they must comply with two 

criteria: (i) risk heterogeneity between buckets, and (ii) risk homogeneity within buckets. This 

implies that risk categories must be different from each other (in our case, finding a PD 

which is monotonically increasing fulfils this requirement), while keeping consistency of risk 

1.  Lower than 1% - AAA 

2.  From 1% to 2% - AA 

3.  From 2% to 3% - A 

4.  From 3% to 5% - BBB 

5.  From 5% to 8% - BB 

6.  From 8% to 12% - B  

7.  From 12% to 15% - CCC 

8.  From 15% to 18% - CC 

9.  From 18% to 25% - C 

10.  Higher than 25% - D 
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level within each group. In Figure 10 it is evident that the homogeneity criterion does not 

apply, as the difference between default rate and PD in each bucket is too high29. 

In order to accomplish the two criteria, we reduce sequentially the number of buckets, until 

we find the first set of ratings for each model which satisfies them. We do so by changing 

the thresholds that determine the buckets, as shown in Figure 11 and Table 3, below: 

 

Figure 11. Final distribution of rating buckets. 

 

    

          Table 3 

 

 

                                                           
29  We set the threshold of the homogeneity criterion in a maximum of 2% of difference between the PD and the default 
rate. 
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While Lasso allows us to identify 6 different buckets of riskiness, XGBoost allows a more 

granular classification, up to 8 buckets. When performing the calibration process, we 

choose discretionally the parameters (thresholds) that determine the buckets, but bearing 

in mind that we are restricted by the underlying distribution of PDs of Lasso and XGBoost, 

and its distance to the observed default rate, as shown in Figure 9. In the case of Lasso, 

the only way to accomplish this risk homogeneity criterion is by merging loans with 

estimated PD from 5% to 12% into a single bucket (bucket 5 of Lasso), and loans with 

estimated PD from 12% and higher into another bucket (bucket 6 of Lasso). The difference 

between PD estimated and the observed default rate for PD higher than 5% (buckets 34 

and higher) is considerable. Therefore, the only way to achieve a proper classification of 

buckets is by merging probabilities between around 5% and 12% (buckets 34 to 47)30. 

Moreover, while the distribution of PD of XGBoost is always increasing, Lasso’s distribution 

presents important flat areas, undifferentiated, which do not allow for further disaggregation 

(loans around PD = 1% in buckets 5 to 20). 

Figure 12 shows the distribution of loans per final rating bucket, according to the 

thresholds of Table 3. The distribution of loans per bucket differ between each model. 

XGBoost has a more granular and smooth distribution over buckets. It allocates a 

significantly bigger amount of loans in bucket 1, and then the number of loans per bucket 

decreases smoothly, stretching overall the distribution of loans between buckets. Lasso, 

on the other hand, accumulates more loans in buckets 2 and 5.  This happens because, 

as we showed in Figure 9, there are parts of the Lasso PD distribution which are completely 

flat, that is, around 1% and around 5-6%, much flatter than the XGBoost distribution.  

 

                                                           
30 We could vary these thresholds slightly (5.5% instead of 5% and 11% instead of 12%) and still accomplish the criteria, but 
our main results will remain the same. The PD distribution delivered by Lasso does not depend of any particular the train 
test partition. 

Figure 12. Distribution of loans per final rating buckets.
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Figure 12. Distribution of loans per final rating buckets.
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buckets, the estimated PD for both models is almost the same by construction, since the 

thresholds were the same (Table 3) but Lasso accumulates more loans in bucket 2 than in 

bucket 1 due to the flat area of Lasso’s PD distribution around 1.5% of PD. Roughly, the 

amount of loans that XGBoost allocates to bucket 1 is allocated by Lasso to bucket 2, and 

vice versa, since Lasso tends to overestimate the PD in that area (Figure 9, buckets 5 to 

20). Therefore, the average PD weighted by the number of loans in bucket 1 and bucket 2 

is higher in Lasso than in XGB, and this translates into considerable differences in RWA in 

the first two buckets. Consequently, Lasso allocates less loans in buckets 1 to 4 than 

XGBoost but needs more regulatory capital. On the other hand, Lasso has many more 

loans than XGBoost from bucket 5 onwards, i.e., more loans with higher than 5% PD. 

Independently of how Lasso and XGBoost split those loans, Lasso will charge more 

weighted capital in that section. Actually, the fact that RWA in our benchmark exercise is 

not concave and almost non increasing between 5% and 12% of PD benefits Lasso, since 

it is allocating a considerable amount of loans in that segment32.  

 

Secondly, the difference in the number of buckets found within each model. The fact that 

XGBoost achieves after the calibration process a classification into a larger number of 

buckets than Lasso, implies, due to the concavity of the RWA function, a difference in 

capital requirements in its favour. The concavity shown in Figure 8, means that, being fixed 

the remaining inputs in the RWA formula, the following inequality holds true (Baena et al, 

2005): 

 

𝐾𝐾(𝜆𝜆 ∙ 𝑃𝑃𝑃𝑃1 + (1 − 𝜆𝜆) ∙ 𝑃𝑃𝑃𝑃2) > 𝜆𝜆 ∙ 𝐾𝐾(𝑃𝑃𝑃𝑃1) + (1 − 𝜆𝜆) ∙ 𝐾𝐾(𝑃𝑃𝑃𝑃2), 𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝜆𝜆𝜆𝜆(0,1)   

 

Where K(.) represents the regulatory capital requirements function. Following this idea, we 

force the XGBoost classification into 6 buckets instead of 8, by merging buckets 6, 7 and 

8 of XGBoost into a single bucket, in order to match exactly 6 buckets as it is the case of 

Lasso. In that case, the RWA would be between 0.4% and 1.1% higher (depending on the 

correlation formula of RWA), being this a rougher classification but which would have 

respected the supervisory calibration criteria as well. Similarly, we could further split 

XGBoost buckets and still accomplish the supervisory calibration criteria. If, for instance, 

                                                           
32 As we will show below, if we use alternatives of the Basel formula where the RWA is concave and increasing in the whole 
domain of PD (Figure 8), the difference between Lasso and XGBoost would be even larger. 
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we split bucket 1 into two additional buckets, RWA for XGBoost would be between 0.5% 

and 1.5% lower, depending on the correlation formula of RWA. 

 

These two sources of capital savings would be affected by the concavity of the formula of 

RWA on PD. We have performed our benchmark exercise under the assumption that the 

consumer loans of our data would fall into the category of “other retail exposures” according 

to the Basel framework. Nevertheless, as mentioned before the loans of our dataset could 

fall into other categories, like “retail exposure with mortgages collateral” or “revolving retail 

credit exposures”. Therefore, we have run a sensitivity analysis considering those 

possibilities, using their corresponding Basel formulas for the K function, with R=0.04 and 

R=0.15 (Figure 8 shows the relationship between RWA and PD with those specifications). 

The savings in terms of regulatory capital range are 14% and 17% respectively for those 

two alternative scenarios. These savings are greater than in our benchmark scenario 

because, if R is fixed, then RWA would be strictly increasing and concave when PD is higher 

than 5% as well. Lasso is allocating a considerable amount of loans especially between 5% 

and 12%, a segment where increases of PD mean big increases of RWA if R is fixed, 

resulting in a more pronounced effect in capital savings (first source of savings). Also, since 

the calibration of XGBoost has more buckets, savings with XGBoost are higher when the 

RWA is concave in the whole domain of PD (second source of savings).  

 

For further clarification, we split each of the 6 buckets of Lasso and the 8 buckets of 

XGBoost into smaller groups of 304 loans, 50 groups in total. For example, the first 5 groups 

of 304 loans of Lasso would correspond to Lasso’s bucket 1 (1,520 loans, see Figure 12), 

and the first 20 groups of XGBoost would correspond to XGBoost bucket 1 (6,080 loans), 

etc. To each group we charge the corresponding RWA according to the bucket they belong 

to. This way we can illustrate how the difference in RWA (stated in relative terms, therefore 

100% corresponds to 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 −  𝑅𝑅𝑅𝑅𝑅𝑅𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 for the total sample of 15,000 loans) 

compounds as we further include more loans in the assessment. The resulting chart is in 

Figure 14 (left for the case with “R correlation”, and right for the case of R = 0.15). With “R 

correlation”, since the formula for RWA is concave and increasing on PD mostly for PDs 

lower than 5%, the majority of the difference in capital requirement is explained with the first 

6,000 loans (roughly bucket 1 for XGBoost and bucket 1 and part of bucket 2 for Lasso). 

The small decrease at the end is due to the fact that XGBoost distributes the last 1,200 

loans into buckets 7 and 8, with higher PD and higher RWA. However, when using R = 
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we split bucket 1 into two additional buckets, RWA for XGBoost would be between 0.5% 
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and 12%, a segment where increases of PD mean big increases of RWA if R is fixed, 

resulting in a more pronounced effect in capital savings (first source of savings). Also, since 

the calibration of XGBoost has more buckets, savings with XGBoost are higher when the 

RWA is concave in the whole domain of PD (second source of savings).  

 

For further clarification, we split each of the 6 buckets of Lasso and the 8 buckets of 
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of 304 loans of Lasso would correspond to Lasso’s bucket 1 (1,520 loans, see Figure 12), 

and the first 20 groups of XGBoost would correspond to XGBoost bucket 1 (6,080 loans), 

etc. To each group we charge the corresponding RWA according to the bucket they belong 

to. This way we can illustrate how the difference in RWA (stated in relative terms, therefore 
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compounds as we further include more loans in the assessment. The resulting chart is in 

Figure 14 (left for the case with “R correlation”, and right for the case of R = 0.15). With “R 

correlation”, since the formula for RWA is concave and increasing on PD mostly for PDs 

lower than 5%, the majority of the difference in capital requirement is explained with the first 

6,000 loans (roughly bucket 1 for XGBoost and bucket 1 and part of bucket 2 for Lasso). 

The small decrease at the end is due to the fact that XGBoost distributes the last 1,200 

loans into buckets 7 and 8, with higher PD and higher RWA. However, when using R = 

0.15, the RWA formula is also concave and increasing on PD for PDs higher than 5%, and 

we can see a second positive compounding effect between 7,600 – 12,000 loans (up to 

bucket 5 for Lasso, buckets 3 and 4 of XGBoost), which this time is not compensated by 

the last 1,200 loans, the ones distributed in buckets 7 and 8 of XGBoost. 
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Summarizing, the fact that XGBoost is able to deliver a more granular distribution of loans 

and a smoother classification of loans per buckets of PD, allows it to deliver those capital 

savings. Ideally, we should weigh the average capital requirement of each bucket by the 

loan balance of the bucket. Unfortunately, we do not know which feature of our dataset 

corresponds with the loan balance. Jiménez and Saurina (2004) pointed to an inverse 

relationship between the size of the loan and the probability of default because larger loans 

are more carefully screened. Therefore, we assume that 12.4% is a conservative estimate 
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0.15, the RWA formula is also concave and increasing on PD for PDs higher than 5%, and 

we can see a second positive compounding effect between 7,600 – 12,000 loans (up to 

bucket 5 for Lasso, buckets 3 and 4 of XGBoost), which this time is not compensated by 

the last 1,200 loans, the ones distributed in buckets 7 and 8 of XGBoost. 
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of the savings in capital requirements, since the number of loans with high probability of 

default (e.g: PD above 10%) is higher for XGBoost than for Lasso. Moreover, XGBoost 

could have even smaller partitions for certain buckets, since its distribution of PD is much 

closer to the observed default than the one of Lasso, which would represent a potential 

further “within model” advantage when computing regulatory capital, ultimately depending 

on the assumption on the threshold for the risk homogeneity criterion in each bucket to be 

stated by the supervisor. 

   

6. Conclusions 
While institutions have been using internal models in the context of regulatory capital for a 

long time, the predominant techniques have not evolved significantly. Multivariate analysis 

and logistic regressions, like Probit or Logit, are effective tools to predict probability of 

default (Trucharte et al 2015), being currently common in the industry evolutions like the 

Lasso penalization. However, nowadays ML tools have the potential to be a game changer, 

as the technological progress and financial innovation has opened the room for 

implementing more advanced predictive models, leveraged on big data, advanced analytics 

and fostered by the push of newcomers into the market, which are implementing these kind 

of technologies in online platforms (EBA, 2018 and Huang et al, 2020). 

In this environment supervisors face the challenge of allowing credit institutions and 

individuals to benefit from innovation, while at the same time respecting technological 

neutrality and ensuring compatibility with the prudential regulation and supervisory process. 

In this article we contribute to the literature in two ways. First, by showing a new way to 

robustly estimate the existence of a model advantage over an information advantage when 

using ML for credit risk. We perform our analysis using a unique and anonymized database 

from a major Spanish bank. Our results show that ML models perform better than the 

traditional Logit model, both in classification and calibration terms. While calibration is 

clearly a more difficult task than classification, XGBoost and Random Forest seem to 

provide the best results in both measures, despite not being the most algorithmically 

complex models (for instance, when compared to Deep Neural Networks). In order to test 

the robustness of our results, we perform a sensitivity analysis, simulating how the results 

would change in case of different number of observations and features, demonstrating that 

statistically it exists a model advantage on top of an information advantage. Secondly, we 

contribute by providing a novel approach to measure the economic benefits from using ML 

models in credit default prediction, through the calculation of the capital savings derived 
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of the savings in capital requirements, since the number of loans with high probability of 

default (e.g: PD above 10%) is higher for XGBoost than for Lasso. Moreover, XGBoost 

could have even smaller partitions for certain buckets, since its distribution of PD is much 

closer to the observed default than the one of Lasso, which would represent a potential 

further “within model” advantage when computing regulatory capital, ultimately depending 

on the assumption on the threshold for the risk homogeneity criterion in each bucket to be 

stated by the supervisor. 

   

6. Conclusions 
While institutions have been using internal models in the context of regulatory capital for a 

long time, the predominant techniques have not evolved significantly. Multivariate analysis 

and logistic regressions, like Probit or Logit, are effective tools to predict probability of 

default (Trucharte et al 2015), being currently common in the industry evolutions like the 

Lasso penalization. However, nowadays ML tools have the potential to be a game changer, 

as the technological progress and financial innovation has opened the room for 

implementing more advanced predictive models, leveraged on big data, advanced analytics 

and fostered by the push of newcomers into the market, which are implementing these kind 

of technologies in online platforms (EBA, 2018 and Huang et al, 2020). 

In this environment supervisors face the challenge of allowing credit institutions and 

individuals to benefit from innovation, while at the same time respecting technological 

neutrality and ensuring compatibility with the prudential regulation and supervisory process. 

In this article we contribute to the literature in two ways. First, by showing a new way to 

robustly estimate the existence of a model advantage over an information advantage when 

using ML for credit risk. We perform our analysis using a unique and anonymized database 

from a major Spanish bank. Our results show that ML models perform better than the 

traditional Logit model, both in classification and calibration terms. While calibration is 

clearly a more difficult task than classification, XGBoost and Random Forest seem to 

provide the best results in both measures, despite not being the most algorithmically 

complex models (for instance, when compared to Deep Neural Networks). In order to test 

the robustness of our results, we perform a sensitivity analysis, simulating how the results 

would change in case of different number of observations and features, demonstrating that 

statistically it exists a model advantage on top of an information advantage. Secondly, we 

contribute by providing a novel approach to measure the economic benefits from using ML 

models in credit default prediction, through the calculation of the capital savings derived 

from their use. We simulate the gains in terms of savings that an institution would achieve 

if they were to use XGBoost compared to a more common Lasso penalized logistic 

regression. We estimate that these savings could amount to up to 17% of capital 

requirements in our benchmark exercise (retail exposure), which is a significant figure that 

lead us to suggest that more research is needed to understand the supervisory cost to get 

a model approval, based on the risks embedded (as in Alonso and Carbó, 2020). As 

mentioned before, predictive performance comes at a price, in particular in terms of risk 

model evaluation, which should be properly quantified too in order to better inform credit 

institutions and supervisors on the optimal model selection. In this sense, for any policy 

decision further research is needed on how to integrate macro-prudential effects of an 

industry wide implementation of ML models in credit risk management.   
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Appendix 

Average AUC from 100 simulations  

In each simulation we use all data available and we only change the train test partition. The 

results are in table 4. Differences between the averages AUC of all models are statistically 

different at 95 confidence interval according to the corresponding Student´s t-test. The t-

test is based on the following T statistic, built under the null hypothesis that two means of 

the populations are equal. 

 

𝑇𝑇  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2

√𝑆𝑆12
𝑛𝑛1

+ 𝑆𝑆22
𝑛𝑛2

 

 

Where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 are the mean values of each sample,  1 and  2 are the 

standard deviations of the two samples, 𝑛𝑛1 and 𝑛𝑛2 are the sample sizes of the two 

samples, and n-1 are the degrees of freedom. With the T statistic value and the degrees 

of freedom, we can compute the corresponding p-values of every possible comparison of 

means. Results are in Table 5. All p-values but one are zero, meaning that the null 

hypothesis is rejected independently of the statistical significance. For the difference 

between Tree and Deep learning, the difference is also significant at 0.028. 

 

Table 4: Average AUC 

Model Logit Lasso Deep 

learning 

Tree Random 

Forest 

XGBoost 

Average 

AUC 

0.786 0.792 0.811 0.813 0.826 0.837 

95% 

confidence 

interval 

0.784, 

0.787 

0.791, 

0.794 

0.809, 

0.813 

0.812, 

0.815 

0.825, 

0.828 

0.835, 

0.838 

Difference 

with Logit 

0 0.006 

 

0.025 

 

0.027 

 

0.040 

 

0.051 
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Table 5: p-value associated to each mean difference 

Model Logit Lasso  Red 

neuronal 

Tree Random 

Forest 

XGBoost 

Logit X      

Lasso 0 X     

Red neuronal 0 0 X    

Tree 0 0 0.0284 X   

Random Forest 0 0 0 0 X  

XGBoost  0 0 0 0 0 X 

 

 

Data balancing techniques 

Since defaults represent only 3.95% of observations in our data, we perform two data 

balancing exercises to test the robustness of our results. These balancing techniques are 

among the most popular ones in the literature (Dastile, 2020). First we scale the calculated 

loss for each observation by assigning a higher weight in the loss function on the observed 

defaults. The weight is computed in a way that the statistical losses associated with defaults 

and not defaults are balanced. The performance of the models in terms of AUC and TPR 

with classifier threshold 50% are in Table 6. We use a classifier threshold of 50% because 

once we balance the observations, TPR for low classifier thresholds are above 90% for 

every model. 

 

Table 6: Weighted data set: AUC and True Positive Rate for different classifier 

thresholds 

 

Method 

 

AUC 

TPR, 

Classifier  

threshold = 50% 

Logit 78% 73% 

Lasso 79% 73% 

Tree 82% 74% 

Random Forest 81% 66% 

XGBoost 83% 75% 

Deep learning 81% 72% 

 

We can see that gains in AUC of the ML models with respect to Logit are similar to the ones 

we observed in the benchmark exercise, show in Figure 1. The main difference with this 

weighted dataset is that the performance of Random Forest is slightly worse than in the 

benchmark exercise. Regarding TPR, while XGBoost has the best performance again, 

Lasso and Logit having similar performance to the ML models and Random Forest 

obtaining a lower TPR. 

Secondly, we balance our dataset by oversampling defaults with the Synthetic Minority 

Oversampling Technique (SMOTE). This is one of the most common methods to solve 

imbalance problems. It balances the class distribution by generating new examples of the 

minority class (for more details, see Nitesh Chawla et al 2002). We oversample in a way 

that we end up with a database with 25% of loans defaulted. The results are in Table 7. 

 

Table 7: SMOTE oversampled dataset: AUC and True Positive Rate for different 

classifier thresholds 

 

Method 

 

AUC 

TPR,  

Classifier 

threshold = 

10% 

TPR,  

Classifier 

threshold = 

20% 

TPR,  

Classifier 

threshold = 

30% 

Logit 79% 71% 37% 17% 

Lasso 79% 71% 41% 14% 

Tree 81% 68% 46% 34% 

Random Forest 82% 69% 49% 31% 

XGBoost 83% 65% 48% 34% 

Deep learning 80% 70% 51% 40% 

 

Again the results in terms of AUC are very similar to the ones of our benchmark exercise. 

The ranking of the algorithms and the difference of ML models with respect to Logit is the 

same. Regarding TPR, ML models outperform clearly Logit, especially for thresholds above 

20%. The fact that Deep learning is the best performer in terms of TPR with this 

oversampled dataset stands out. 
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Deep learning 81% 72% 

 

We can see that gains in AUC of the ML models with respect to Logit are similar to the ones 

we observed in the benchmark exercise, show in Figure 1. The main difference with this 

weighted dataset is that the performance of Random Forest is slightly worse than in the 

benchmark exercise. Regarding TPR, while XGBoost has the best performance again, 

Lasso and Logit having similar performance to the ML models and Random Forest 

obtaining a lower TPR. 

Secondly, we balance our dataset by oversampling defaults with the Synthetic Minority 

Oversampling Technique (SMOTE). This is one of the most common methods to solve 

imbalance problems. It balances the class distribution by generating new examples of the 

minority class (for more details, see Nitesh Chawla et al 2002). We oversample in a way 

that we end up with a database with 25% of loans defaulted. The results are in Table 7. 

 

Table 7: SMOTE oversampled dataset: AUC and True Positive Rate for different 

classifier thresholds 

 

Method 

 

AUC 

TPR,  

Classifier 

threshold = 

10% 

TPR,  

Classifier 

threshold = 

20% 

TPR,  

Classifier 

threshold = 

30% 

Logit 79% 71% 37% 17% 

Lasso 79% 71% 41% 14% 

Tree 81% 68% 46% 34% 

Random Forest 82% 69% 49% 31% 

XGBoost 83% 65% 48% 34% 

Deep learning 80% 70% 51% 40% 

 

Again the results in terms of AUC are very similar to the ones of our benchmark exercise. 

The ranking of the algorithms and the difference of ML models with respect to Logit is the 

same. Regarding TPR, ML models outperform clearly Logit, especially for thresholds above 

20%. The fact that Deep learning is the best performer in terms of TPR with this 

oversampled dataset stands out. 
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Figure 15. Simulation of AUC-ROC performance to sample size increase with 95% 

confidence intervals                                  

 

 

 

 

Figure 16. Simulation of AUC-ROC performance to number of features increase 

with 95% confidence intervals                                  

 

 

Figure 17. Calibration reliability curve with 95% confidence intervals                                  

 

 

 

 

Figure 18. Calibration reliability curve with more granularity and with 95% 

confidence intervals                                                           
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Figure 17. Calibration reliability curve with 95% confidence intervals                                  

 

 

 

 

Figure 18. Calibration reliability curve with more granularity and with 95% 

confidence intervals                                                           
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